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Generalized Sherrington-Kirkpatrick glass without reflection symmetry
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We investigate generalized Sherrington—Kirkpatrick glassy systems without reflection symmetry. In the
neighborhood of the transition temperature, we, in general, uncover the structure of the glass state building
the full-replica-symmetry-breaking solution. A physical example of the explicitly constructed solution is

given.
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I. INTRODUCTION

The Sherrington-Kirkpatrick (SK) model—the Ising model
with random exchange interactions—has proved to be a unique
laboratory for understanding physics of spin glasses [1]. Its
exact mean-field solution has become the cornerstone of
modern glass physics. There are many generalizations of the
SK model that allow understanding other glassy systems, more
complicated than spin glasses [2—17]. One of the simplest
ways to build the generalized SK model (GSK) is to replace
the Ising-spin operator at each lattice site S, by another
diagonal operator U that also, of course, satisfies the relation
Tr U = 0 as well as the Ising spin does. Then one may naively
suggest that this new glass forming model inherits, at least
on a qualitative level, most of the features of the SK model.
However, this is not so [12,18-24]. It follows that the physics
of the generalized SK model strongly depends on the hidden
symmetry of the U operator, particularly if there is “reflection”
symmetry or not. Here we build an analytical solution for the
glass state in the generalized SK models where the U operators
do not have reflection symmetry.

Formally, the presence of the reflection symmetry means
that Tr[U@®+*V] = 0,k = 0,1,2, .... The Ising-spin operator
S. obviously satisfies the reflection-symmetry condition. It
was shown recently [25] that all GSK models with reflection
symmetry qualitatively behave as the SK model.

Tr[U@+D] £ 0, k = 1,2, ... in the GSK model without
the reflection symmetry. A typical example is, e.g., the
quadrupole SK where U is the quadrupole angular moment
operator. More examples can be found in Ref. [12].

The nonsymmetric GSK model has a different glass
structure than the reflection-symmetric one, see Fig. 1. Only
recently has the full-replica-symmetry-breaking solution of
the nonsymmetric GSK glass been built, but for the very
special case when U= Uo +U 1, Where U 1 is much smaller
(in some sense) than Uy; here U is the reflection-symmetric
diagonal operator, whereas, U 1 is a non-reflection-symmetric
(diagonal) perturbation, see Ref. [12]. In the present paper,
we, in general, uncover the structure of the glass state in
the non-reflection-symmetric problem without any simplifying
assumption about the smallness of the nonsymmetric part
of U. Our investigation is focused on the region near the
glass-transition temperature where we follow how the glass
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freezes and unfreezes when we cross the glass-transition
temperature.

The concept of glass transition as a RSB has proven to be
very successful [26—-30]. The language of the overlap functions
in the replica-symmetry-breaking formalism has become one
of the standards for explaining the physical nature of glass
forming events. For the SK model [1], the glass-transition
problem in terms of RSB is explicitly solvable. Below we
build the exact solution for the generalized SK model without
reflection symmetry using the replica-symmetry-breaking
formalism.

One of the most interesting features of spin-glass models
is the connection between the replica method and the dy-
namics [5,29-34]. The results we obtain below are in line
with the results of Ref. [33] when the one-step RSB (1RSB)
branch can be continued to the full RSB (FRSB) branch
of solutions of the Ising p-spin model. In this connection,
generalizations of the SK model that include multispin (more
than two) interactions are worth mentioning. Then it was
shown that the violation of the FRSB scheme in generalized
SK models is also correlated with the symmetry properties of
the Hamiltonian [4,19,35-39]. There is a conjecture that, in
the absence of the reflection symmetry, it is not possible to
construct a continuous nondecreasing glass order parameter
function ¢(x) and so the FRSB solution does not occur
instantly at the point of RS solution instability unlike that in
the SK model, see, e.g, Refs. [40,41], where the Potts model
is considered.

II. GLASS FORMING GSK MODEL

Our Hamiltonian is a straightforward generalization of
the SK model [1]: A = =33, J;;U;U;, where i,j label
the lattice cites. The exchange interactions have Gaussian
distribution P(J;;) = % exp[—(Ji;)*N/(2J%)], where J =

J/~/N and N is the number of lattice sites. Using the replica
trick, we can write down, in a standard way, the disorder
averaged free energy, order parameters, and Almeida-Thoulles
replicon modes X,rsp that indicate the nth step of RSB while
AqrsB = 0, see, e.g., Ref. [12] and references therein.

The bifurcation condition Ars)repi = 0 defines the point
T. where the RS solution becomes unstable. Considering
IRSB, two-step RSB (2RSB), three-step RSB,...,nRSB,
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FIG. 1. (Color online) GSK models with and without reflection
symmetry produce principally different glass states. Although sym-
metric GSK glass is well understood, the nonsymmetric one—is
not [12]. One of the drastic differences between the two classes of
GSK models is the behavior of the replica-symmetric (RS) glass
order parameter grs in a parastate (at temperatures above the glass
transition). Here we uncover the nature of nonsymmetric GSK glass
using the RS-breaking (RSB) language.

respectively, we find that the equation A,rsg = 0 always has
the solution which determines the point 7, and coincides
with the solution of the equation Ars)rept = 0 [24,42,43]. We
emphasize that it is the nonzero RS solution that bifurcates.

To write A F, the difference between the free energy and its
replica-symmetric value, we use a functional of Parisi FRSB
glass order parameter g(x), and so, to construct FRSB, we use
the standard formalized algebra rules [27,44]. The properties
of this algebra were formulated by Parisi for Ising-spin glasses.
In our case, the expansion of the generalized expression for the
free energy includes some terms of nonstandard form. Those
terms are not formally described by the Parisi rules but can
easily be reduced to the standard form. To do this, we compare
the corresponding expressions, consistently producing 1RSB,
2RSB,...symmetry breaking. In what follows, we use the
complete equation for the free energy, in this case, up to
fourth order in the deviations 8¢*? from grs where o, 8 number
replica (see Eq. (16) of Ref. [12]). Finally, up to the terms of
the third order in g(x), we get near T, [fourth-order terms in
q(x) will be considered below],

AF t? 4 ,
NksT _Z)"(RS)repl(q2>_3L<q>2 - f6{—32(‘]>3 — Bj(q)’
1 1 z
+ 33[ / 1* @)z +3 / 4(2)dz / q2<y)dy}
0 0 0
+ Bil{g){g*)] + B4[—(q3)]} REPPR (1)

where t = J/kT, foq (z)dz for n=0,1,..., and
FRSB glass order parameter grrsB = grs + q(x). The coef-
ficients in Eq. (1) are the averages of linear combinations of
the products of operators U averaged on the RS solution at
the point 7.. We do not repeat the explicit total expression for
AF here because it is rather lengthy and one can find it in
Refs. [12,43]. In particular,
L= (012[]203%25 —(U,0,U3U4)gs > 0, (2)
where averaging is performed on the RS solution at the transi-
tion point. It follows from the Cauchy-Schwarz inequality that
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the expression Eq. (2) is non-negative. The expression for L is
not equal to zero only when grgs # 0.

The equation for the order parameter follows from the
stationarity condition 3~ (X) AF = 0 applied to the free energy
functional Eq. (1). Smce ARs)rept = 0 at T, we obtain

B ﬁ A[A®S) repl ]
2 dt

Atq(x) —t!L{q) — t° [3(—32 — B)(g)*

te

1 X
+3B; (xqz(x) +2g(x) / q(z)dz + / qz(z)dz>
x 0
+ Bi((g°) + 2q(x)(g)) — 3B4q2(x)} +---=0. (3)

The nontrivial solutions of Eq. (3) are fulfilled only if
(q) =0+ o(A1)". )

This is, in fact, the branching condition. It follows due to L # 0
in the expression Eq. (3). As can be seen from Eq. (2), this
is a direct consequence of the fact that grs # O if operators
U do not possess the reflection symmetry. On the other hand,
we know that the 1RSB solution near the branch point satisfies
the branching equation (g)rsg = 0, see Refs. [10,42,43]. This
branching condition fails for U with reflection symmetry.
For the 2RSB solution, we receive a similar expression
(g)2rsB = 0. Within our expansion in At, the results for IRSB
and 2RSB near T, coincide. This eventually leads to Eq. (4)
for FRSB.

After the substitution in Eq. (3), x =0 and x = 1, and
taking into account Eq. (4), we obtain the following equation
which will be needed later:

. ﬁ d[)"(RS) repl]

T At[q(0)

te

+ B3[g*(1) + ()] +--- = 0. )

— q()] + t83[B4[¢*(0) — ¢*(1)]

Equation (3) can be further sunphﬁed using the differential
operator O = where ¢’ = 4% Then 1°{By —
B3x} +---= 0

Now we get the key result—the significant one, depending
on the x part of the solution g(x), is concentrated in the
neighborhood of

% = B4/Bs. (6)

We should repeat again that only for U with Tr U®+D £
0,k>0 do we get: ¥ = B4/B;. For operators with
Tr U®*+D = 0, we get B4 = 0 and & = 0, which correspond
to the well-known result for SK and similar models with
reflection symmetry.

Keeping the result (6) in mind, we can now build FRSB.
To describe the FRSB function g(x) of the variable x, we have
to include the fourth-order terms in the expansion of AF in
the consideration. This is, in general, performed in Ref. [12].
Here we must reproduce this result to explain the origin of the
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FRSB solution that we build below,

l6{B4 — Bsx} + 18{[—2D33 + 4)CD47]|: —xq(x)
1
- / dy q(y)} + [—4D; + 2x D33]gq(x)

+[D3) — D46x](Q>} =0, N

where (q) = fol dyq(y) and, for the D coefficients, see
Ref. [12].

The resulting equation (7) can be solved in a standard
way as follows (we solve this equation formally in a similar
way as in Ref. [11] where the expansion of the SK replica
free energy functional around the nonzero RS solution,
truncated to the fourth order, leads to a FRSB solution with a
continuous nonlinear order parameter): We divide the equation
by [—2D33 + 4x Dy47], differentiate with respect to x, take into
account Eq. (4), and finally get

(x —s)

q(x) = ———= —a, (8)
Vi =P+ A
where
D33
= = 9
s 3Ds &)
P (10)
= —s —
Dy’
1 (B3D3;3 —2B4D.
a:—( 3D3;3 4 47)’ (11

212 (—D3; + 4D, Dy7)

and x is near X. The values of I" and x, (the boundary value of
x) should be found from the initial conditions.

It should be noted that our conclusions are consistent with
Ref. [33] where static and dynamics of a class of mean-field
spin-glass models were considered. It was shown earlier
that it may exist that a temperature at which the stable, at
higher temperatures, IRSB branch becomes unstable at lower
temperatures and it can be continued to a FRSB branch. An
analytical study of the fourth-order expansion of the free
energy in the context of some truncated model reveals that
the FRSB branch of solutions is characterized by the two
plateau structure and the continuous region. The numerical
solutions of the FRSB equations for the Ising p-spin model
with p = 3 have been obtained where ¢(x) depends on x in
a nonlinear manner. This is essentially a generalization of the
result obtained originally by Gross et al. in the context of the
Potts model [40].

Next, we proceed by successive steps. From Eq. (6)
follows that ¥ = X|rsg: i.e., the value at which the 1RSB
solution changes abruptly from g¢rsg(0) to gqirsg(l), see
Refs. [10,42,43]. We obtained that, within our expansion in Af,
the results for 1IRSB and 2RSB near T, coincide. Therefore,
we start from the 1RSB solution, which is already a good
approximation [27,45]. We recall here that the IRSB solution
behaves much differently when operators U have reflection
symmetry and when they do not have such symmetry (a strict
detailed derivation is given in Ref. [43] for p = 2). At first,
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FIG. 2. (Color online) Order parameter g(x) is defined by the
expression (8) where U=38+ O.SQ and (T — T.) = —0.3. [S is the
z component of the spin (for S = 1), and 0 is the axial quadrupole
moment Q =382 — 2.] Horizontal sections are g¢rsg(0) and
qirs(1), respectively. Function gprsg = grs + q(x), where
qRSlT:T( = 1.154.

from Eqs. (4)—(6), we obtain the values of %, qrsp(0), and
qirse(1). General equations (4)—(6) can easily be rewritten,
assuming any nRSB wherein ¥ = X,rsg. Furthermore, we use
Eq. (4) as

q1rsB(0)X + qirsg(D(1 — x¢) +/ ( dyq(y)=0, (12)

and Eq. (7) forx = X

[— D33 + 2X Dy7][—%q(X) + qirsp(0)X]
4+ [—2D; + ¥ D33]q(X) = 0. (13)
Finally, from Egs. (12) and (13), we find I" and x,.

III. DISCUSSION

As an example, we consider operators U = § + nQ where
1 is a tuning parameter, not small. Here § is the z component of
the spin (for S = 1) taking values (0,1, — 1) and Q is the axial
quadrupole moment O = 382 — 2 and it takes values (—2,1,1)
(see, e.g., Ref. [25]). Algebra of the operators Q S, and E is
closed: 02 =2—0,3582 =24+ 0,and 08 = 80 = §. The
operator S has the reflection symmetry, whereas, Q does not.
FRSB is valid for the reflection-symmetric operator S [25]. The
operator /38 = V is a second component of the quadrupole
momentum operator considered in the problem of anisotropic
quadrupole glass.

For n = 0.5 (see Fig. 2), we obtain T, = 1.809, grs|r, =
1.154, ¥ = 0.333, and x, = 0.392 for (T — T,) = —0.3. For
(T — T,) = —0.1, we have x. = 0.35. For (T —T.) = —
we obtain x. = 0.37. In the case of U = 0, we obtam
T. =137 and X =043, x. = 0.446 for (T — T,) = —0.2.
Since grs # 0, we have, for FRSB, glass order parameter
grrsB = grs + q(x). We remind here that, in the case of the
standard truncated SK model, the well-known Parisi FRSB
solution is gprsg = q(x) = x/2 for 0 < x < (=2)(T —T,)
and ggrsp = —(T — T) forx > (=2)(T — T.), where T, = 1,
see, e.g., Ref. [27].
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So, in terms of qualitative physical arguments, we can
define, in a conventional manner, the distribution function
P(g) as the order parameter, which gives the probability
of finding a pair of glass states having the overlap ¢. In
terms of the FRSB scheme, the distribution function P(g)
is defined by the Parisi function ¢(x): P(q) = dx(q)/dq. So,
the continuous spectrum of the overlaps appears in the whole
interval ¥(T) < x < x.(T). When the nonsymmetric part of
U is small, our solution for ¢(x) is linear [12], such as
the SK-model solution in the presence of a small external
field [27].

The proximity of the boundary parameter x. to X says
that the 1RSB solution is generally a quite good physical
approximation for the problem we are considering. In this
regard, our solution is close to that obtained in Ref. [39] and
in a series of subsequent papers where the phase diagram was
presented of the spherical 2 4- p spin-glass model. The main
outcome is the presence of a new phase with an order parameter
made of a continuous part much similar to the FRSB order
parameter and a discontinuous jump resembling the 1RSB
case.

To say for sure whether the presence of such a jump
is an intrinsic feature of our model or if we next need to
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use subsequent successive steps, it is necessary to consider
the further approximation for free energy up to next order
in (AT).

IV. CONCLUSIONS

To summarize, we have considered a model with pair inter-
action where the absence of reflection symmetry is caused by
the characteristics of the operators U themselves. The principal
prescription for obtaining a full replica-symmetry-breaking
solution is derived in the general case in the neighborhood
of the transition temperature. An illustrating example is
considered, demonstrating the explicit build solution.
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