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Characterization of kinetic coarsening in a random-field Ising model
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We report a study of nonequilibrium relaxation in a two-dimensional random field Ising model at a nonzero
temperature. We attempt to observe the coarsening from a different perspective with a particular focus on three
dynamical quantities that characterize the kinetic coarsening. We provide a simple generalized scaling relation of
coarsening supported by numerical results. The excellent data collapse of the dynamical quantities justifies our
proposition. The scaling relation corroborates the recent observation that the average linear domain size satisfies
different scaling behavior in different time regimes.
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Study of the effect of disorder on nondisordered magnetic
systems has been a subject of intense interest for the last several
years [1–10]. When a magnetic system is quenched from a high
temperature to a low temperature, it locally orders with the
formation of domains separated by domain walls. The average
linear size of the domains R(t) grows with time. This linear
size can also be understood as a nonequilibrium correlation
length of the system. The growth of the characteristic length
scale R(t) with time is known as the coarsening of the
system. Although coarsening in nondisordered systems is
well understood [11], progress in understanding the same
in disordered systems has been rather slow. Unavailability
of reliable theoretical tools makes it difficult to study the
dynamics of disordered systems out of equilibrium. Moreover,
the dynamics of disordered systems is typically so slow
that we cannot access the truly asymptotic time regime in
numerical simulations. Despite all these, last several years
have witnessed an appreciable development in the study of
disordered systems. These include coarsening of disordered
magnets [12–14], polymers in random media [15–17], or
vortex lines in disordered type II superconductors [18–20].
The fundamental quantity of interest in the coarsening is the
growing length scale R(t) and almost all studies of coarsening
is primarily concerned with the determination of this R(t).
However, the growth law governing the coarsening of disor-
dered systems is at the center of some controversies. Some
numerical simulations on disordered ferromagnets [21–23]
yielded an algebraic growth R(t) ∼ t1/z, with a nonuniversal
dynamical exponent z that depends on the temperature and
on the nature of disorder. Huse and Henley [24] suggested
a logarithmic increase of R(t) ∼ (ln t)1/ψ , with the barrier
exponent ψ > 0. Later a series of papers on the dynamics
of elastic lines in a random potential [16,17,25] claims a
dynamic crossover from a pre-asymptotic algebraic regime
to a asymptotic slow logarithmic regime. Recent studies on
other disordered systems [26,27] supports this claim, too.

In this work, we investigate the coarsening dynamics of
a disordered system, namely the random field Ising model
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(RFIM), focusing our attention on three morphological quan-
tities which are functions of the strength of the random fields
(η0) and the temperature (T ). These are the total length of the
interfaces (�(η0,t)), i.e., the total number of boundary spins
of all the domains, the total number of domains (�(η0,t))
in the system and the length of the interface of the domain
with largest mass (�(η0,t)), i.e., the number of boundary
spins of the domain containing maximum number of spins.
In this work, we provide a empirical scaling relation of the
coarsening. The scaling relation is found to be nicely obeyed by
the three morphological quantities and is capable of explaining
coarsening in disordered magnets in the conventional way, i.e.,
the behavior of the average linear domain size for the entire
time regime can be reproduced from the proposed scaling
relation and in this sense it is general.

The Hamiltonian of the RFIM is given by

H = −J
∑
〈i,j〉

sisj +
∑

i

ηisi + Hext

∑
i

si , (1)

where si = ±1 is the spin variable at site i, J is the strength of
the exchange interaction (conventionally set to unity), and ηi is
the quenched random fields taken from an uniform distribution
with varying strength η0. The external field Hext has been
set to zero to observe the unbiased dynamics of the system.
We consider a L × L square lattice (here L = 256) with
periodic boundary conditions along both directions. We start
our simulations from a completely random spin configurations,
characteristic of a high temperature (T = ∞) phase and then
suddenly quench the system to a temperature T = 0.50, well
below the critical temperature of a nondisordered system (Ising
model) and then observe the time evolution of the system. The
single spin flip Metropolis algorithm [28] is used to simulate
the system. Here an unit of time (i.e., a time step) refers to
one Monte Carlo (MC) step and one MC step is taken to be
completed (i.e., t = 1) when the number of attempted single
spin moves equals the total number of spins in the system.
The number of domains with their sizes are determined by
the Hoshen-Kopelman algorithm [29]. All the quantities are
averaged over 50 independent simulations to get a precise
estimate. The quantities are normalized with respect to the
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total number of spins (L2) of the system. The temperature is
taken sufficiently low to reduce the thermal fluctuations.

The relevance of domain wall roughening due to tem-
perature in comparison to that due to random fields is
explained by Binder [30]. For low temperature, the length scale
[∼exp (2J/KBT )] over which the thermal fluctuations is
relevant is much higher than that [∼(J/η0)2] due to random
fields fluctuations. A critical temperature may be obtained
from the comparison of the length scales beyond which the
effect of the temperature and the random fields on the domain
wall roughening are significant. The dynamics of the system
at low temperature like T = 0.50 will match that at T = 0.
Later we show that the time evolution of the three quantities
introduced earlier is governed by the minimization of the total
energy for the domain formation. Thus as long as T is small,
ground state (GS) can be approached gradually as t → ∞. So
after a long time the final state is statistically the same as the
ground state (GS), i.e., the overlap between the GS and the
corresponding finite-T state is close to unity for T small. As
a whole, coarsening proceeds through a compromise between
the strength of the exchange interaction and the random fields
with the thermal fluctuations serving only to renormalize the
strengths of these couplings [31].

We begin our analysis with the idea put forward by Imry
and Ma [1]. They argued that if one reverses the spins within a
domain of linear size R, the energy cost Eex is proportional to
the domain wall area, i.e., Eex ∝ JRd−1, where d is the spatial
dimension. This energy increase has to be compared with the
energy gain from the interaction with the random fields. The
central limit theorem tells that the mean-squared random field
energy E2

RF inside a region of volume Rd is ∼η2
0R

d . The total
energy involved in the creation of a domain of linear size R is
therefore

E(R) ≈ JRd−1 − η0R
d/2. (2)

The first term of Eq. (2) represents the contribution due to
the boundary of the domain with linear size R(t). The second
term represents the contribution due to the fluctuations of the
random fields in the bulk of the domain of linear size R(t). On
the basis of the above argument, Imry and Ma concluded that
the lower critical dimensionality (LCD) of the RFIM is two.
This argument is based on domains having flat interfaces. The
question arises if this argument would hold even in presence
of rough interfaces with fluctuating curvature. To address this
concern, Binder [30] reformulated the problem in terms of
the interfaces and had shown that the interface roughness
is negligible if d > 2, confirming that the LCD of RFIM is
two. However, Binder shows that the domain wall energy has
a logarithmic correction, which introduces a breakup length
scale, Lb ∼ exp(A[J/η0]2), below which Imry-Ma argument
is valid. Well-defined interfaces of domains are meaningful for
length scales less than Lb. The system size considered here is
below the Lb and therefore it makes sense to consider Eq. (2) as
the starting point of our analysis, although Eq. (2) disregards
the logarithmic correction. Taking a cue from Eq. (2), the
surface energy of all the domains Et

ex ∼ J�(η0,t) and the
mean-squared bulk energy contained in all the domains of
the system due to random fields Et2

RF ∼ η0
2Ld

�(η0,t)
, as the density

of domains is inversely related to their characteristic volume.
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FIG. 1. (Color online) The plot of the function �(η0,t) against
time. The dotted lines are the best fits according to the scaling
relation (7).

Thus the energy density (ε = Et/Ld ) involved in the creation
of all the domains in the system is given by

ε(η0,t) ≈ J�(η0,t)

Ld
− η0

�(η0,t)1/2 . (3)

As L → ∞, the surface energy contribution vanishes. This
is true for any growing volume. For finite system size, the
contribution from the surface energy term cannot be neglected.
So the variation of either �(η0,t) or �(η0,t)1/2 with time
will govern the coarsening of the system. The log-log plot of
�(η0,t) and �(η0,t)1/2 against time are shown in Figs. 1 and 2,
respectively. It is evident from Eq. (3) that the coarsening of the
system energetically favors the minimization of the total length
of the interfaces and also the decrease in the number of the
domains. This is observed in Figs. 1 and 2, respectively. In view
of the above discussions, we can redefine the coarsening as
simply the minimization of ε(η0,t) and the kinetic coarsening
will be characterized by the scaling behavior of �(η0,t) and
�(η0,t)1/2. As time flows, small domains coalesce to form
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FIG. 2. (Color online) The plot of the function �(η0,t)1/2 against
time. The dotted lines are the best fits according to the scaling
relation (7).
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FIG. 3. (Color online) Plot of �(η0,t) against time along with the
best fits according to (7).

relatively larger domains and from Eq. (2), it is clear that a
domain with a typical average size R should grow in such a
way that the total length of all the interfaces of all the domains
present in the system shrinks in order to minimize the energy
of the system. The domain with largest mass should grow in
the same fashion during its dynamical evolution. Therefore,
�(η0,t) is expected to exhibit similar behavior as that of
�(η0,t). Log-log plot of �(η0,t) against time is shown in
Fig. 3. In this context, Seppälä and Alava [32] showed that
below a critical random field strength, the largest domain
spans the system and the two-dimensional (2D) RFIM shows
a percolation transition. This was supported by some later
studies [7,33]. We also check that below a critical random field
strength ηc, the largest cluster is a spanning one with a fractal
dimension 1.89 ± 0.02. Above ηc, the largest cluster is finite.
The value of ηc of course depends on temperature. In a recent
article [34] we also reported that below a critical random field
strength, the 2D RFIM exhibits long range order (LRO). We
now provide the theory of kinetic coarsening. In general, we
denote by �(η0,t) the three quantities. A careful observation
of the graphs suggests that the initial and asymptotic behavior
of the generalized function �(η0,t) is given by

�(η0,t) → �0 (const), as t → 1
(4)

and �(η0,t) → �0e
−1/ν(η0), ν(η0) > 0, as t → ∞,

where ν(η0) is a disorder-dependent scaling exponent. The
decay rate of the function �(η0,t) at any time step for a fixed
η0 should depend on the following factors: first, on the value
of the function itself at this time step. Second, from the nature
of the variation of the functions, it is evident that the rate of
decay of the function �(η0,t) also depends on the particular
time step. As the time flows, the rate of decay of �(η0,t)
slows down and this dependence is taken as a power-law decay.
In addition to these factors, another η0-dependent parameter
should be there for controlling the decay rate of �(η0,t).
This parameter considers the wandering of the interfaces in
presence of the random fields. Thus the decay rate of �(η0,t)
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FIG. 4. (Color online) Plot of the data collapse of the function
�(η0,t). The inset shows the variation of ρ�(η0) and ν�(η0)
against η0.

is given by

d�

dt
∼ −a(η0)�t−μ(η0), μ(η0) > 0, (5)

a(η0) is a disorder-dependent parameter. Integrating,

�(η0,t) = �0exp

[
t−(μ(η0)−1)

ν(η0)
+ k(η0)

]
, (6)

where k(η0) is a constant of integration and ν(η0) = μ(η0)−1
a(η0) .

Now from (4) as t → 1, �(η0,t) → �0, which gives k(η0) =
−1/ν(η0) and as t → ∞, �(η0,t) → �0e

−1/ν(η0), which gives
μ(η0) > 1. Thus the functional form of �(η0,t) is given by

�(η0,t) = �0exp

[
−1 − t−ρ(η0)

ν(η0)

]
, (7)

where ρ(η0) = μ(η0) − 1 > 0. The scaling behavior (7) of
the functions characterizing the kinetic coarsening shows an
universal nature with two disorder-dependent exponents ρ(η0)
and ν(η0). The validity of the the scaling relation (7) can be
confirmed from the plots of the data collapse of the functions
�(η0,t), �(η0,t)1/2, and �(η0,t) with the corresponding
exponents (ρ�,ν�),(ρ�,ν�), and (ρ�,ν�) [35]. The plots are
shown in Figs. 4–6, respectively. From scaling relation (7) the
initial time behavior of �(η0,t) is given by

�(η0,t) = �0t
−ρ(η0)/ν(η0) for t 	 exp(1/ρ). (8)

Thus the function �(η0,t) shows a power-law decay with
the exponent ρ(η0)

ν(η0) until the characteristic time scale t× ∼
e1/ρ(η0). This initial linear behavior in log scale is observed
from Figs. 1–3, respectively. It is observed from the in-
sets of Figs. 4–6, where the variation of ρ(η0) and ν(η0)
against η0 is shown, that as η0 → 0, ρ(η0) → 0 and ν(η0) →
0 with ρ

ν
finite, which implies that the power-law decay

continues for longer time as η0 → 0. This behavior is quite
expected because for weak random field strength, the decay
of �(η0,t) is dominated by the exchange interaction. �(η0,t)
asymptotically approaches the value �0e

−1/ν(η0). Physically
it means that as t → ∞, the domains cease to grow. The
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FIG. 5. (Color online) Plot of the data collapse of the function
�(η0,t)1/2. The inset shows the variation of ρ�(η0) and ν�(η0)
against η0.

dynamic behavior of the average linear domain size can also
be predicted from the scaling relation (7). The typical average
linear size R(η0,t) is given by

R(η0,t)
d ∼ Ld

�(η0,t)

R(η0,t) ∼ �(η0,t)
−1/2 for d = 2.

(9)

From simple calculations, the initial time, late time, and the
asymptotic nature of R(η0,t) are obtained as

R(η0,t) ∼ tρ�/ν� for t 	 e1/ρ�

∼ (ln t)1/ν� for e1/ρ� 	 t 	 ∞
∼ e1/ν� for t → ∞. (10)

We interpret the ratio ν�(η0)
ρ�(η0) as the nonuniversal dynamic

exponent z(η0) corresponding to the early time power-law
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FIG. 6. (Color online) Plot of the data collapse of the function
�(η0,t). The inset shows the variation of ρ(η0) and ν(η0) against η0.

growth of R(η0,t). Also, the barrier exponent for the late time
regime is interpreted as ν�(η0). Thus the scaling relation (7)
successfully reproduces the recent claims [9,16,17,25] that
the growing length scale R(η0,t) shows a dynamic crossover
from a preasymptotic algebraic growth to asymptotic slow
logarithmic growth. Another essential feature corresponding
to the growth of R(η0,t) is contained in the proposed scaling
law. At t → ∞, the value of R(η0,t) approaches e1/ν�(η0).
This avoids the asymptotic divergence of R(η0,t). Thus, the
behavior of the average linear domain size R(η0,t) in the entire
time regime can physically be explained with the help of the
scaling relation (7). In view of the above discussion, ν(η0) is
interpreted as follows. The scaling relation (7) shows that as
ν(η0) → 0, �(η0,t) → 0 for t → ∞. It means that the pinning
interaction starts dominating as ν(η0) increases. Thus, ν(η0)
is responsible for the stiffness of the domain wall. This is
also obvious from the late time dynamics of R(η0,t) which
is governed by the exponent ν(η0) only [see Eq. (10)]. The
domain wall would become stiffer with the increase of ν(η0)
As t → 1, �(η0,t) reaches a fixed value �0, independent
of η0. It is to be noted that the scaling relation (7) suggests
that as t → ∞, �(η0,t)/�0 = exp(−1/ν). So at t → ∞, the
number of domains relative to their initial value converges to a
well-defined value and the ratio is a measure of the entropy of
the system [1]. Thus if the ratio is known, the value of ν(η0) can
be determined and from the insets of Figs. 4–6, the value of η0

may be found corresponding to a particular ν(η0). Therefore
the infinite time limit of the scaling relation converges to a
well-defined thermodynamic quantity that would fix the value
of η0.

We end this article with a few comments. Although we
present results for a particular temperature and for a particular
system size, we check that the same scaling relation holds
good for other temperatures and other system sizes as well.
However, the system size has to be below the breakup length
scale and the temperature should not be so high that the thermal
fluctuations become relevant. We would also like to point out
that the Hamiltonian given by Eq. (1) depends on J , η0, and
T or, more precisely, on the ratio J/T and η0/T . J/T being
fixed in the present work, the quantities of our interest depend
on η0/T only. This means irrespective of any particular value
of η0 and T , the ratio of η0 and T would govern the coarsening
of the system. This adds generality to the scaling relation (7).
Although we arrived at the scaling relation for the 2D RFIM,
this relation also corroborates the recent claim of a possible
crossover from a early time power-law growth to a late-time
logarithmic growth in Ising model with random coupling and
random dilution [26,27]. Certainly many more simulations
on different systems are required to confirm the generic
nature of the scaling relation (work in this direction is in
progress).
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