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Stick-slip and force chain evolution in a granular bed in response to a grain intruder
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The mechanical response of granular beds under applied stresses is often characterized by repeated cycles of
stick-slip. Using the discrete element method, we examine stick-slip from a concentrated force loading—imposed
by a single grain that is drawn through a densely packed, periodic granular bed via a stiff virtual spring. Force
chains continually form and collapse ahead of the intruder grain. A comprehensive characterization of the
birth-death evolution of these load-bearing structures, along with their surrounding contact cycles, reveals a
well-defined shear zone of around eight particle diameters from the intruder, encapsulating: (i) long force chains
that form buttresses with the fixed bottom wall for support, (ii) a region where the collapse of the most stable,
persistent three-cycles preferentially occur to the point where they are essentially depleted by the end of the first
cycle of stick-slip, and (iii) an inner core where force chain buckling events concentrate. Dilatancy is greatest in
this inner core, and in the region next to the free surface. During slip, secondary force chains briefly form behind
the intruder: these transient force chains, most of which comprise only 3 particles, form in the direction that is
roughly perpendicular to the intruder motion.
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I. INTRODUCTION

A common aspect in the mechanical behavior of many
everyday materials (e.g., rubber, steel, ice, sand, wood) is the
cyclic phenomenon of ‘stick-slip’ (e.g., [1–3]). Each cycle
comprises: (i) a loading regime, or ‘stick’ phase, which is
characterized by a rise in the macroscopic stress under small
deformation; and (ii) an unloading regime, or ‘slip’ phase,
which is characterized by a drop in stress with a corresponding
large deformation. Stick-slip occurs at multiple spatial and
temporal scales. Typically, the slip phase has a time scale of
many orders of magnitude smaller than the stick phase [4–7].
On a large spatial scale, the most commonly recognized
manifestation of stick-slip is an earthquake: the steady loading
of tectonic plates may occur over a time scale of years, yet
the ensuing slip event may be over in minutes [4,5]. While
earthquakes span spatial scales of hundreds to many thousands
of kilometers, stick-slip also manifests at the nanoscale in the
motion of tips of atomic force microscopes [8]. Despite the
long-standing interest in stick-slip, a detailed understanding of
the process in granular materials is currently lacking. Evidence
from experiments and simulations suggests this knowledge is
key to our ability to control material behavior, in particular,
the related processes of energy flow, shear strength and failure
(e.g., [2,5,9–11]).

This study seeks to fill a knowledge gap in the current
understanding of the micromechanics of stick-slip for granular
materials, in particular, from the perspective of force chain
evolution. The system under study involves an intruder that
is dragged slowly through the bed (i.e., quasistatic motion)

*atordesi@ms.unimelb.edu.au

by a stiff spring. Before proceeding, it is instructive to briefly
review past findings which are most pertinent to this study.
We do not provide a comprehensive review of the literature
on stick-slip nor of the granular drag literature. For a broader
view of the extant literature on this topic, we refer readers to
the references cited in the papers discussed here.

Various simplified models have been proposed to better
understand the dynamics of stick-slip. For frictional solids,
a block pulled by a spring over the frictional solid surface
provides a good representation of the dynamics of stick-
slip [12]. Analogous physical models have also been proposed
for a granular material comprising many interacting frictional
solid particles. Stick-slip behavior arising from a solid object
being pulled by a spring either on the surface of or inside a
granular bed has been explored. Nasuno et al. [6] investigated
a planar Couette setup, where a heavy frictional plate was
pulled over a particle bed by a stiff spring. The plate was
found to exhibit stick-slip behavior at low speeds [6]. Albert
et al. [7] provide a particularly detailed study of a stick-slip
behavior arising from a rod attached to a stiff spring that is
drawn through a rotating particle bed. Metayer et al. [13]
observed stick-slip behavior in rods pulled vertically from
granular packings. In all of these studies, the macroscopic
stick-slip behavior is induced by a load that is applied via a
spring. In the present study, the spring is ‘virtual’: i.e., it only
interacts with the intruder and not with other particles in the
bed. Hence, we can examine the effects of the intruder on the
bed in isolation from any effect of a spring.

The link between the dynamics and underlying microstruc-
tural mechanisms of stick-slip has also been investigated
for various granular materials under compression and shear
(e.g., [2,7,10,14–16]). These studies suggest a connection
between stick-slip and the dual nature of force transmission
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in granular systems [17]. In particular, stick-slip dynamics
appears to be driven by the collective evolution of force
chains, i.e., self-organized columnar structures comprising
particles which carry the majority of the load in the system
(e.g., [18,19]). These structures, belonging to the so-called
strong network, continually align in the direction of the
compressive principal stress, and are thus axially loaded.
Surrounding the force chains are the particles in the comple-
mentary weak network that provide necessary lateral support
to the force chains. Using photoelastic disk assemblies,
experiments directly revealed the tie between the creation
and collapse of force chains, and the rises and falls in the
macroscopic shear stress [3,10,14,20–22].

Observations of these stress fluctuations strongly suggest
that the stick phase is governed by the formation of force
chains, while the slip phase is due to the collective failure
of force chains by buckling and elastic unloading. During the
stick phase, stored elastic strain energy builds up at the contacts
between the constituent particles of the force chain. This build
up of stored energy during stick cannot, however, continue
indefinitely. Force chains are highly unstable structures and,
like architectural columns, are prone to fail by buckling when
overloaded to some critical value. Thus, once a critical thresh-
old is reached, the slip phase initiates: force chains buckle and
all the stored energy accumulated at their constituent contacts
is collectively released. Studies of granular drag [1,7,23,24]
and granular shearing [2,16] have also shed considerable light
on the possible role of force chains and, in particular, the
influences of particle surface and shape (e.g., brass, wood,
pasta) on force chain stability and, in turn, on the dynamical
features of the observed fluctuation (i.e., random versus
periodic). Studies of data from experiments on photoelastic
disk assemblies [21,25,26], supplemented by discrete element
simulations [18,19,27–29] further characterize the topology
and dynamics of force networks and their relationship to
stick-slip.

This study is part of a broader, two-pronged effort to exam-
ine stick-slip dynamics and micromechanics across multiple
scales in space and time. The first prong is devoted to the
mesoscopic scale, the objective of which is to characterize the
evolution of force chains in photoelastic disk experiments and
simulations under quasistatic loading conditions. The second
prong focuses on the macroscopic scale, and is focused on
the characterisation of the underlying dynamics from time
series measurements of stress. This study belongs to the first
prong. An earlier investigation in the first prong examined
the evolution of cluster configurations [25] in photoelastic
disk assemblies under cyclic biaxial shear. There force chains
were found to inhabit favored cluster conformations in distinct
stability states, which implies preferred structures during
stick events and their ensuing collapse during slip events.
Accompanying that study was an investigation in the second
prong that explored the dynamics of stick-slip for a series of
slider experiments [30]. Each experiment comprised a bed of
photoelastic disks that is sheared by a rough slider pulled along
the surface by a stiff spring. Individual stick-slip cycles were
found to exhibit dynamics richer than a linear description,
in particular, one involving a nonlinear determinism. The
active degrees of freedom detected from the data within each
cycle suggests that a real physical evolution law describing

stick-slip must contain at least four to six state variables.
From a continuum mechanics standpoint, this finding supports
nonlocal continuum theories which can account for the effects
of grain rotations (e.g., Cosserat or micropolar formulations),
which are a crucial element of force chain buckling [22]. The
bed was also found to have no long-term memory across cycles,
which makes physical sense since stick-slip events temporally
far apart in the experiment are due to force chain structures in
different parts of the granular bed. The system studied here is
similar to the experiment in [30], to the extent that the intruder
only travels on undisturbed parts of the bed.

Despite the above advances, no attempt has yet been made
to establish whether such well-defined behavior arises only
when the external load is applied over a relatively large area
encompassing many grains. To shed light into this problem,
this study is devoted to unravelling the nature of stick-slip
arising from a concentrated loading condition imposed at
the scale of a single grain [31]. To achieve this, we take
advantage of computational modeling to simulate the mo-
tion of a single grain intruder, a test that would be very
difficult to realize experimentally. Our aim is to individually
track, and take precise measurements of, the dynamics and
microstructural rearrangements occurring within the system.
Like the slider experiments examined in [30], we also focus on
stick-slip arising from a solid intruder that is pulled along at a
constant velocity via a spring. However, unlike the slider, the
intruder is a single grain having the same representative size
and shape as the particles in the bed and, moreover, is fully
immersed and dragged inside the bed by a virtual spring (i.e.,
the spring itself does not interact with or disturb the bed). The
forces imposed on the bed by the intruder grain provide the
smallest possible perturbation to a granular system. This setup
therefore allows the response of the system from the smallest
allowable perturbation to be carefully tracked and measured.
All of the previous experimental studies on stick-slip have
involved measurements of granular behavior in response to
bulk forces applied over many grains (i.e., large sections of
the bed). In such cases, it is difficult to separate the effects of
loading and the subsequent response of the granular bed on an
individual particle basis. Of specific interest in this study is to
uncover the difference, if any, in the details of force chain and
contact cycle evolution from a grain intruder versus a solid
object that is large compared to the grains in the bed. The
rest of this paper is arranged as follows. The discrete element
model is described in Sec. II. We next describe our strategy in
Sec. III, before presenting our results in Sec. IV. We conclude
with a summary of key findings and a direction for future
research in Sec. V.

II. DISCRETE ELEMENT MODEL

In this study the Discrete Element Method was used as
the computational model for simulating the system (Fig. 1).
Particle positions and velocities were individually resolved
using time integration of the equation of motion for every
particle in the system:

mi

dvi

dt
= Fn + Ft + mig, (1)
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FIG. 1. (Color online) Setup of system, shown in cross section,
comprising a static granular bed in a 1 m3 periodic domain with a
central particle (the intruder-grain) attached to a spring with stiffness
k. The free end of the spring moves at a velocity c.

where mi is the mass of particle i and vi is the particle velocity.
The forces in this equation of motion were modeled using a
‘soft-sphere’ approach in which contacting particles have a
small overlap of length δl. Here, this overlap was restricted to
around ∼0.001% of the particle diameter. The particles were
subject to a linear spring-dashpot force in the normal direction,
Fn, given by

Fn = −knδl + Cnvn, (2)

where Cn is a normal damping coefficient, kn is a spring
stiffness, and vn is the relative normal velocity between
the particles. In this implementation, the spring stiffness
and coefficient of restitution were fixed and the normal
damping coefficient was calculated to give the required normal
coefficient of restitution [32]. In the contact plane, particles
were subject to a second linear spring-dashpot force, Ft ,
limited by Coulomb friction:

Ft = min

[
μFn,kt

∫
vt dt + Ctvt

]
, (3)

where vt is the relative tangential surface velocity, μ is the
coefficient of friction between the particles and the walls, Ct is
a tangential damping coefficient, and kt is a tangential spring
stiffness which was chosen to be kt = kn/2. The integral term
models a tangential elastic deformation of the surface, which is
limited by Coulomb friction μFn. Further details of the model
and validation cases are given in Refs. [33,34].

A computational domain of 1 m3 was used, with a solid base
in the negative y direction and a free surface in the positive
y direction. Periodic boundary conditions were applied in the
x and z directions. Ideally, the simulations would be carried
out in a very large bed to ensure any boundary effects were
negligible. Unfortunately, this was computationally intractable
with the very stiff particles used in our study. Periodic
boundaries were used as they had the advantage of providing

a time-independent boundary effect, in contrast to solid
boundaries. In this setup, solid boundaries would have had
a strongly time dependent effect as the intruder approached
the boundary. Any boundary effects resulting from periodicity
in this case were only due to forces bridging between periodic
copies of the intruder. Through the investigations carried out
for this study, we believe any such bridging effects were
negligible in comparison to the force from the virtual spring.
The particle density was 1000 kg/m3, with a coefficient of
restitution of 0.5. The domain was initially filled by creating
spherical particles at the top of the domain and allowing
them to freely fall under gravity. Particles were given a slight
polydispersity to prevent crystallisation effects, with diameters
ranging from 5.1 cm to 4.9 cm. A total of 9498 particles were
used in the simulation. A comparatively large value for the
linear spring constant was used, kn = 107 N/m, giving a time
step of �t = O(10−6) s, to ensure highly accurate simulations.

Loading was imposed on the system by attaching the
particle initially closest to the center of the domain to a
virtual spring. This particle, regarded as the intruder, was not
constrained in any way, apart from the additional force added
by the spring. The spring was stretched by moving the free
end at a constant speed of c = 0.01 m/s along the x-axis.
The spring constant used for the virtual spring was k = 1000.
This setup is shown schematically in Fig. 1, where the central
intruder particle is colored red (color online).

Finally, we note that we have carried out a number of
simulations for different domain dimensions to ensure the
application of periodic boundary conditions did not affect the
stick-slip characteristics. For example, for a domain that is
twice the width and depth of the system considered here, we
found comparable spring force characteristics within similar
minimum and maximum bounds. Moreover, we also found the
volume fraction of the bed to remain almost constant over the
duration of the simulation. The largest change was around
the first slip event, with a drop in volume fraction of
approximately 0.2%. Therefore, we do not consider the
microstructural trends uncovered here to be dependent on any
settling effects within the bed.

III. STRATEGY FOR CHARACTERISATION

The stick-slip response of the granular bed to the moving
intruder is shown in Fig. 2. This is composed of linear loading
cycles in the spring force, with sudden sharp drops giving
the characteristic sawtooth pattern of stick-slip behavior. The
intruder velocity shows sharp spikes corresponding to the
sudden movement of the intruder during each slip event.
The question we seek to answer concerns the mechanisms
underlying: (i) stick, (ii) slip, (iii) dilatancy, and (iv) emergent
zones of deformation around the intruder. Although these
aspects of mechanical response are intertwined, (i) and (ii)
deal directly with force transmission, while (iii) and (iv) can be
quantified through the contact topology and grain kinematics.
During stick, the particles in the bed continually adjust their
contacts and contact forces to resist the increasing force from
the intruder, although the overall deformation of the bed
remains small. During slip, large grain rearrangements occur
allowing the intruder to advance forward. We will characterize
the mechanisms underlying stick and slip by tracking the birth
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FIG. 2. (Color online) Spring force and intruder velocity for a
system with μ = 0.3. Sharp peaks in the velocity of the intruder
coincide with drops in the spring force, which correspond to slip
events.

and death evolution of structural building blocks of m-force
chains and n-cycles, as illustrated in Fig. 3. The methods we
employ for identifying m-force chains and n-cycles, and their
evolution, are explained in detail elsewhere (e.g., [19,26]).
Only a brief summary is given here for completeness.

For each time state in the simulation, we construct a
complex network (or mathematical graph) to represent the
connectivity of the grains in the bed. Each particle is repre-
sented by a vertex in this contact network, and two vertices are
connected with an edge if the corresponding physical particles

FIG. 3. (Color online) From simulation, force chains (red
spheres) are formed ahead the intruder (dark blue sphere), moving in
the direction of increasing x (left). The force chain is supported
by contacts in varying local topologies. Shown are those in a
‘three-cycle’ formation with the force chain: three particles in mutual
contact (light blue spheres). Larger size contact cycles, although
present, are not shown for clarity. Illustration of key failure events
occurring in the shear zone include: three-cycles breaking apart by
cleavage and force chains buckling (right).

are in contact. The resulting contact network is unweighted and
undirected. This abstraction focuses only on the connectivity
of the physical system, as defined by the contacts between
particles. The granular bed’s response recorded at the current
time state τ may represent a combination of information taken
from the previous time state τ − dτ and the current time state
τ . For example, the birth (death) of a structural building block
is marked by its absence (presence) at τ − dτ followed by its
appearance (collapse) at τ .

The linear building blocks are the m-force chains, where
m � 3 is an integer denoting the number of particles that form
this physical structure. These are identified using a quantitative
method previously employed by Tordesillas and co-workers
(e.g., [18,35,36]). This method requires information on the
contact forces and their orientation, in addition to the contact
network. Particles in force chains can be identified using their
particle load vectors (PLVs), which are derived from the local
force moment tensor sij of each particle:

sij =
α∑

c=1

f c
i rc

j , (4)

where α is the number of contacting neighbors of the particle,
and f c

i and rc
j denote the components of the contact force and

the unit normal vector from the center of the particle to the
point of contact. The magnitude of the PLV is given by the
largest eigenvalue of sij ,

s11 + s22

2
+

√(
s11 − s22

2

)2

+ s12s21; (5)

the direction of the PLV is given by the corresponding
eigenvector. A force chain is defined as a chain of three or
more particles in contact, whose PLV magnitudes all exceed
a global average value and all align. That is, for each particle
in the force chain the angle between the PLV and the branch
vector (i.e., the vector connecting the reference particle center
to the center of its contacting neighbor in the force chain) must
be less than the tolerance angle, here chosen to be 45◦. The
global average value of the PLV magnitude varies with time
in a qualitatively similar manner to that of the shear stress. In
particular, it reaches a peak value at the same time as the peak
shear stress.

To identify m-force chains that buckle during a given time
interval [τ − dτ,τ ], we find those force chains whose axial
load decreases as constituent members misalign and displace
laterally relative to their initial configuration at τ − dτ . This
is achieved through a three-step process of elimination.

(1) Eliminate all particles that are not in force chains at the
initial time τ − dτ , leaving only force chains.

(2) From the force chains remaining after step 1, eliminate
those whose constituent particles do not individually experi-
ence a drop in PLV magnitude during [τ − dτ,τ ].

(3) From the force chains remaining after step 2, eliminate
those that do not contain at least one contiguous three-particle
segment that misaligns by at least a prescribed threshold
buckling angle, θ∗, during [τ − dτ,τ ].

Although the system in this study is three-dimensional, an
illustration in 2D of the third and final step above is useful to
aid visualisation. Consider the example in Fig. 4. Suppose the
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FIG. 4. (Color online) A force chain buckles during [τ − dτ,τ ]
if θ∗ < (θτ−dτ − θτ )/2 (the third stage in our buckling force chain
identification process). In this example, the five-force chain buckles
at particle 3 in the segment 2-3-4.

five-force chain shown is one of the force chains to be analysed
in step 3. A five-force chain has three contiguous segments (1-
2-3, 2-3-4, and 3-4-5). We represent the change in alignment of
each such force chain segment via the buckling angle θ , given
by θ = (θτ−dτ − θτ )/2, where θτ−dτ and θτ are the subtended
angles of the two outer particles in the segment with respect to
the central particle at the times τ − dτ and τ , respectively, and
0 < θτ < θτ−dτ � π . We deem that a force chain segment (and
hence the force chain of which it is part) has buckled when the
buckling angle exceeds a prescribed threshold θ∗, i.e., θ∗ <

θ . The sensitivity of the procedures described above to the
chosen thresholds values has been studied extensively using
both experiments and simulations [18,22,35–37]. Such studies
suggest that our threshold choices are physically reasonable
and produce consistent trends for different loading conditions
and material properties.

The cyclic building blocks are the n-cycles, where n � 3 is
an integer denoting the number of edges or particles that form
the structure in the abstract domain of the complex network
or physical domain, respectively. For example, a three-cycle
in the complex contact network corresponds to three particles
in mutual contact in the physical sample. The n-cycles are
identified from the minimal cycle basis of the contact network
(e.g., [19,26]). This basis is a set containing the shortest cycles,
or the cycles with the minimum length or number of edges of
the contact network. An n-cycle is thus a non-intersecting
walk (or closed path) of length n where n � 3, containing no
repeated vertices (other than its initial and final vertex) [38].
There are a number of established algorithms for obtaining
a minimal cycle basis for a complex network. We use the
algorithm of Horton [39] in conjunction with a faster variant
presented by Mehlhorn and Michail [40]. The collapse or death
of an n-cycle during [τ − dτ,τ ] occurs by cleavage and is
simply marked by its presence at τ − dτ , followed by the
collapse of one or more of its edges or contacts at τ .

IV. RESULTS

In what follows, we first focus on the temporal evolution
of structural building blocks with respect to the interrelated
aspects of the stick phase, during which the greatest resistance
to intruder motion is mobilized in the bed; the slip phase,

during which the bed’s resistance drops allowing intruder to
move; and dilatancy. Next, the spatial distributions of the
building blocks are explored, in particular, how the different
size building blocks are organized around the intruder. Here
attention is paid to the existence of emergent zones, most
importantly the shear zone. Finally, we tie these spatial trends
to the earlier results on temporal evolution to understand how
the material’s structure evolves. Which building blocks does
the bed create more (or less) of as the intruder moves through
the bed? What is the load allocation among the force chains
and how does this relate to their spatial distribution in the bed?
How are the different building blocks adapted and reorganized
to resist the intruder’s motion through the bed? How do any of
these trends differ from those seen for large solids interacting
with a granular bed (e.g., a punch penetrating a bed), given that
the intruder is of comparable size to the particles in the bed?

A. Temporal evolution of structural building blocks

The mechanical response of the bed to the moving intruder,
shown in Fig. 2, comprises interlacing periods of increasing
resistance (stick) and failure (slip), as evident in the rises and
relatively brief falls in the spring force exerted by the material
on the intruder.

In Figs. 5 and 6, we show the spring force along with the
population of structural building blocks from self-organization
of the bed. Large fluctuations manifest in the populations of
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FIG. 5. (Color online) Evolution of the population of linear
structural building blocks, m-force chains, where m is the number
of particles in the chain. Short force chains (m = 3,4,5 [top]) are
more common than long force chains (m = 6,7,8,9 [bottom]). The
spring force F is also plotted.
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FIG. 6. (Color online) Evolution of the population of cyclic
structural building blocks, n-cycles, where n is the number of particles
in the cycle. Small cycles (n = 3,4,5) and large cycles are shown
(n = 6,7). Dilation of the bed in the stages leading up to the first slip
event can be seen in the decrease in small three-, four-, five-cycles
amidst an increase in six-, seven-cycles.

m-force chains; however, no distinct, long-term pattern of
variation (decrease/increase) with respect to the entire loading
history is evident, nor is there a consistent trend during slip
or stick events. The relative populations of m-force chains are
in accord with all past observations of dense samples under
varying loading conditions and material properties: that is,
three-force chains dominate, with the population of each class
decreasing as m increases (e.g., [19,26,41–43]). By contrast,
the relative populations of the minimal contact n-cycles do not
exhibit a consistent pattern of dominance with respect to n.
The smallest members (i.e., three-cycles) do not dominate the
bed, with the population decreasing with increasing n as seen,
for example, in localized failure samples (e.g., [19,26,42,43]).
Instead the four-cycles are the most populous, followed
by the five-cycles and then the three-cycles. Nonetheless
the temporal evolution of the population of three-cycles is
qualitatively similar to that of the four-cycles. Both undergo
a steady decline in population prior to the first slip event,
followed by a near invariant temporal evolution except during
slip events when the population undergoes a sharp drop. The
five-cycles maintain an almost constant population throughout
loading except during slip events when they undergo a sharp
decline in numbers, like the three-, four-cycles. In past
studies [41], we found that the dominance of four-, five-cycles
in the bed does not in any way weaken the functional role
that three-cycles play in reinforcing force chains. There, the
degradation of three-cycles also proved to be an excellent
bellwether for collective failure by buckling of force chains.

By far the greatest difference between the process of self-
organization in this system versus those seen from systems
where large portions of the granular material are influenced
by the applied loading [26,41–44]—lies in the sharp changes
in n-cycle population during slip. In [26,41–43], the temporal
evolution of n-cycles does not closely track any features of
the macroscopic stress or applied force. Here we observe a
strong correlation between slip events and the sudden drop
(rise) in population of the smallest three-, four-, five-cycles
(six-, seven-cycles).
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FIG. 7. (Color online) Load carrying capacity of force chains.
Temporal evolution of the average particle load vector magnitude of
short and long m-force chains for low resolution. Long force chains
carry more load than the shorter force chains.

1. The stick phase

The increasing resistance from the bed during the stick
phases, as evident in the rise in the spring force, is mostly borne
by the principal load bearing structures of force chains [36].
This increasing resistance to the intruder occurs while there is
progressive loss of lateral support, as evident in the decreasing
population of small three-, four-cycles in the bed (Fig. 6). On
average, the long force chains provide the greatest resistance
to the moving intruder (Fig. 7). A similar trend was observed
in the shallow penetration of a granular bed by a rectangular
punch [43]. However, this load allocation is far from obvious.
As found in 2D experiments and simulations [26], longer
force chains are less stable than shorter force chains; hence,
one might expect the former to carry less load than the
latter. Cooperative evolution between force chains and three-
cycles (previously established for other 2D and 3D systems,
e.g., [19,41,42]) is shown in Fig. 8 with an equal partition
of support to short and long force chains observed. Relative
to particles in non-force chains, however, a distinct pattern
is evident: particles in force chains not only have a higher
number of supporting contacts but more of their contacts are
in three-cycles. These aforementioned trends on cooperative
behavior between force chains and three-cycles apply also to
the most dominant class of cyclic building blocks: that is,
the four-cycles also support the force chains in a qualitatively
similar manner as the three-cycles (data not shown).

2. The slip phase

We have already seen the progressive loss of three-, four-
cycles during the initial stages of loading in the first stick
phase. The degeneration of these small cycles has ramifications
for the stability of the loading-bearing force chains and,
in turn, the granular bed. As previously mentioned, force
chains, like architectural columns, fail by buckling [18,26].
The degradation of the lateral supporting structures of three-,
four-cycles, render force chains particularly prone to collapse
by buckling: Fig. 9.

To gain a detailed understanding of processes occurring in
the bed, we now “zoom-in” on the three major slip events.
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FIG. 8. (Color online) Cooperative evolution of columnar force
chains and truss-like three-cycles. Average three-cycle membership
versus average degree for particles that make up long and short
force chains, and non-force chain particles. A distinct split is visible
between those particles that belong to force chains and those that do
not, but no clear difference is apparent between short and long force
chains.

Figure 10 shows the temporal evolution of the load borne by
the long and short force chains, here measured by the average
magnitude of their particle load vectors [recall Eq. (5)]. Four
aspects of behavior can be gleaned from these distributions.
The first relates to the fluctuations, which suggest that there
are significant grain rearrangements and force reconfigurations
occurring during all three slip events. The second concerns the
multimodal character of these distributions; this is similarly
evident in the population of buckling force chains (Fig. 11).
This may be caused by multiple slip events (‘micro-slips’)
occurring in close succession of each other. The third is the
underpinning mechanism for failure and slip, which is most
evident in Fig. 11. Observe here that the sharp bursts in the
population of mesoscopic failure events, i.e., the failure of

FIG. 9. (Color online) Spring force F and failure by buckling of
force chains as a function of time. Only force chains that have buckled
by an angle of at least θ = 1◦ are counted. It is readily apparent that
buckling events spike sharply during the slip phases, while the spring
force is rapidly decreasing.
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FIG. 10. (Color online) Load carrying capacity of force chains.
Temporal evolution of average particle load vector magnitude of
short and long m-force chains for three high-resolution slip events.
Long force chains carry more load than the shorter force chains. A
complex multi-stage failure process is evident in all three slip events
(demarcated by vertical dashed lines).

the structural building blocks of force chains by buckling and
the cleaving of three-cycles, precipitates an overall loss of
resistance of the bed to the moving intruder. In comparing
the first stick event in Fig. 6 and the first slip event in
Fig. 11, a lag between two key failure events can be observed:
the steady loss of supporting three-, four-cycles in the bed
during the first stick event, followed by the failure of force
chains by buckling, and the further but more dramatic loss
of three-cycles in the first slip event. Force chain buckling is
an inherently dilatant rearrangement event: three-, four-cycles
conjoined with the chain open up and become bigger cycles as
the force chain misaligns and separates from its immediate
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FIG. 11. (Color online) Spring force F and failure of structural
building blocks for high resolution slip (the same events shown in
Fig. 10). Population of force chains that have buckled by at least
an angle θ , and three-cycles that cleaved, with spring force on
the intruder. The populations of failure events are computed over
a uniform sequence of time increments (in this case 5 simulation
timesteps or 0.003 s) and plotted at the end of the increment.

neighbors during buckling. Moreover, the energy released
from buckling drives dilatant rearrangements among weak
neighbors. These processes are evident in Fig. 12, which show
that the collapse of small three-, four-, five-cycles gives way to
larger six-, seven-cycles. The fourth concerns the distinct peaks
in the average PLV magnitude during slip events in Fig. 10,
suggesting sudden increases in load for some force chains
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FIG. 12. (Color online) The relative populations of n-cycles
show the development of dilatancy in the granular bed. As the small
cycles (i.e., three-, four-, five-cycles) break apart, a corresponding
increase in the population of six-, seven-cycles is observed. This
suggests that the cleaved short cycles are joining together to form
larger cycles, dilating the bed.

and/or that new force chains form while collective force chain
buckling is active in the bed. These somewhat contradictory
processes merit further study and we will attempt to unravel
this pattern later in the next section.

B. Spatial evolution of structural building blocks

Here we examine the spatial evolution of the structural
building blocks that form in the bed. Attention is paid to the
zone of influence, i.e., the shear zone �, and the different
partitions therein (recall Fig. 3). Our working hypothesis is
that the structural building blocks behave in distinct ways
depending on their location in the bed, and that this can be
viewed as a manifestation of their changing functionalities
with respect to load transfer in the different sectors of the bed.
In what follows, we will elucidate these patterns along with
the ways that the building blocks adapt and reorganize to resist
the intruder motion as it moves through the bed. We proceed
in two steps. First, we will identify the location and shape
of the shear zone �. Second, we will identify in this zone
where the following structures and processes and develop:
(i) force chains and three-cycles, (ii) failure of three-cycles
and force chains, (iii) dilatancy, (iv) a “wake” region behind
the intruder, and (v) an undeforming cluster of grains (the
so-called “dead-zone”) that forms in front of, and moves with,
the intruder in rigid body motion [44]. From here onwards,
we will solely focus on the first slip event as trends uncovered
here also apply to subsequent slip events.

1. Shear zone

By far the most revealing of the boundary of � are the
spatial distributions of failure events. The spatial distribution
of buckling force chains is shown in Fig. 13. Buckling mainly
occurs in front of and below the intruder, as the grains in the bed
rearrange to oppose the motion of the intruder. Figure 14 shows
the location of the buckled segments of the force chains during
the first slip event; this shows where the greatest misalignment
occurred, rather than the entire chain. This reveals a zone that
is circumscribed by a sphere with radius r = 4dm centered on
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FIG. 14. (Color online) Shear zone from the perspective of buck-
ling force chains. By plotting the centroids of the buckling force
chains (specifically the three-particle segments of the chain where
the buckling occurs), a clear zone of influence becomes apparent.
This zone is within a radius of r = 4dm from the origin where the
center of the intruder is located. The large majority of such buckling
events occur within this zone of influence (top). The 2D projections
of this data (bottom row) lends further clarity to the boundary of this
sphere of influence.

the intruder, where dm is the mean particle diameter. Based on
past studies of force chain buckling around intruders [35,43],
this zone is most likely a subset of �; that is, we expect
the zone of influence to be beyond this inner core. This is
confirmed in the spatial distributions of force chains in Fig. 15.
The short (m = 3,4,5) force chains tend to be more evenly
spread in the bed when compared to the long (m > 6) force
chains (Fig. 15). The long force chains tend to be clustered
ahead of the intruder, extending well into the fixed wall at the
bottom. A plausible explanation for this is that force chains
resisting the intruder can brace against this wall and use it as
leverage against buckling. This ‘buttressing’ behavior has been
previously observed in cone penetration tests [45]. An example
of a force chain acting in this manner can be seen in Fig. 16.

We may extend our analysis of the shear zone � by
remembering that three-cycles in the granular bed support
and protect the load-carrying force chains. Therefore, force
chain buckling will normally be preceded and accompanied
by loss of three-cycles by cleavage, and we may use the spatial
distribution of these structures to check our candidate �.
Figure 17 shows the radial distribution of particle three-cycle
membership (i.e., how many three-cycles on average a particle
some distance r from the intruder will have). We note an
inflection point at r ≈ 4dm, suggesting that the zone identified
from the spatial pattern of force chain buckling is indeed part
of the shear zone.

FIG. 15. (Color online) Representative spatial distributions of
major load-bearing structures at the end of the first stick event
projected on to 2D planes, with the left column images projected
to a horizontal plane (z = 0) and the right column images projected
to a vertical plane (y = 0). The short force chains (m = 3,4,5) are
shown in the top row, and long force chains (m = 6,7,8,9) are shown
in the bottom row. The short chains are more evenly spread through
the bed, while the long chains exhibit a preference for the region of
the bed ahead of the intruder, with another bias towards the bottom
of the bed. The concentric circles mark r = 4dm and r = 8dm, the
candidates for the shear zone.
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FIG. 16. (Color online) Plotting the force chains born during a
single timestep (in the first stick phase) provides a clear example of a
‘buttress’ force chain, extending down from and ahead of the intruder
(center). Such chains brace themselves against the fixed bottom wall
of the bed (not shown), allowing a greater resistance to the intruder’s
motion.

2. Spatial distribution of n-cycles

The full shear zone can be probed by considering the spatial
distribution of a special subset of the three-cycle population,
the so-called “persistent three-cycles”. Persistent three-cycles
are those which have survived from the beginning of loading
to the stage in question and, as such, are the most stable
three-cycle structures in the system [42,46]. In previous studies
of biaxial and triaxial compression tests, the destruction of
this sub-group of three-cycles was confined to within that
region where the shear band ultimately develops [42,46].
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FIG. 17. (Color online) � from the perspective of three-cycle
population. The graphs show the average three-cycle membership
of the particles a distance r from the intruder, with color indicating
time during the first slip event. The presence of an inflection point at
r ≈ 4dm indicates the existence of a shear zone within that volume.
Note also that as the slip event progresses the average three-cycle
membership throughout the bed first falls, then recovers.

Furthermore, these persistent structures become essentially
depleted in the shear band once the band is fully developed.
Here we observe a similar trend occurring in a region that is
twice that identified earlier from the location of buckling force
chains. We observe progressive degeneration of persistent
three-cycles to be confined to a shear zone of around eight
particle diameters from the center of the intruder, with the
population inside reaching negligible values by the end of
the first cycle of stick-slip (Fig. 18). The spatial pattern of
dilatancy from death (birth) of small three-, four-, five-cycles
(large six-, seven-cycles) corroborate this result; recall the
temporal pattern was presented earlier in Fig. 12. We observe
from Fig. 19 that most of the three-, four-, five-cycles cleave
within r = 8dm from the intruder; keep in mind that the top
of our system is a free surface, and hence we expect some
‘churn’ at that surface as the motion of particles there are
unconfined. Figure 20 shows the location of emerging large
six-, seven-cycles. As in Fig. 19, this spatial distribution of
six-, seven-cycle births shows the position of the centroid of
each cycle at the time of its birth. It is useful to note here
that the length scale of the emergent shear zone (r = 8dm)
is consistent with the length scale of information propagation
to and from a sensor in a granular bed in [47]: just like this
study, the sensor in [47] is of comparable size and has the same
properties as the surrounding grains. Equally noteworthy is a
recent study by Padbidri et al. [48] which showed that the
propagation of grain rotation information through a granular
assembly is strongly directionally dependent, and follows
the alignment and distribution of force chains in the bed.
They also uncovered a characteristic rotation transmission
distance of approximately 5–10 grain diameters. This distance
is consistent with both the grain sensor findings in [47], and
the zone of influence found in the present work.

Based on the above findings, we can now offer a new
perspective on dilatancy arising from the motion of a single

FIG. 18. (Color online) The population of persistent three-cycles
in the bed drops steadily during the first stick phase (top left, top right,
bottom left) before undergoing a sharp fall off following the first slip
phase (bottom right). Images are separated by approximately 6 s (100
simulation timesteps). Note also the change in the spatial distribution
of the three-cycle centroids after the slip. The insets show the spatial
distribution of persistent three-cycles at each time, projected on to a
plane at y = 0.
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FIG. 19. (Color online) Spatial distributions of truss-like three-,
four-, five-cycles undergoing contact cleavage during slip event.
Truss-like three-, four-, five-cycles are represented by their centroid
and at location determined from last time before cleavage. These
centroids are projected on to a plane at y = 0. The large majority of
contact cleavage occurs within r = 8dm of the intruder (the larger of
the concentric circles) and along the top free surface of the bed.

grain intruder inside a granular bed. The phenomenon of
dilatancy arises from the combined failure of three-, four-,
five-cycles and force chain buckling. In the region ahead of the
intruder, high porosity regions develop beside the intruder and
towards the free surface of the bed; these regions are inhabited
by large six-, seven-cycles formed from small three-, four-,

FIG. 20. (Color online) Spatial distributions of largest six-,
seven-cycles in the bed, represented by their centroids. A projection
of all six-, seven-cycle centroids on to a vertical plane (y = 0), plotted
at their position when created. The large majority of six-, seven-cycles
lie within r = 8dm of the intruder (the larger of the concentric circles),
although dilation also occurs along the free top surface of the grain
bed.

five-cycles cleaving and then joining together. The degradation
of three-cycles in these regions destabilizes the force chains
causing them to buckle. Buckling itself is an inherently dilatant
process; furthermore, the energy released during buckling
may induce additional dilatant rearrangements among weak
neighbors.

3. Differences in force chains—fore and aft of the intruder

While we have made progress in understanding the shear
and dilation zones of the granular bed driven by an intruder
particle, we are still left with a puzzle: why is there a
momentary peak in the average particle load vector magnitude
of force chains during slip events? Recall from Fig. 10 that,
while the average PLV drops over the entire slip event as
expected, there are brief intervals during the slip when sharp
bursts in average PLV occur. A potential explanation for this
observation lies in another somewhat unusual behavior in the

FIG. 21. (Color online) Calculating a probability distribution for
the PLV of all the particles in the bed [split into fore (top) and aft
(bottom)] during a slip event reveals the regions of increased load
(both in space and time). The section of the bed aft of the intruder
experiences a sharp peak in PLV around t = 47.3 s.
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bed: the existence of buckling force chains behind the intruder
with respect to the direction of the intruder’s motion, as seen
in Fig. 13. Our view of force chains—structures formed from
the self-organization of the granular bed to resist the force
being applied via the intruder—is insufficient to explain the
development of these force chains behind the intruder, as
the intruder does not apply force directly to this region. To
understand this process, we turn to the distribution of PLVs in
space and time, shown in Fig. 21. We split the bed in two equal
halves: those particles that lie behind the intruder (with respect
to its direction of motion), and those that lie ahead. We will
refer to these regions as ‘aft’ and ‘fore’, respectively. Note
the ‘spike’ in the average PLV in the aft (i.e., wake) region
at around 47.3 s, during which multiple particles in the bed
briefly experience very large PLVs that then quickly subside.
This is a substantially different behavior from the next stick
phase, during which the aft section of the bed essential returns
to its original state. We therefore examine the force chains that
form during the PLV spike, and that contain particles with a
PLV in the range encompassed by the spike. This corresponds
to a PLV above 150 N, which we will refer to as ‘high-PLV’.
We focus in on the first and largest spike in the PLV (from
approximately 47.28 s to 47.35 s), which correspond to the
first peak in Fig. 11 (top). For comparison the same analysis
was applied to equal time intervals during the preceding and
ensuing stick events. The results of this analysis can be seen
in Fig. 22 for the region of the bed ahead of the intruder, and
Fig. 23 for the wake region behind the intruder.

Figures 22 and 23 present the force chains containing high-
PLV particles that are responsible for the peak in PLV during
the slip. These high-PLV force chains are transient and mostly
comprise short force chains of three particles. The behavior
in the fore section of the bed are consistent with our previous
results, arranged ahead of and below the intruder. They may
be considered primary force chains, formed to oppose the
motion of the intruder through the bed. However, the high-PLV
chains in the aft section are aligned almost perpendicular to the

FIG. 22. (Color online) The fore region. Accumulated force
chain births for high-PLV force chains in three different time periods,
fore of the intruder. From left to right: prior to slip (end of first stick
event), during slip, after slip (beginning of second stick event). The
force chains are arranged as in previous results: ahead of and below
the intruder, opposing its motion.

FIG. 23. (Color online) The wake region. Accumulated force
chain births for high-PLV force chains in three different time periods,
aft of the intruder. From left to right: towards the end of the first
stick event prior to slip, during slip, after slip at the beginning of
the second stick event). The force chains are aligned vertically and
almost perpendicularly to the direction of motion of the intruder.

direction of the intruder’s motion. These may be considered
secondary force chains, formed by the effects of the intruder’s
passage rather than directly by the intruder itself. In this case,
the alignment of the chains suggest they formed in response
to vertical motion in the bed, for example, grains falling into
the void left by the intruder, keeping in mind the intruder is
of comparable size to the other grains. Finally, we found no
evidence of any “dead-zone”, i.e., an undeforming cluster of
grains that move in rigid body motion with the intruder. This
is perhaps not so surprising as the largest dimension of these
zones tend to be less than that of the contact region between
the intruder and the granular bed [43,44].

V. CONCLUSION

We characterized the mechanical response of a granular
bed to an intruder grain that is of comparable size to the
rest of the grains in the bed. This novel loading configuration
leads to a response that bears both similarities and differences
with those of other granular systems acted upon by solid
bodies much larger than the grains in the bed. We found a
well-defined shear zone, based on analysis of buckling force
chains, and births and deaths of supporting n-cycles. Two
such zones were identified: (i) an inner core that is within
r = 4dm of the intruder position, where buckling force chains
occurred; and (ii) an outer core extending to r = 8dm defined
by the attrition of persistent three-cycles and dilation of the
bed. We confirmed that the granular bed exhibits dilatant
behavior, with small cycles cleaving throughout the r = 8dm

zone, giving way to larger cycles in the same regions of the
bed. The length scale of the emergent shear zone is consistent
with the length scale of information propagation to and from
“grain sensors”, sensors of comparable size and properties
as the grains themselves but was capable of recording and
transmitting kinematic or force information [47]. We presented
evidence for the formation of intermittent secondary force
chains in the wake region of the bed, which manifest during
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the slip events behind the intruder. These transient force chains
are mostly short chains comprising three particles with high
particle load vector magnitudes, arising as a side-effect of the
passage of the intruder rather than as a direct response to the
the intruder itself. Our analysis of stick-slip in a granular bed
highlights the importance of examining granular systems at
multiple spatial and temporal scales. Low temporal resolution
data completely masked the rich behavior of the bed during
the rapid slip events. Only by significantly increasing our
time resolution were we able to uncover the novel behavior
described herein. Future work will continue to focus on spatial

and temporal effects, in particular, how the bed adapts its
process of self-organization in response to changes in the
intruder size, proximity to boundary walls, and free surface,
as well as the prolonged repetitive passage of the intruder.
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