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Critical exponents in two dimensions and pseudo-ε expansion
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The critical behavior of two-dimensional n-vector λφ4 field model is studied within the framework of pseudo-ε
expansion approach. Pseudo-ε expansions for Wilson fixed-point location g∗ and critical exponents originating
from five-loop two-dimensional renormalization-group series are derived. Numerical estimates obtained within
Padé and Padé-Borel resummation procedures as well as by direct summation are presented for n = 1, n = 0,
and n = −1, i.e., for the models which are exactly solvable. The pseudo-ε expansions for g∗, critical exponents
γ , and ν have small lower-order coefficients and slow increasing higher-order ones. As a result, direct summation
of these series with optimal cutoff provides numerical estimates that are no worse than those given by the
resummation approaches mentioned. This enables one to consider the pseudo-ε expansion technique itself as
some specific resummation method.
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I. INTRODUCTION

Pseudo-ε expansion is known to be rather effective
when used to estimate numerical values of universal quan-
tities characterizing critical behavior of three-dimensional
systems [1–4]. Moreover, even in two dimensions, where
original renormalization-group (RG) series are shorter and
more strongly divergent, the pseudo-ε expansion technique
is able to give good or satisfactory results [1,5–7]. To obtain
numerical estimates from pseudo-ε expansions one applies
a resummation technique, since corresponding series have
growing higher-order coefficients, i.e., look divergent. In
contrast to RG expansions in fixed and 4 − ε dimensions,
pseudo-ε expansions do not need advanced resummation
procedures based on Borel transformation. As a rule, use of
simple Padé approximants turns out to be sufficient to obtain
proper numerical estimates [3,5–7].

In this paper, we study the critical behavior of two-
dimensional O(n)-symmetric systems within the frame of
the pseudo-ε expansion technique. The series for the Wilson
fixed-point location g∗ and critical exponents originating from
the five-loop RG expansions will be derived for arbitrary
order parameter dimensionality n. The pseudo-ε expansions
obtained will be analyzed in detail for n = 1, n = 0, and
n = −1, i.e., for the models with exactly known critical
exponents [8–10]. The first of them (the Ising model) describes
phase transitions in numerous physical systems including
uniaxial ferromagnets and liquid mixtures, while the second
corresponds to a long polymer in solution [11] (self-avoiding
walks). Three models mentioned may be considered as test
beds for clarification of the numerical effectiveness of various
approximation schemes including RG perturbation theory
and the method of pseudo-ε expansion. Numerical estimates
for critical exponents will be extracted from the pseudo-ε
expansions by means of Padé and Padé-Borel resummation
techniques as well as by direct summation. The latter approach
will be applied under the assumption that the best numerical
results may be obtained by means of cutting divergent pseudo-
ε expansions off by smallest terms, i.e., applying the procedure
valid for asymptotic series.
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II. PSEUDO-ε EXPANSIONS FOR GENERAL n

The critical behavior of two-dimensional systems with
O(n)-symmetric vector order parameters is described by
Euclidean field theory with the Hamiltonian:

H =
∫

d2x

[
1

2

[
m2

0ϕ
2
α + (∇ϕα)2] + λ

24

(
ϕ2

α

)2
]
, (1)

where ϕα is a real n-vector field, bare mass squared m2
0 being

proportional to T − T (0)
c , and T (0)

c is the phase transition
temperature in the absence of order-parameter fluctuations.
The β function and the critical exponents for the model (1)
have been calculated within the massive theory [5,12], with
the Green function, the four-point vertex, and the φ2 insertion
normalized in a conventional way:

G−1
R (0,m,g4) = m2,

∂G−1
R (p,m,g4)

∂p2
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p2=0

= 1,

(2)
�R(0,0,0,m,g) = m2g4, �

1,2
R (0,0,m,g4) = 1.

Starting from the five-loop RG expansion for the β func-
tion [12], we replace the linear term in this expansion with
τg, calculate the Wilson fixed-point coordinate g∗ as a series
in τ , and arrive at the following expression:

g∗ = τ + τ 2

(n + 8)2
(10.33501055n + 47.67505273)

+ τ 3

(n + 8)4
(−5.00027593n3 + 24.4708201n2

+ 253.297221n + 350.808487) + τ 4

(n + 8)6

× (0.088842906n5 − 77.270445n4 + 45.052398n3

+ 3408.2839n2 + 14721.151n + 27649.346)

− τ 5

(n + 8)8
(−0.00407946n7 − 0.305739n6

+ 1464.58n5 + 11521.4n4 + 98803.3n3

+794945n2 + 3.14662 106n + 4.73412 106). (3)
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Substituting this expansion into the five-loop RG series for critical exponents γ and η [5,12] we obtain

γ −1 =1 − τ (n + 2)

(n + 8)
− τ 2

(n + 8)3
(6.95938160n2 + 34.58878428n + 41.34004218)

+ τ 3

(n + 8)5
(0.338391156n4 − 53.7045862n3 − 181.874852n2 + 471.838217n + 1236.12490)

− τ 4

(n+8)7
(−0.23015013n6 + 21.848143n5 + 1537.3578n4 + 12405.258n3 + 41577.259n2 + 75410.316n+ 59869.804)

+ τ 5

(n + 8)9
(0.115623n8 + 17.8566n7 + 83.1552n6 + 14850.5n5 − 84964.7n4 + 318099n3 + 3.76620 106n2

+ 1.08837 107n + 1.01285 107), (4)

η = τ 2

(n + 8)2
0.9170859698(n + 2) + τ 3

(n + 8)4
(−0.0546089776n3 + 17.9732248n2 + 120.114155n + 167.898539)

+ τ 4

(n + 8)6
(−0.092684458n5 − 8.2910597n4 + 174.43187n3 + 2120.0408n2 + 7034.6638n + 7114.3103)

+ τ 5

(n + 8)8
(−0.0709196n7 − 5.60392n6 − 250.874n5 + 1312.68n4 + 36126.0n3 + 201476n2 + 470848n + 396119).

(5)

Pseudo-ε expansions for other critical exponents can be
deduced from (4) and (5) using well-known scaling relations.
The series for the correlation length exponent ν, for example,
results from the formula

γ = ν(2 − η). (6)

It is worthy to note that in two dimensions only models with
−2 < n < 2 undergo transitions into an ordered phase, i.e.,
into the spatially uniform state with nonzero order parameter.
From the physical point of view, the series obtained apply
to this domain of n. On the other hand, two-dimensional

phase-transition models with n � 2 are widely explored
[12–19] to evaluate numerical power of various lattice and
field-theoretical approaches. It looks instructive in this context
to study τ series (3)–(5) for n � 2 as well. The first step in this
direction has been recently taken [20].

III. CRITICAL EXPONENTS FOR n = 1, n = 0,
AND n = −1

It is of major interest to analyze numerical results given
by the obtained expansions for the values of n under which

TABLE I. Numerical values of critical exponents for n = 1, n = 0, and n = −1 found by direct summation (DS) of the pseudo-ε expansions
(see the text) and of corresponding inverse series (DS−1), by Padé resummation of the series for γ and ν, and by Padé-Borel resummation of
the pseudo-ε expansions and of their inverses using Padé approximants [2/3] and [3/2]. Padé estimates presented are averaged over those given
by [2/3] and [3/2] approximants. Exact values of critical exponents and the estimates obtained from original five-loop renormalization-group
series [12] are also presented for comparison.

Critical exponents (CE) for various n

CE Exact DS DS−1 Padé PB[2/3] (PB−1)[2/3] (PB−1)[3/2] Five-loop RG

n = 1

γ 1.75 1.7145 1.7304 1.775 1.6105 1.7746 1.790
ν 1 0.9067 0.9204 0.959 0.8136 0.9652 0.966
η 0.25 0.1372 0.146

n = 0

γ 1.34375 (43/32) 1.4115 1.4740 1.435 1.3804 1.4285 1.4429 1.449
ν 0.75 0.7250 0.7399 0.753 0.7069 0.7514 0.774
η 0.20833 (5/24) 0.1204 0.128

n = −1

γ 1.15625 (37/32) 1.1917 1.1952 1.192 1.1641 1.1843 1.184
ν 0.625 0.6021 0.6183 0.606 0.5945 0.6054 0.6076 0.617
η 0.15 0.0793 0.082
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TABLE II. Padé table originating from pseudo-ε expansion (14)
for critical exponent ν at n = 0. The exact value of this critical
exponent is equal to 0.75.

L/M 0 1 2 3 4 5

0 0.500 0.625 0.704 0.725 0.753 0.731
1 0.667 0.838 0.733 0.639 0.741
2 0.763 0.744 0.763 0.752
3 0.740 0.755 0.754
4 0.781 0.754
5 0.706

the model (1) is exactly solvable. That is why further we
concentrate on the cases n = 1, n = 0, and n = −1. Pseudo-ε
expansions for critical exponents we’ll deal with are as follows:
n = 1,

γ = 1 + τ/3 + 0.224812357τ 2 + 0.087897190τ 3

+ 0.086443008τ 4 − 0.0180209τ 5, (7)

γ −1 = 1 − τ/3 − 0.113701246τ 2 + 0.024940678τ 3

− 0.039896059τ 4 + 0.0645210τ 5, (8)

ν = 1/2 + τ/6 + 0.120897626τ 2 + 0.0584361287τ 3

+ 0.056891652τ 4 + 0.00379868τ 5, (9)

ν−1 = 2 − 2τ/3 − 0.261368281τ 2 + 0.0145750797τ 3

− 0.091312521τ 4 + 0.118121τ 5, (10)

η = 0.0339661470τ 2 + 0.0466287623τ 3 + 0.030925471τ 4

+ 0.0256843τ 5, (11)

n = 0,

γ = 1 + τ/4 + 0.143242270τ 2 + 0.018272597τ 3

+ 0.035251118τ 4 − 0.0634415τ 5, (12)

γ −1 = 1 − τ/4 − 0.080742270τ 2 + 0.037723538τ 3

− 0.028548147τ 4 + 0.0754631τ 5, (13)

ν = 1/2 + τ/8 + 0.0787857831τ 2 + 0.0211750671τ 3

+ 0.028101050τ 4 − 0.0222040τ 5, (14)

TABLE III. Padé triangle for pseudo-ε expansion (19) of expo-
nent ν at n = −1. The exact ν value equals 0.625.

L/M 0 1 2 3 4 5

0 0.500 0.571 0.606 0.602 0.614 0.587
1 0.583 0.640 0.603 0.605 0.606
2 0.619 0.606 0.610 0.606
3 0.600 0.609 0.607
4 0.618 0.605
5 0.577

TABLE IV. Padé table for pseudo-ε expansion (12) of exponent
γ at n = 0. The exact exponent value is 1.34375.

L/M 0 1 2 3 4 5

0 1.000 1.25 1.393 1.412 1.447 1.383
1 1.333 1.585 1.414 1.374 1.424
2 1.494 1.439 1.449 1.429
3 1.414 1.448 1.441
4 1.474 1.430
5 1.326

ν−1 = 2 − τ/2 − 0.190143132τ 2 + 0.0416212976τ 3

− 0.071673308τ 4 + 0.136330τ 5, (15)

η = 0.0286589366τ 2 + 0.0409908542τ 3

+ 0.027138940τ 4 + 0.0236106τ 5, (16)

n = −1,

γ = 1 + τ/7 + 0.060380873τ 2 − 0.023532210τ 3

+ 0.012034268τ 4 − 0.0638772τ 5, (17)

γ −1 = 1 − τ/7 − 0.039972710τ 2 + 0.037868436τ 3

− 0.018392201τ 4 + 0.0649966τ 5, (18)

ν = 1/2 + τ/14 + 0.0348693698τ 2 − 0.00424514372τ 3

+ 0.011608435τ 4 − 0.0268913τ 5, (19)

ν−1 = 2 − 2τ/7 − 0.0986611527τ 2 + 0.0510003794τ 3

− 0.049264800τ 4 + 0.116842τ 5, (20)

η = 0.0187160402τ 2 + 0.0274103364τ 3 + 0.017144702τ 4

+ 0.0159901τ 5. (21)

The expansions for “big” critical exponents γ , ν and
for their inverses are seen to possess coefficients which
begin to grow from certain terms indicating that these series
are divergent. Moreover, they are not alternative, i.e., their
coefficients have irregular signs. At the same time, lower-order

TABLE V. Padé-Borel table for pseudo-ε expansion of ν−1 at
n = 0. The exact exponent value equals 0.75. Some estimates are
absent because corresponding Padé approximants turn out to be spoilt
by “dangerous” (positive axis) poles.

L/M 0 1 2 3 4 5

0 0.5 0.6058 0.6555 0.6762 0.6888 0.6954
1 0.6667 0.7170 0.7145
2 0.7634 0.7449 0.7514
3 0.7399 0.7538
4 0.7814 0.7549
5 0.7061
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TABLE VI. Same as Table V for n = −1. The exact value of ν is
equal to 0.625.

L/M 0 1 2 3 4 5

0 0.5 0.5640 0.5903 0.5961 0.6012
1 0.5833 0.5990 0.6009
2 0.6190 0.6072 0.6054
3 0.6000 0.6086 0.6076
4 0.6183 0.6059
5 0.5766

coefficients in expansions (7)–(10), (12)–(15), and (17)–(20)
decrease, and decrease more rapidly than their counterparts in
the original RG series. This enables one to consider them as
suitable for some resummation and getting proper numerical
estimates.

The structure of pseudo-ε expansions for “small” exponent
η is quite different. These series have positive coefficients
of the same order of magnitude what makes questionable
an applicability of any procedure employed nowadays for
resummation of diverging RG series.

To demonstrate a power of various resummation techniques
and to clear up to what extent they are necessary in the case
considered we present below numerical results given by several
relevant procedures. Namely, we evaluate critical exponents γ

and ν for n = 1, n = 0, and n = −1 by means of the Padé
resummation, by Padé-Borel resummation of the pseudo-ε
expansions for exponents themselves and for their inverses,
and by direct summation of the series (7)–(10), (12)–(15),
and (17)–(20). Direct summation is performed under the
assumption that one can get the best numerical estimates
cutting off divergent pseudo-ε expansions by smallest terms,
i.e., adopting the procedure true for asymptotic series.

The results thus obtained are collected in Table I. Along
with pseudo-ε expansion estimates the exact values of critical
exponents and the numbers originating from resummed five-
loop RG series [12] are presented for comparison. Numerical
values of the Fisher exponent given by direct summation of
series (11), (16), and (21) are also included to give an idea
about the accuracy of the pseudo-ε expansion technique in the
case of small critical exponent.

Before discussing content of Table I we present some details
concerning the critical exponent values obtained. In principle,
the Padé resummation procedure is known to be rather effective
when applied to pseudo-ε expansions for critical exponents

TABLE VII. Padé-Borel triangle for pseudo-ε expansion of γ −1

at n = 0. The exact exponent value is 1.34375. Absent estimates are
due to Padé approximant dangerous poles.

L/M 0 1 2 3 4 5

0 1 1.3907 1.3055 1.3411 1.3622 1.3721
1 1.3333 1.3946 1.3907
2 1.4942 1.4424 1.4285
3 1.4145 1.4458 1.4429
4 1.4740 1.4320
5 1.3264

0 1 2 3 4 5

0.5

1.5

1.0

2.0

exact
(1)
(2)

k

FIG. 1. (Color online) Values of critical exponent γ for n = 1
as functions of the order in τ k obtained by direct summation of
pseudo-ε expansions (7) (curve 1, triangles) and (8) (curve 2, rounds).
Horizontal line depicts the exact value. Filled triangle and round mark
the points of optimal cutoff, i.e., the orders at which coefficients of
the series finish to decrease.

and other universal quantities [3–6]. It demonstrates, as a
rule, good convergence if one works within high enough
orders in τ . In two dimensions, however, the numbers given
by Padé resummed expansions may converge to the values
differing considerably from their exact counterparts. Padé
triangles presented below illustrate this situation. The first
one (Table II) shows the most favorable situation—exponent
ν at n = 0—when numerical estimates regularly converge
to the true value ν = 0.75. The second example (Table III)
demonstrates that good convergence may not result in quite
a good numerical estimate: the asymptotic value ν = 0.606
differs appreciably from the exact one ν = 0.625 for n = −1.
At last, from Table IV (the exponent γ , n = 0) one can see
that fair convergence does not guarantee satisfactory numerical
results—the estimates in this table concentrate near 1.435, i.e.,
far from the exact value 1.34375.

A similar situation takes place when we address the
Padé-Borel resummation technique. This procedure may re-
sult in either good numerical results or unsatisfactory ones
depending on the critical exponent evaluated and on the
value of n. Tables V–VII illustrate this statement. Padé-
Borel resummation of the pseudo-ε expansion of the inverse
exponent ν for n = 0 gives quite good numerical estimates

0 1 2 3 4 5

ν

0.75

0.5

0.25
k

exact
(1)
(2)

FIG. 2. (Color online) Same as Fig. 1, but for the exponent ν at
n = 0. Triangles correspond to series (14) and rounds to series (15).
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0 1 2 3 4 5
0.5

1.0

1.5

k

exact
(1)
(2)

FIG. 3. (Color online) Critical exponent γ at n = 0 as function
of k (the order in τ ) obtained by direct summation of series (12)
(triangles) and (13) (rounds).

(Table V), while estimates of ν for n = −1 and γ for n = 0
via inverse expansions (Tables VI and VII) “miss” the exact
values. Moreover, Padé-Borel triangles for exponents γ and ν

themselves at n = 1 and some others turn out to be half-empty
because many Padé approximants are spoilt by “dangerous”
(positive axis) poles.

IV. TO RESUM OR NOT TO RESUM?

Let us return to Table I. As is seen, numerical estimates
provided by Padé and Padé-Borel resummation techniques
may (i) be considerably scattered and (ii) differ from the
exact values no less than numbers given by direct summation
of pseudo-ε expansions and of corresponding inverse series.
On the other hand, direct summation of these expansions
generates an iteration procedure which rapidly converges to
asymptotic values that are as close to the exact ones as those
obtained within various resummation methods. Figures 1–4,
where partial sums of series (7)–(10) and (12)–(15) are
depicted as functions of k, k being the order in τ , illustrate
the situation. Filled rounds and triangles mark the points of
optimal cutoff, i.e., the order from which the coefficients of
pseudo-ε expansions start to grow. Figures 1 and 2 show
the favorable cases when approximate values almost coincide
with exact ones. Figures 3 and 4, to the contrary, show most
unfavorable regimes when the difference between approximate
and exact values turns out to reach 0.1. An analogous level
of accuracy is observed when small critical exponent η is
estimated. Indeed, the direct summation of the pseudo-ε
expansion (see Table I) and application of the resummation
techniques result in numbers grouping around the exact values
within the range of order of 0.1.

So, the resummation of pseudo-ε expansions for two-
dimensional models practically does not improve numerical
estimates of critical exponents. Moreover, the direct sum-
mation leads to approximate values which are as accurate
as those resulting from the original five-loop RG series

0 1 2 3 4 5
0.25

0.5

0.75

1.0

k

exact
(1)
(2)

ν

FIG. 4. (Color online) Same as Fig. 1, but for the exponent
ν at n = 1. Triangles correspond to series (9) and rounds to
series (10).

(see Table I). This enables us to conclude that, estimating
critical exponents in two dimensions within the pseudo-ε
expansion approach, one can use the simplest possible way to
process the series—direct summation with optimal cutoff [21].

In this sense the pseudo-ε expansion itself may be con-
sidered as some special resummation method. There are two
reasons for such a point of view. First, this approach transforms
strongly divergent field-theoretical RG expansions into power
series with much smaller lower-order coefficients and much
slower increasing higher-order ones. Second, the physical
value of expansion parameter τ is equal to 1, while the Wilson
fixed-point coordinate g∗ playing an analogous role within
the field-theoretical RG approach is almost two times bigger
in two dimensions (g∗ = 1.84–1.86 for n = 1,0, − 1 [12]).
This difference looks essential, especially keeping in mind the
importance of higher-order terms.

V. CONCLUSION

To summarize, we have calculated pseudo-ε expansions
for dimensionless effective coupling constant g∗ and critical
exponents of two-dimensional Euclidean n-vector field theory
up to τ 5 order. Numerical estimates of critical exponents
for models with n = 1,0, − 1 exactly solvable at criticality
have been found using Padé and Padé-Borel resummation
techniques as well as by direct summation with optimal cutoff.
Comparison of the results obtained with each other and with
their exact counterparts has shown that direct summation of
pseudo-ε expansions provides, in general, numerical estimates
that are no worse than those given by resummation approaches
mentioned. This implies that the pseudo-ε expansion approach
itself may be thought of as some specific resummation
technique.
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