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We investigate the local fluctuations in dense granular media subjected to athermal, quasistatic shearing,
based on three-dimensional discrete element method simulations. By shearing granular assemblies of different
polydispersities under constant-volume constraint, we quantify the characteristics of local structures (in terms of
local volume and local anisotropy) and local deformation (using local shear strain and nonaffine displacement).
The distribution of the local volume in a granular medium is found unchanged during the entire shearing process,
which indicates a constant temperaturelike compactivity for the material. The compactivity is not, however,
equilibrated among different particle groups in a polydisperse assembly. The local structures of a disordered
granular assembly are inherently anisotropic. The fluctuations in local anisotropy can be well captured by a gamma
or mixed-gamma distribution function, which is also unchanged during the shear. The local anisotropic orientation
evolves towards the coaxial direction of the stress anisotropy with shear. The deformation characteristics of a
jammed granular medium have their origins in the structural amorphousness. The local shear strain field depicts
clear shear transformation zones which act as plasticity carriers. The spatial correlation of the local shear strains
exhibits a fourfold pattern which is stronger in the stress deviatoric planes than in the stress isotropic plane.
The fluctuations of nonaffine displacement suggest an isotropic granular temperature and an isotropic spatial
correlation independent of the stress state. Both the local strain and the nonaffine displacement exhibit a power-law
decayed distribution with a long-range correlation. We further modify the shear-transformation-zone theory to
predict the pressure-dependent constitutive behavior of a sheared granular material and compare its prediction
with our simulation data.
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I. INTRODUCTION

A granular material may behave either fluid- or solidlike.
When subjected to adequate confinement, it can respond like
a perfect solid, capable of sustaining remarkable shear with
finite strain due to jamming [1–3] where the constituent
particles attain sufficient contacts from their neighborhood
and behave as if totally caged to lead to rigidity for the
entire material body. The short-ranged interparticle contacts,
together with the constituent particles and the associated
voids, form strongly heterogeneous and amorphous internal
structures in the material which underpin complex macro-
scopic physical and mechanical responses of the material.
Quantitative identifications of the characteristics of these local
structures and the associated deformations constitute a key
step towards demystifying the behavior of granular media.

As an isotropic measure of the local structure, density
plays a key role dictating the behavior of granular media. For
example, increasing density may lead to a fluid-to-solid phase
transition according to the jamming phase diagram [4]. The
statistical mechanics theory developed by Edwards employs
an effective temperature or compactivity [5] based on the
volume (or density) of a microcanonical ensemble to describe
the jammed behavior of granular media. The compactivity
has recently been related to the local volume fluctuations
[6–8]. The deformation of a granular material arises from
the local volume fluctuations too, i.e., the free volumes in
the material may activate particle rearrangements and cause
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plastic deformation. The plastic flow in the material is often
governed by clusters of randomly close packed particles which
cooperatively reorganize themselves to sustain the applied
shear, which differ apparently from that in crystalline solids
where dislocations induce plasticity. These plasticity-bearing
clusters in granular media are termed as shear transformation
zones (STZs) [9–11]. Langer and co-workers [12–15] have
indeed developed their shear transformation zone model based
on observations of local quantities in a granular medium or an
amorphous solid. Local displacement in a granular medium
may embody important deformation properties too. It has been
observed that the fluctuated (nonaffine) displacements in a
granular material may form vortexlike patterns [16,17] and
show strong spatial correlations [18,19].

Most existing studies on the local properties of granular
media have been focused on specific loading protocols such
as simple shear where the material states can be simply
described by scalar variables. These simplifications, however,
cannot fully reflect the general real three-dimensional nature
of practical problems [20]. These studies appear also to be
interested in certain specific states of granular media only,
such as the stationary state [6,7], the jamming transition
state [21,22], or the sheared steady state [23,24]. Examining
the evolution of the local quantities during the entire shearing
course may offer new insights towards understanding the
granular behavior. In this study, we employ a discrete element
method (DEM) to perform a series of three-dimensional
shearing tests on granular assemblies. Based on the simulation
data, we examine the key characteristics of local structures and
deformation during the shearing process. While the density
has been frequently investigated in the literature, it can only
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serve as an isotropic characterization of the local structure.
While a granular medium is inherently anisotropic [25],
structural anisotropy should be paid more attention toward a
comprehensive understanding of the local structure properties,
which will be pursued in this study. To exclude the influence
of global volume fluctuation, we impose a constant-volume
constraint on all assemblies during the shearing process. The
constant-volume shearing protocol is indeed common both in
laboratory tests [26,27] and numerical simulations [28,29]. In
soil mechanics, it may correspond to the so-called undrained
shear if the interstitial water is absent. In the deformation anal-
yses, the statistical properties of both the local strain and the
nonaffine displacement will be of major interest in our study.

The paper is organized as follows. The simulation details
and formulations will be described first, followed by analyses
and discussion of the local structures and deformations. The
cross correlations among the local quantities will also be
discussed. We further modify the STZ model and compare its
prediction with our simulation data. For the notations adopted
in the study, compression is taken as positive for stress and
strain measurements; “⊗,” “·,” and “:” denote the tensorial
dyadic operator, the inner product, and the double contraction,
respectively. “tr” and “dev” take the trace and the deviator of
a tensor, respectively.

II. METHODOLOGY AND FORMULATIONS

A. Simulations

A three-dimensional DEM code, ESYS-PARTICLE [30],
is employed for the study. In the DEM simulations we use
spherical particles and a linear force-displacement contact
law in conjunction with a Coulomb criterion to describe the
frictional stick-slip behavior of interparticle contacts. Three
parameters are involved in the contact model: the normal
stiffness kn, the tangential stiffness kt , and the frictional
coefficient μ, based on which the pure-repulsive normal force
fc
n and the tangential (frictional) force fc

t are determined as
follows:

fc
n = −knδ nc, (1a)

fc
t =

{−ktuc
t if |fc

t | � μ|fc
n| (sticking)

−μ|fc
n| uc

t /|uc
t | otherwise (slipping),

(1b)

where δ is the overlap of the two contacted particles, nc

is the outward contact normal, and uc
t is the accumulated

relative tangential displacement at the contact. We choose the
parameters as follows: kn/R

∗ = 108 Pa, where R∗ [=π (R1 +
R2)/4] is the equivalent radius of the two contacted particles
with radii R1 and R2, respectively. From Mindlin’s analysis on
elastic contact, the ratio kt/kn is equal to 2(1 − ν)/(2 − ν)
with ν being the Poisson’s ratio of the particle material,
which further leads to a relation 2/3 < kt/kn < 1 (see also
Ref. [31]) since most materials have 0 < ν < 1/2. Hence we
set kt/kn = 0.8 by assuming ν = 0.3, which is appropriate for
silica sand particles. We also choose μ = 0.5 for interparticle
friction according to the property of silica sand.

We consider four assemblies with different polydispersities
as summarized in Table I. The simulation process consists
of the following three steps. (a) Assembly generation: We
generate the assemblies by randomly inserting particles with

TABLE I. Summary of generated assemblies for the study. MN:
monodisperse; BI12/BI21: bidisperse; TRI: tridisperse.

Label Radii (mm) φa Proportionb

MN 0.25 0.601 NA
BI12 0.2, 0.3 0.605 1:2
BI21 0.2, 0.3 0.611 2:1
TRI 0.2, 0.25, 0.3 0.606 1:1:1

aThe volume fraction for the monodisperse packing in jammed glassy
state is roughly within 0.58–0.64 [25,35].
bThe proportion is in terms of particle number.

prescribed sizes (or size distributions in the polydisperse cases)
into a cubic box confined by six rigid frictionless walls.
A total of 40 865 particles are generated for each of the
four assemblies. At this stage no particle-particle or particle-
wall overlapping is allowed. (b) Isotropic consolidation: We
compress the generated assemblies isotropically until a mean
pressure p = 300 kPa is reached. By assigning a small μ

during the compression we are able to prepare samples with
relatively high volume fraction φ to ensure they are close
to the jammed state. (c) Constant-volume shear: We then
apply triaxial shear to each assembly by restricting its volume
change. Specifically, we continuously apply compression
along the y axis of the sample while adjusting the strain rates in
the x and z directions according to ε̇x = ε̇z = −ε̇y/2, so that
the total volume is maintained unchanged (see Fig. 1). The
triaxial shear procedure is commonly followed in laboratory
experiments as well as numerical simulations in civil and
mechanical engineering, and is indeed a pure shearing mode
in three dimensions. To ensure quasistatic deformation, the
axial compression strain rate ε̇y is determined from the
inertia number I := ε̇y〈2R〉√3ρ/p � 10−3 [32], where R

is the particle radius, 〈·〉 denotes the ensemble average, and
ρ (=2650 kg/m3) is the particle density. The time step for the
DEM computation is chosen �t < 0.2

√
mmin/kn to ensure

numerical stability where mmin is the mass of the smallest
particle. More details about the simulation technique are
described in Refs. [33,34].

To evaluate the shearing effect, we measure the modified
Péclet number defined by Pe∗ := √

3ε̇yτ , where τ is the
relaxation time of the assembly which can be estimated from
the diffusivity (mean square displacement 〈u2〉) of the system
during a quiescent period after the isotropic compression.

(a) (b)

FIG. 1. (Color online) Illustration of constant-volume triaxial
shearing: (a) before and (b) after shearing.
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While all samples considered here possess a high volume
fraction, we have observed extremely low diffusivity and the
relaxation time τ ∝ 〈u2〉−1 � ε̇−1

y . This leads to Pe∗ � 1,
indicating all systems being treated here are athermal and
within the shearing dominated regime [36].

B. Macromechanical behavior

The homogenized bulk stress for a discrete assembly can
be calculated from the Love formula [37]:

σ = 1

V

∑
Nc

dc ⊗ fc, (2)

where V is the total volume of the assembly, Nc is the number
of contacts, dc is the branch vector joining the centers of the
two contacting particles, and fc (= fc

n + fc
t ) is the contact force.

Based on the stress tensor defined above, the mean stress p

and the deviatoric stress q are then calculated as follows:

p = 1

3
tr σ , (3a)

q =
√

3

2
σ dev : σ dev, (3b)

where σ dev (=dev σ ) is the deviatoric stress tensor.
The macroscopic mechanical responses of the four assem-

blies during the shearing are plotted in Fig. 2. With close initial
conditions, all assemblies exhibit similar shear behaviors.
Evidently, these assemblies can be regarded as dense samples
in soil mechanics, as they undergo continuous dilation before
reaching a final steady state at around εy = 40%, after which
both p and q stay largely constant. Note that Demkowicz and
Argon [38–40] also investigated similar constant-volume plane
strain tests on simulated amorphous silicon for both dense and
loose samples.

C. Local structure

The local structure of the granular assembly is quantified
based on radical Voronoi tessellation (or so-called Laguerre
tessellation). This tessellation technique is generalized from
the conventional Voronoi tessellation by replacing the bisect-
ing plane with the radical plane, which renders it applicable for
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FIG. 2. (Color online) Stress evolution of the four assemblies
under constant-volume triaxial shearing. The inset is a zoom-in at
small strains, where the star marks the initial yield point.

polydisperse assembly of spheres. As shown in Fig. 3(b), each
cell enclosed by its polygonal faces contains one particle and
its associated void, representing the overall dual-phase (solid-
pore) structure of a granular medium. We use the open source
library Voro++ [41] to tessellate the assembly obtained from
DEM simulations. The Minkowski functionals and tensors
are then used to study the morphology of the constructed
cells [25,42]. For a specific cell K [see Fig. 3(c)], the associated
Minkowski functionals W0,W1 and the Minkowski tensor W0,2

1
are defined as follows:

W0(K) :=
∫

K

dV, (4)

W1(K) := 1

3

∫
∂K

dA, (5)

W0,2
1 (K) := 1

3

∫
∂K

n ⊗ n dA, (6)

(a) (b) (c)

FIG. 3. (Color online) Radical Voronoi tessellation in (a) two and (b) three dimensions. Radical planes are shown as red lines in (a) and
transparent glasses in (b). �x and �u are the relative position and displacement between the two neighboring particles, respectively. (c) A
Voronoi cell K with surface ∂K and outward normal n.
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where n is the outer normal of surface ∂K of the cell. W0

simply leads to the volume of cell K , which in the sequel will
be denoted by VL with the subscript L representing a local
measure. By normalization, a dimensionless tensor WL :=
W0,2

1 /W1 with a unity trace is more appropriate to characterize
the local anisotropy.

With VL and WL, both the isotropic and the anisotropic
properties of the local structure can be quantified. The isotropic
quantity examined here is the local density, or local volume
fraction φL = Vp/VL, where Vp is the volume of the enclosed
particle in the cell. To characterize the local anisotropy, we
follow Refs. [25,42] by defining

β = λmax

λmin
− 1, (7)

where λmin and λmax are the minimum and maximum eigen-
values of WL, respectively, which are both positive since all
Voronoi cells are convex with finite volumes. β measures the
anisotropic intensity of a cell, and β = 0 corresponds to an
isotropic cell. The anisotropic orientation can be quantified
from the characteristic eigenvector ν associated with λmax.

D. Local deformation

The local affine deformation field � for each particle
relative to its nearest neighbors [see Fig. 3(a)] can be
determined by minimizing the following D2 [12,15,24]:

D2 =
∑
neigh

[�x′ − (δ + �) · �x]2, (8)

where the summation is taken over the nearest neighbors of
the reference particle, and �x and �x′ are the relative position
between the reference particle and its neighbor before and after
the deformation, respectively. δ is the Kronecker delta. � can
be calculated according to

� = X · Y−1 − δ, (9)

where

X =
∑
neigh

�x′ ⊗ �x, Y =
∑
neigh

�x ⊗ �x.

The local strain tensor is thus obtained from the symmetric part
of �: εL = −(� + �T )/2, wherein the minus sign is present
due to a compression positive convention adopted here. The
volumetric strain εv

L and the deviatoric strain ε
q

L are determined
such that they are work conjugate to the stresses defined in
Eq. (3):

εv
L = tr εL, (10a)

ε
q

L =
√

2

3
εdev

L : εdev
L , (10b)

where εdev
L (=dev εL) is the deviatoric local strain tensor.

A granular material may also experience nonaffine defor-
mation when subjected to external loading. The nonaffine
deformation is attributable to many complex behaviors of
granular media, such as plasticity [11,12,15] and strain
localization [36]. For each particle, the nonaffine displacement
is determined by subtracting the globally prescribed mean

displacements, i.e., the affine displacements [17,24]:

ũ = u + �ε · (x − xrest), (11)

where u is the displacement of the treated particle for the
measured time interval, �ε is the global strain tensor, x is
the particle position before the deformation, and xrest is the
position at rest (i.e., fixed in space) during the deformation.

III. RESULTS AND DISCUSSION

The local volume fluctuation serves as a good measure of
Edwards’ compactivity (or effective temperature) for granular
media. The local strain and nonaffine displacement field can
also provide useful information on the characterization of
macroscopic properties such as plasticity. We will examine
these features of the local quantities defined above in this sec-
tion, with a focus on their fluctuations and spatial correlations.
A shear-transformation-zone model will be further formulated
and applied to the prediction of shear behavior of the granular
assemblies as shown in Fig. 2.

A. Local structure

1. Volume fluctuations and compactivity

We first examine the radial distribution function (RDF)
g(r) of the four assemblies to investigate the influence of the
applied shear. The property of RDF is believed to be distinct for
a solidlike granular medium as compared to a fluidlike one.
Figure 4 shows the RDFs at three different shearing levels.
From the insets of the figure, we observe nearly isotropic
RDFs on the three orthogonal planes for all four cases, which
is consistent with that reported in Ref. [36] where the loading
mode is simple shear. Nevertheless, it is seen that the pair
correlation in the isotropic stress plane (x-z plane) is much
weaker than those in the other two anisotropic stress planes
(x-y and z-y). The isotropic property enables us to describe the
RDF as a function of a single scalar variable r which measures
the pair distance. Notably, the RDFs of all assemblies remain
almost unchanged during the shearing course despite certain
small fluctuations. In MN, the first peak is found to appear at
a distance of one particle diameter; in BI12 and BI21, three
local peaks are observed at distances corresponding to ( 3

2 ) = 3
combinations of the two types of particle diameter; in TRI, the
RDF shows a similar shape to MN with the first local peak
appearing at a distance of ensemble average diameter which
is smoothed out from ( 4

2 ) = 6 local peaks. Figure 4 confirms
that all the assemblies are solidlike [38–40].

Aste and co-workers [6,43] reported that the fluctuation
of local volumes within a monodisperse granular assembly
follows a shifted gamma distribution function (GDF):

P (VL; s,θ,l) = 1

�(s)θs
(VL − l)s−1e−(VL−l)/θ , (12)

where s, θ , and l are the shape, scale, and location parameters,
respectively. �(·) denotes the gamma function. To account for
polydispersity, we normalize VL with the enclosed particle
volume, i.e., VL/Vp = φ−1

L , which is the inverse local volume
fraction, and propose the following mixed-GDF:

Pmix =
∑

i

αiPi, (13)
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FIG. 4. (Color online) Radial distribution function for the four assemblies at three different shearing levels. The measured radial distance
interval is 0.1 mean particle diameter. The insets show the color map resolving of g(r) onto three orthogonal planes at εy = 45%. The presented
distance range in the insets is x,y,z/〈2R〉 = ± 2.

where Pi is the contributed probability of the ith group of
particles (grouped by particle radius). αi is the weight factor
of the group which is set equal to the proportion of particle
number.

As expected, the local volumes in the monodisperse
assembly MN yields the gamma distribution, as shown in
Fig. 5(a). The distribution changes slightly with the shearing
process, i.e., the variation of fluctuations slightly increases
while the peak drops with the applied shear. However,
after normalization with the mean value, the distributions of
φ−1

L /〈φ−1
L 〉 (=VL/〈VL〉) at different shearing levels collapse

to one single GDF curve [see inset of Fig. 5(a)]. In the
two bidisperse cases, two peaks for P (φ−1

L ) corresponding
respectively to the small (S) and large (L) particle groups are
observed. In both cases, the first higher peak is contributed by
the large particles, while the second lower one is contributed by
the small particles (see dotted curves). This is not surprising
since large particles generally have larger volume fractions
(smaller φ−1

L ) than small particles in a typical mixture. Due
to less small particles in BI12, the second peak in BI12 is
much less distinct than that in BI21. Again, the distributions
in both assemblies at different shearing levels are rather close.
The local volume distributions for large particle group (L) and
small particle group (S) are separately plotted in the insets

of Figs. 5(b) and 5(c). After normalization with the mean
value, the data points for each group at different shearing levels
collapse to their respective GDF curves. In either BI12 or BI21,
the distribution of the large particle group has a higher peak
value and smaller variation than that of the small particle group,
and this trend does not change with the relative proportion of
the two particle groups. The observations in the tridisperse
assembly are similar to those in the bidisperse assemblies.
Nevertheless, the local peaks in the tridisperse case appear to
be totally smoothed out, which results in a single global peak.

As VL is a measure of the local free volume (accessible
volume for a particle), its distribution serves as a good indicator
for Edwards’ compactivity χ through [6,7]

χ = σ 2
VL

〈VL〉 − (VL)min
, (14)

where σVL
denotes the standard deviation of VL. Figure 5 shows

almost identical distribution for the normalized local volumes
at different shearing levels, which indicates the compactivity
of each assembly remains constant during the shearing. By
shifting and scaling the data, Aste and co-workers [6,43] found
the local volume fluctuation follows a k-gamma distribution,
where the parameter k can be linked with the number of
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FIG. 5. (Color online) Local density distribution for the four assemblies at different shearing levels. GDF is used to fit the data in MN;
while in polydisperse assemblies, a mixed-GDF is used [44]. The dotted curves show the contributions from individual groups. In the insets,
the quantity is normalized by its mean value. And the distributions for different groups are distinguished. φ−1

L ≈ 1.325 corresponds to the
theoretical largest volume fraction achievable in a random monodisperse assembly [43].

elementary cells that exchange volumes (energy) with each
other when subjected to external loading, and can be calculated
from

k =
[〈
φ−1

L

〉 − (
φ−1

L

)
min

]2

σ 2
φ−1

L

= 〈VL〉 − (VL)min

χ
. (15)

We plot the data of different particle groups (eight groups
from the four assemblies) at three shearing levels in Fig. 6(a),
and find that they all roughly collapse to the same k-gamma
distribution with k ∈ [5,7]. In Fig. 6(b) we further plot the
evolution of χ in all eight groups. Clearly, the compactivity for
each of the groups remains roughly constant during the entire
shearing process. This is not surprising since we have imposed
the constraint of constant volume on the assemblies. However,
within the same polydisperse assembly, the compactivities
for different groups differs from one another. Since the
zeroth law of thermodynamics requires a single temperature
for an equilibrated mixture, this indeed suggests that the
effective temperatures over different particle groups in a slowly
sheared system are nonequilibrated, and the compactivity in
the small particle group is slightly smaller. In addition, we
observe a smaller difference among groups in tridisperse
assembly than that in bidisperse ones, which indicates the
compactivity is more equilibrated when the packing is better

graded. Pertaining to the equilibrium of compactivity among
different subsystems, we notice that Refs. [22,45] reported a
same effective temperature between small particle and large
particle groups by calculating the ratio of diffusivity and
mobility following a similar definition of temperature to that of
conventional fluids, while a more recent study [8] also showed
the failure of the zeroth law on compactivity between a bath
and a subsystem of granular disks. A possible attributable
reason for the observed difference is that in Refs. [22,45], the
particle rearrangements are more prevalent and the system is
more fluidlike such that the subsystems (groups) can possibly
reach equilibrium easily, while the granular systems treated
in the current study and in Ref. [8] are of high density and
subjected to mild agitation.

2. Fluctuations of anisotropy

The local Voronoi cell and volume fraction help to measure
the isotropic character of the local structure of granular
media. A disordered granular material, however, is inherently
anisotropic even if isotropic particles (i.e., spheres) are
used [25]. Anisotropy underpins the key mechanical and
physical properties of granular media (e.g., permeability and
thermal conductivity), and the related research has drawn much
attention [26,33,46,47]. It is interesting to examine the feature
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FIG. 6. (Color online) (a) k-gamma fitting of normalized local density. The collapsed symbols include data from all the eight groups in
the four assemblies and at three different shearing levels (εy = 0, 22.5%, and 45%). (b) Evolution of χ measured in the four assemblies for
different groups, and the mean and standard deviation (shown as error bar) of χ throughout the shearing process. χ is in the unit of volume and
is normalized by the volume of the smallest particle Vs ≈ 0.0335 mm3.

of local anisotropy in the granular media here. We plot the
normalized local anisotropic intensity β̂ = β/〈β〉 in Fig. 7.
It is interesting to observe that the distribution of the local
anisotropic intensity also follows a mixed-gamma distribution.
The distribution in each assembly remains almost unchanged
during the shearing process. The polydisperse cases only give
rise to a global peak without any local peaks where β̂ is
slightly smaller than 1. The vanishing probability at β̂ = 0
indicates there is almost no isotropic cell existing in the
assembly regardless of the applied stress state being isotropic
or anisotropic. The observation holds even in the monodisperse
assembly. The insets show the anisotropic intensity in each
particle group (S, M, or L) which can be described by an
individual GDF. Generally, the small particle group is more
anisotropic than the large particle group, due to lower volume
fraction (see the correlation of volume fraction and anisotropy
in Sec. III C 1).

In addition to the anisotropic intensity, we define the
following tensor for an assembly to account for the anisotropic
orientation in a similar form to the contact-normal-based fabric
tensor [48]:

F =
∫

�

E(�) ν ⊗ ν d� = 1

Np

∑
Np

ν ⊗ ν

︸ ︷︷ ︸
Discrete form

, (16)

where ν is the anisotropic orientation of the local Voronoi
cell (eigenvector associated with the maximum eigenvalue
of WL), and Np is the total particle number which is equal
to the total Voronoi cell number. E(�) characterizes the
probability density of the spatial distribution, which can be
visualized by means of a three-dimensional rose diagram as
shown in Fig. 8 for the TRI case. Its approximation by a
second-order Fourier expansion is also shown in the figure.
Interestingly, although the anisotropic intensity distribution
cannot differentiate an isotropic stress state (εy = 0) from an
anisotropically sheared state, the anisotropic orientation differs
in the two cases distinguishably. In an isotropic stress state, the

anisotropic local cells are randomly orientated which results
in a globally isotropic structure for the entire assembly [i.e.,
E(�) resembles a sphere]. When the assembly is subjected to
anisotropic shearing, the local cells gradually adjust internally
towards a more effective global structure to accommodate
the external loading with preferable orientation along the
deviatoric shear loading direction [now E(�) resembles an
ellipsoid with its long axis aligning with the shear direction].
These characters of F bear great similarities to those of a
contact-normal or particle-orientation-based fabric tensor (see
Fig. 5 in Ref. [47]), which has been repeatedly explored
recently in soil mechanics [33,34]. Hence the newly defined
tensor in Eq. (16) seems to be an alternative for the fabric
tensor, but it incorporates more morphological information
than the old ones and helps to unify the characterization of
structural isotropy and anisotropy through one tessellation.
In addition, this new tensor offers proper definition of local
anisotropy and is thus applicable to the study of anisotropy
fluctuations, which is an important feature lacked by otherwise
defined forms.

B. Local deformation

1. Shear strain

We measure the instant local deviatoric strain within a
global deformation interval of �εy = 0.9% at three reference
stages. We take the case of TRI as an illustrative example
and show its results in Fig. 9. The distribution probability of
ε

q

L in TRI at the initial stage of shearing (εy = 0) shows a
peak with a magnitude (∼1%) close to the global shearing
strain, and the variation in the distribution is narrow. Its
maximum value (∼10%) at the initial stage is much smaller as
well compared to those in the later shearing stages. These
observations indicate that the overall deformation of the
sample is relatively homogeneous, and the assembly undergoes
almost pure elastic deformation at this early stage as the
color map displays dominant blue and cyan; while at the two
later shearing states, the deformation field becomes highly
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FIG. 7. (Color online) Probability distribution of the local anisotropic intensities for the four assemblies at different shearing levels. GDF
is used to fit the data in MN, while mixed-GDF is used for the other cases. The insets distinguish the distributions for different groups.

inhomogeneous with significantly concentrated shearing zones
wherein the maximum ε

q

L exceeds 30%. These intensively

FIG. 8. (Color online) Rose diagram of the spatial distribution
of the local anisotropic orientations in TRI at the initial stress
isotropic state (εy = 0) and the sheared steady state (εy = 45%).
The overlaid transparent membranes are the corresponding Fourier
approximations.

sheared zones can be identified as STZs within small clusters
of particles which are considered to be the fundamental units
of plasticity in a sheared amorphous material [10]. These
STZs are “plasticity carriers” which makes them comparable
to dislocations in crystals. However, since they are varying
in space at different shearing levels, STZs formed at an early
stage may be annihilated in a location of the assembly and
new STZs may develop elsewhere at a later stage, which
is evident from Fig. 9. The observation is indeed consistent
with the STZ theory that once a STZ transforms it cannot
repeatedly undergo the same transformation unless subjected
to a reverse shearing [15]. Also the STZs shown in Fig. 9
are more prevalent at εy = 45% and the shearing intensities
are larger than those at εy = 22.5%. Moreover, at all three
shearing stages, we observe a power-law decay at the tail part
of the distribution curves for the local shear strains. This fact
implies a high correlation for these local STZs which will be
examined later. The power-law decaying distribution can also
be observed in the cooperative motion of dislocations in crystal
plasticity [49,50]. Due to the constant volume constraint
assumed in the study, the result of volumetric strain (dilation)
is not presented. We nevertheless notice in our study that εv

L
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FIG. 9. (Color online) Distribution of local deviatoric strain ε
q

L in TRI within the applied deformation interval �εy = 0.9%. εy = 0, 22.5%,
and 45% are three reference states. The color maps show the x-y plane resolving of ε

q

L for a slice with a thickness of four mean particle diameter.
Circled regions are identified as STZs.

and ε
q

L are weakly correlated with the Pearson correlation
coefficient ∼0.1 at the shearing state of all four assemblies.

To measure the spatial correlation of the local shear strain,
we define the following normalized function:

Cε(r) = 〈ε(r)ε(0)〉 − 〈ε(0)〉2

〈ε(0)2〉 − 〈ε(0)〉2
, (17)

where ε measures the deviation between the two components
of the local strain tensor in the global principal directions,
e.g., on the x-y plane, ε := (εL)yy − (εL)xx . In doing so, ε

is comparable to (εL)xy used in a simple shear test [23].
Alternatively, the local deviatoric tensor may be used directly
(i.e., ε = εdev

L ). Then the multiplication should be replaced
with the tensorial double contraction accordingly. The second
way (using tensor measure) will yield a similar spatial
correlation pattern shown in Fig. 10 with a relative smaller
Cε as compared to the former one (using scalar measure), but
will lead to complicated calculations. We hereby adopt the
scalar measure here.

Shown in Fig. 10, the local shear strains have a long-range
spatial correlation with a correlated distance greater than 10
mean particle diameter.1 In all the three planes, we observe
a fourfold pattern with negative correlations in the principal
stress directions and positive correlations in the diagonal shear

1We cut this distance for evaluation due to the limitation in sample
size. At the steady state of shear, the shortest dimension (in the y

axis) of the assembly is roughly 20 mean particle diameter.

directions, which is consistent with that reported in Ref. [23]
(their principal directions are in diagonal for the simple shear
test mode and their study was performed on colloidal glass).
However, there are also notable differences for the three planes.
In both x-y and z-y cross sections which are the two stress
deviatoric planes, the correlations are apparently strong and
long ranged. A symmetric pattern in the z-y plane is observed,
indicating the shear deformations occur uniformly in both
diagonal directions. Comparatively, the deformation in the
x-y plane is more prevalent in one diagonal direction over
the other. By comparing our results with those reported in
Ref. [23] [Fig. 2(e) therein], the correlation patterns in these
two planes (x-y and z-y) confirm that our simulation is within
the shearing dominated regime as mentioned in Sec. II A.
However, the correlation pattern in the x-z cross section (the
stress isotropic plane) indicates a thermal-effect dominated
test (where the modified Péclet number Pe∗ < 1) as shown in
Ref. [23] [Fig. 1(d) therein], and the correlations are much
weaker and shorter ranged than those in the other two planes.
The observed fourfold pattern in the x-z plane can be regarded
as the elastic response of the material to the existence of STZs,
as the pattern is reminiscent of the Eshelby solution of strain
field around a circular inclusion [23,51,52] and the STZs play
a similar role of the inclusions.

2. Nonaffine displacement

The nonaffine displacement fields in TRI are shown in
Fig. 11. Notably, the probability distributions of |ũ| in TRI
at the three different reference stages are very similar to those
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FIG. 10. (Color online) Spatial correlation of local shear strains at steady state in BI21 resolved onto three orthogonal cross sections. The
global strain interval is 0.9%. The cross-sectional slices are reconstructed with a thickness of three mean particle diameter. The measured
distance interval is 0.5 mean particle diameter.

of ε
q

L. At the initial stage (εy = 0), the assembly undergoes
almost pure elastic deformation, thus there are very few
particles having nonaffine displacements with rather small
magnitude. The vast majority of the particles have no nonaffine
displacements at all (dark blue in the color map), and the
maximum value is less than 0.08 mm. With the increase
of shearing levels, there are increasing numbers of particles
experiencing large nonaffine displacements. At the steady state
(εy = 45%), the maximum |ũ| even exceeds the medium-sized
particle radius, i.e., greater than 0.25 mm. A similar power-

law decay is also observed in the figure for the probability
distribution of nonaffine displacements. By comparing Fig. 11
with Fig. 9, we notice that the spots subjected to large nonaffine
displacements are largely coincident with the STZs, though
the former are not as clustered as the STZs. This indicates that
both quantities may be considered as good measures of local
plasticity (see the Pearson correlation of the two quantities in
Sec. III C 1).

Although the absolute magnitudes of the nonaffine dis-
placements increase with the applied shearing, the normalized

FIG. 11. (Color online) Distribution of local nonaffine displacement |ũ| in TRI at different reference states within a same global deformation
interval �εy = 0.9%. The color maps show the x-y plane resolving of |ũ|. The slice is the same as that in Fig. 9. Spots undergoing large
nonaffine displacements are highlighted with arrows.
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FIG. 12. (Color online) Probability distribution of the nonaffine displacements for the four assemblies in the x, y, and z directions and at
different shearing levels. The q-Gaussian distribution is used to fit the data with the probability density function ∝ [1 − b(1 − q)( ũ∗−〈ũ∗〉

σũ∗
)2]1/(1−q).

The fitted values of the two parameters q and b are given in the figure.

quantity (ũ − 〈ũ〉)/σũ is found to follow the same distribution
(well fitted by a q-Gaussian distribution) at the three different
shearing levels as shown in Fig. 12. In the figure, the compo-
nents of the nonaffine displacements in different directions (ũx ,
ũy , and ũz) are distinguished. The fluctuations of the nonaffine
displacements stay isotropic (same distribution in all three
directions) irrespective of the applied loading being isotropic
or anisotropic. As the fluctuation is a measure of granular
temperature, this observation confirms two key points: First,
the applied shear plays a similar role to thermal activation
for the granular assembly to relax which lends support to the
statistical approach in describing the granular material behav-
iors; second, under the constraint of constant volume shearing,
the granular temperature is maintained constant, which is
consistent with our previous conclusion from examining
fluctuations of the local volumes. Note that the granular media
in their fluid-state counterparts may have anisotropic kinetic
temperature [53].

The existence of a q-Gaussian distribution for the nonaffine
displacements implies that the variables are long-range corre-
lated [54,55], and it is also consistent with the observations
of power-law decayed distributions in Figs. 9 and 11. It

is hence interesting to measure the spatial correlation of
the nonaffine displacements Cũ which is defined similar
to Eq. (17):

Cũ(r) = 〈ũ(r) · ũ(0)〉 − 〈ũ(0)〉2

〈ũ(0)2〉 − 〈ũ(0)〉2
. (18)

Note a vector measure is used here, e.g., on the x-y plane,
ũ := (ũx,ũy). From the results shown in Fig. 13, we see that
the correlation of nonaffine displacement displays relatively
isotropic patterns in all three orthogonal planes, which differs
essentially from that of the local shear strain. The correlation
intensity is also higher for the nonaffine displacement (note
that color bars in Figs. 10 and 13 have different ranges). The
observation is consistent with that mentioned in Ref. [23].
The correlation is stronger in the two stress deviatoric planes
(x-y and z-y) than that in the stress isotropic plane (x-z).
This isotropic property of spatial correlation is in accordance
with the observation of a vortexlike pattern of nonaffine
displacements formed in the sheared granular media, and is
favored by the proposition of an isotropic granular temperature
as has been discussed before. The above observations on the
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FIG. 13. (Color online) Spatial correlation of nonaffine displacements at steady state in BI21 resolved onto three orthogonal cross sections.
The measurement is the same as that described in Fig. 10.

spatial correlations of shear strain and nonaffine displacement
provide convincing evidence that there exists a long-range
correlation on the deformation in slowly sheared granular
media.

C. Further discussion

1. Cross correlation among local quantities

As already seen from Figs. 9 and 11, there exists a striking
correlation between the local shear strains and the nonaffine
displacements. It is further interesting to see how all local
measurements are correlated with one another. Here we use
the Pearson correlation coefficient calculated by

ρcorr(X,Y ) = cov(X,Y )

σXσY

, (19)

where X and Y are the chosen pairs from the four local mea-
surements, i.e., local inverse density (φ−1

L ), local anisotropy
(β), local shear strain (εq

L), and nonaffine displacement (|ũ|);
cov takes the covariance of the two quantities. The results are
shown in Fig. 14. The most significant correlation is found
between the local density and the local anisotropy. When the
local structure tends to be looser (larger φ−1

L ), it becomes
more anisotropic, which is reasonable since a denser structure
is subjected to more constraints from the neighborhood and is
hence more likely to possess a regular latticelike shape (and
less anisotropic). This also explains why the small particle
group is generally more anisotropic than the large particle
group in polydisperse assemblies as observed in Fig. 7. The
second most obvious correlation is between the local shear
strain and the nonaffine displacement as previously mentioned
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FIG. 14. (Color online) Pearson correlation among different local measurements in the four assemblies.
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where the correlation coefficient is around 0.5. The third and
fourth largest correlations are found between the local density
with the two deformation quantities, which suggest that looser
local units are more prone to generate plasticity, which is
also consistent with our conceptual understanding that STZs
are easier to become nucleated in regions that have larger
free volumes. However, larger pressure levels may somehow
reduce the effect of free volume [9] and result in a relatively
small correlation coefficient (less than 0.3). Finally, the local
anisotropy seems to be less important in determining the
deformation, which is probably due to the use of spherical
particles only in our simulations.

2. A pressure-dependent shear-transformation-zone model
and its prediction

Various models have been available to describe the granular
flow from the fluid to the solid regimes. For instance, the
model developed by Jop et al. [32,56] can successfully predict
the velocity profile for an intermediate dense granular flow (in,
e.g., [57–59]) where the shear stress is dependent on the normal
stress and the shearing rate. When approaching the quasistatic
limit (e.g., the shear rate becomes zero), their formulation
recovers the classic Drucker-Prager elastoplasticity model
which has been discussed extensively in the modeling of
geomaterials and will not be entailed here. Of particular
interest here is the modification of the STZ model to the
prediction of the material behavior as presented in Fig. 2,
as an alternative correlation to the previous local analyses. In
its original formulation, the STZ model assumes the material
is pressure insensitive or is subjected to constant-pressure
shearing as demonstrated by Ref. [14] based on Demkowicz
and Argon’s data [38–40]. The STZ model in the simplified
form can be written

dq̃

dεy

= G̃

(
1 − 2ζ0

Q0
e−1/χ̃Q(q̃)

)
, (20a)

dχ̃

dεy

= 2ζ0

c0Q0
e−1/χ̃ q̃Q(q̃)(χ̃∞ − χ̃), (20b)

where

Q(q̃) = R(q̃)[1 − m0(q̃)],

R(q̃) =
∫ q̃

0
(q̃ − τ )τ e−τ dτ,

m0(q̃) =
{

1 if q̃ � 1
1/q̃ otherwise.

The symbols and their physical meanings are briefly summa-
rized as follows. q̃ and G̃ are the normalized deviatoric stress
and the elastic modulus (initial slope of the q-εy curve) in the

unit of initial yield stress qy (i.e., q̃ = q/qy and G̃ = G/qy).
Q0 is a model parameter characterizing the interplay between
the shearing rate and the STZ transition time, and can be calcu-
lated from Q0 = 2ζ0e

−1/χ̃∞Q(q̃∞) to ensure the availability of
steady state. Here χ̃ is the dimensionless effective temperature
which is a normalization with respect to the characteristic STZ
formation energy. χ̃∞ and q̃∞ are the quantities at the final
steady state. ζ0 and c0 are two constants reflecting the typical
particle number in a STZ and the configurational specific heat
per particle, respectively. The function m0(q̃) quantifies the
STZ orientational bias: Before yielding (q̃ � 1), there is no
bias thus m0 = 1; while at larger deviatoric stress, m0 is much
smaller than 1. Function R(q̃) describes the STZ transition rate
which depends on the magnitude of deviatoric stress (Ref. [60]
included a free-volume factor into the formulation to account
for dilatancy effect which is neglected here due to the imposed
volume constraint). Q(q̃) guarantees no STZ transition within
an elastic region. Note that we omit two extra equations in
the complete STZ formulation governing the evolution of STZ
density and orientational bias and choose to use the simplified
form above.

As previously discussed, our systems maintain nearly con-
stant effective temperatures under constant volume shearing.
All four assemblies show an evident pressure-sensitive feature
with continuous increase of deviatoric stress and pressure level
(see Fig. 2). Since the STZ formation energy is also pressure
dependent (it will be harder to activate a STZ transition
under larger confining pressure), the normalized effective
temperature χ̃ will still evolve in our cases. Thus Eq. (20)
is also deemed as applicable here and χ̃ will decrease with the
increase of p due to the requirement of larger STZ formation
energy. The evolution of mean stress can be formulated
similarly to the evolution of density in constant-pressure
shearing as given in Ref. [14]:

dp

dεy

= 2ζ0

c1Q0
e−1/χ̃ q̃Q(q̃)[p∞e−(χ̃−χ̃∞) − p], (21)

where c1 is an additional parameter similar to c0. The calibrated
parameters are summarized in Table II. Note that some of the
parameters can be determined directly from the simulation
curves in Fig. 2, but others like dimensionless effective
temperature χ̃ , c0, and c1 are more or less phenomenological
and their values are chosen similar to those used in Ref. [14].
The model prediction is shown in Fig. 15 in comparison with
our simulation data on the four assemblies. Evidently, the
modified STZ model captures the material behavior reasonably
well. The pressure dependency of granular media during the
shear process can be well reproduced by the model. While the
performance of the STZ model can be further improved, its

TABLE II. Parameters used in the STZ model for the four assemblies.

qy (kPa) q∞ (kPa) p∞ (kPa) G̃ ζ0 χ̃0
a χ̃∞ c0 c1

165–177 970–1050 1275–1384 1/0.0045b 10 0.08 0.065 0.16 0.45

aThe dimensionless effective temperature prior to shear. χ̃0 = 0.08, q̃0 = 0, and p0 = 300 kPa form the initial value problem of Eqs. (20)
and (21).
b0.45% is the identified strain at initial yield point (marked by a star in the inset of Fig. 2).
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FIG. 15. (Color online) Comparison of the STZ model predictions of (a) deviatoric stress and (b) mean stress against the DEM data. The
curves for the different cases are shifted upwards with an interval of 200 kPa for clarity of presentation.

study is not the focus of the current paper and will be pursued
in a future work.

IV. CONCLUDING REMARKS

We have investigated the local fluctuations of the internal
structure and deformation in dense granular media based on
DEM simulations. Numerical samples with different polydis-
persities are sheared under three-dimensional constant-volume
condition and in the athermal quasistatic limit. Some key
findings of the study are summarized as follows.

(1) The local structure of a granular medium can be
characterized by an isotropic density and an anisotropic fabric
defined from the Voronoi tessellation. Under constant volume
shear, the local density is found to follow a gamma or mixed-
gamma distribution which remains almost unchanged during
the shearing process. The compactivity—a temperaturelike
state variable for jammed granular media—is hence constant
too during the shearing. However, this temperaturelike variable
is found not in equilibrium among different particle groups
within a polydisperse assembly.

(2) The distribution of local structural anisotropy can also be
described by a gamma or mixed-gamma distribution which re-
mains unaffected by the applied shearing. The global structural
anisotropy of the whole assembly evolves significantly under
shearing due to the change of local anisotropic orientation
(i.e., rotation of the local Voronoi cell), which may change
an initially isotropic (randomly distributed) assembly into
a strongly anisotropic one (with preferred orientation). The
structural anisotropy is also found coaxial with the applied
stress anisotropy.

(3) The shear transformation zones identified from the local
strain field are the plasticity carriers in a granular material.
The development of STZs under shearing demonstrates clear
evidence of the typical elastoplastic behavior of granular
media. During the elastic regime, no STZs are observed, while
at the sheared steady state STZs are found prevalent over
the domain. The distribution of the local shear strain has a
power-law decay at the tail part and its spatial correlation
shows a long-range correlated characteristic which exhibits a

fourfold pattern in all three orthogonal cross sections. In the
stress anisotropic planes, the particle flow is dominated by
shearing effect and the correlation is much higher with longer
range than that in the stress isotropic plane where the particle
flow is more affected by thermal effect. The patterns indicate
the isolated STZs in the granular sample play a similar role as
that by the inclusions in an Eshelby elastic matrix.

(4) The pattern of the nonaffine displacement field is similar
to that of the local shear strain, which suggests the two
are intimately correlated and both can be used as plasticity
measures. The distribution of the nonaffine displacements
also has a power-law decayed tail. The distributions of the
direction-decomposed nonaffine displacements at different
shearing levels collapse to one single curve which can be
well fitted with a q-Gaussian distribution function, show-
ing an isotropic property of the slowly sheared granular
temperature. This temperature remains unchanged under the
applied constant-volume shearing. The spatial correlation of
the nonaffine displacements remains long ranged, but shows an
isotropic pattern in all three orthogonal cross sections, which
differs from the local shear strain.

(5) The STZ model is modified to describe the pressure-
dependent behavior of granular media. As the global volume
is maintained constant in our study, the effective temperature is
conserved during the shearing but the STZ formation energy
increases due to the increase of confining pressure, which
leads to a decreasing dimensionless effective temperature.
By incorporating this dimensionless effective temperature as
a state variable, the STZ model successfully predicts the
evolution of the mean stress and the deviatoric stress in the
simulated tests.

It is noteworthy that the modification of the STZ model
in this study is a rather preliminary attempt. The evolution
of pressure can be better accounted for by the so-called
angoricity—another temperaturelike state variable defined in
the stress ensemble [61,62] for a jammed granular medium. By
taking into account both the compactivity and the angoricity as
well as their coupled effects [63] in a constitutive model like the
STZ, a unified general framework can be developed to model
the evolutions of both volume and pressure, and to provide a
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more comprehensive description of the behavior of granular
media under more general and complex shearing modes, i.e.,
being complementary to the current constant-volume shearing,
the constant-pressure tests can be investigated to shed light
on the whole picture of the material behavior. Moreover, the
anisotropy of local structures, seemingly less important in
the spherical particle case, may play a major role affecting

the overall behavior of granular media with complex-shaped
particles [29,64], which needs further investigation.
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[29] E. Azéma and F. Radjaı̈, Phys. Rev. E 85, 031303 (2012).
[30] S. Abe, D. Place, and P. Mora, Pure Appl. Geophys. 161, 2265

(2004).

[31] G. Goldenberg and I. Goldhirsch, Nature (London) 435, 188
(2005).

[32] P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727
(2006).

[33] N. Guo and J. Zhao, Comput. Geotech. 47, 1 (2013).
[34] J. Zhao and N. Guo, Géotechnique 63, 695 (2013).
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