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Resonant activation is an effect of a noise-induced escape over a modulated potential barrier. The modulation
of an energy landscape facilitates the escape kinetics and makes it optimal as measured by the mean first-passage
time. A canonical example of resonant activation is a Brownian particle moving in a time-dependent potential
under action of Gaussian white noise. Resonant activation is observed not only in typical Markovian-Gaussian
systems but also in far-from-equilibrium and far-from-Markovianity regimes. We demonstrate that using an
alternative to the mean first-passage time, robust measures of resonant activation, the signature of this effect can
be observed in general continuous-time random walks in modulated potentials, even in situations when the mean
first-passage time diverges.
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I. INTRODUCTION

In recent decades, the concept of noise in physical systems
has advanced from an unwanted addition to data toward
interest in nonequilibrium statistical physics. Noise is used to
simplify descriptions of dynamical systems when the detailed
character of interactions is unknown or too complicated for
exact methods. Noise is responsible for the occurrence of
the so-called noise-induced effects. Among them, stochastic
resonance [1,2] and resonant activation [3] are the most
popular. Usually, it is assumed that noise is white and
Gaussian; however, both non-Gaussian and non-Markovian
extensions are also possible [4,5]. The examination of the
constructive role of noises in physical systems has attracted
considerable attention during the past two decades.

Resonant activation [3,6] is a resonant effect in which a
noise-induced transition is further facilitated by a modulation
of the energy landscape. A deterministic or stochastic modu-
lation of the potential barrier can improve the system perfor-
mance leading to the optimal escape kinetics as measured by
the mean first-passage time. Such a situation is observed for
a white Gaussian noise [3], α-stable Lévy-type noises [7–10],
colored noise [11,12], or even in situations when the potential
barrier is modulated by a colored process [13–16].

Here, we extend studies on resonant activation into
a non-Markovian and non-Gaussian regime. We study a
non-Markovian continuous-time random walk scheme in a
stochastically modulated potential when jump lengths are
generated according to heavy-tailed distributions. The non-
Markovianity of the studied process emerges due to slower-
than-exponential decay of the waiting-time distribution. This
process is also non-Gaussian because jump lengths are
determined by a heavy-tailed distribution with the diverging
second moment. On the one hand, the description of anomalous
systems can be provided by the continuous-time random-
walk scheme, which allows for a relatively easy treatment
(exact or asymptotic) of various waiting-time and jump-
length distributions resulting in the unified description of
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Markovian and non-Markovian, Gaussian and non-Gaussian
systems [17,18]. On the other hand, such realms due to a
slow decay of the waiting-time distribution and power-law
tails of the jump-length distribution are described by the
bifractional diffusion equation [17,19–21], which provides an
equivalent description of the continuous-time random-walk
framework.

As the waiting-time distribution becomes of the power-law,
heavy-tailed type, the system drifts into a non-Markovian
regime. Consequently, the standard way of identifying res-
onant activation fails, as the mean first-passage time diverges
due to heavy-tailed distributions of waiting times. While this
could be taken as an indication of the disappearance of the
resonant-activation phenomenon, we show that the effect of
optimal escape kinetics can still be detected. In order to
prove the existence of resonant activation, we use robust,
quantile-based measures, which can be defined regardless of
the existence of the mean first-passage time. Quantile-based
measures provide robust characteristics of the first-passage-
time density and as a such can be used to expose the signature
of resonant activation. In this study, in addition to the ex-
amination of the properties of first-passage-time distributions,
we also use extreme statistics and their properties. Extreme
statistics provides additional insight into systems dynamics.
In particular, it is well suited for an examination of the sys-
tem’s performance and quantifying the stochastic resonance
phenomenon.

The next section presents the model under consideration,
defines measures of resonant activation, and shows obtained
results. The paper is closed with summary and conclusions.

II. MODEL AND RESULTS

The classical resonant activation setup [3] consists of a
Brownian particle moving in a time-dependent potential field,
which is switching dichotomously between two linear slopes of
different heights. For the sake of simplicity, it is assumed that
the dichotomous process is symmetric and Markovian [22];
i.e., a potential stays in one of the configurations for an
exponentially distributed time. Additionally, the domain of
motion is restricted to the finite interval with the reflecting
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FIG. 1. Various measures of resonant activation: mean first-passage time 〈τ 〉 (left column), median location q0.5 (middle column), and
interquantile width q0.9 − q0.1 (right column) for the Markovian (ν = 1) case with α = {2,1.9,1.8,1.7} (from top to bottom).

boundary on the left and the absorbing boundary on the
right. Here, we examine properties of the archetypal resonant
activation setup when the Brownian particle is replaced by a
more general random walker performing a general form of a
continuous-time random walk [18,23,24].

The subordination methods [19,25] are used in order to
study a system described by the bifractional time-dependent
diffusion equation [17,19–21]:

∂p(x,t)

∂t
=

[
∂

∂x
V ′

±(x,t) + σα ∂α

∂|x|α
]

0D
1−ν
t p(x,t). (1)

The bifractional Smoluchowski-Fokker-Planck equation de-
scribes the evolution of the probability density of finding a
particle at the time t in the vicinity of x. The subordination
methods are based on the generation of a stochastic process
whose evolution of the probability density is described by
Eq. (1). This is achieved by linking physical time t with
operational time s by an appropriate time transformation. The
used method is briefly presented in the Appendix, while the
detailed description can be found in Refs. [19,20,25,26].

In Eq. (1), 0D
1−ν
t denotes the Riemann-Liouville

fractional-time derivative 0D
1−ν
t = ∂

∂t 0D
−ν
t defined by the

relation

0D
1−ν
t f (x,t) = 1

�(ν)

∂

∂t

∫ t

0
dt ′

f (x,t ′)
(t − t ′)1−ν

, (2)

and ∂α

∂|x|α stands for the Riesz-Weil fractional space derivative
with the Fourier transform

F
[

∂α

∂|x|α f (x)

]
= −|k|αf̂ (x). (3)

The potential V±(x,t) dichotomously switches between two
linear configurations characterized by two distinct heights
H±; i.e., V±(x,t) = H±x. Initially, a test particle is located
at the origin and the configuration of the potential is set to
V+(x,t) or V−(x,t) with equal probabilities. As in the Doering
Gadoua model [3], the dichotomous process is symmetric
and Markovian. Consequently, it is described by a single
parameter γ , which is the rate of the potential switching; i.e., a
dichotomous process takes two possible values only and stays
constant for the exponentially distributed time. The domain of
motion is restricted to the finite interval; i.e., at x = 0 there
is a reflecting boundary, while at x = 1 there is an absorbing
boundary. Boundaries impose additional constraints on the
probability density p(x,t), which are hard to implement on
the operator level [27–29] but are relatively easily controlled
on the single trajectory level. Equation (1) extends the
classical resonant activation model into a nonequilibrium
non-Markovian regime.

From the microscopic point of view, the model describes
an escape kinetics of a random walker from the finite
interval restricted by absorbing and reflecting boundaries. In
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FIG. 2. Various measures of resonant activation: median location q0.5 (left column) and interquantile width q0.9 − q0.1 (right column) for
the non-Markovian case with ν = 0.9 and α = {2,1.9,1.8,1.7} (from top to bottom).

the force free case, Eq. (1) emerges as a description of a
continuous time random walk scenario with power law dis-
tributed waiting times, p(	t) ∝ 	t−(ν+1), and jump lengths,
p(	x) ∝ |	x|−(α+1), with 0 < α < 2 and 0 < ν < 1. Here
the jump-length distribution is also modified by the external
potential, which slightly alters the jump-length distribution.
Nevertheless, its asymptotics is still of the power-law type.
Such a continuous-time random-walk scenario is both non-
Markovian and non-Gaussian [30]. The Markovian-Gaussian
scenario is recovered for ν � 1 with α � 2. The subdiffusion
parameter ν controls the level of non-Markovianity, while α

controls the level of non-Gaussianity. Equation (1) is a general
type equation, which is also obtained when jump lengths are
distributed according to symmetric α-stable densities [31–34],
which for α < 2 have required |	x|−(α+1) asymptotics. We
refer to ν as the subdiffusion parameter and to α as the
stability index. The studied random walk is characterized by
the first-passage time τ :

τ = min{t > 0: x(0) = 0 and x(t) � 1}. (4)

From the set of the first passages times τi it is possible to
calculate various characteristics of the given system that can
be used to measure the performance of escape kinetics.

Traditionally, the strength of resonant activation is mea-
sured by the mean first-passage time, but such a quantifier can
be calculated only when the first passage time density is not
of the heavy-tailed type. In particular, for ν = 1, the seminal
resonant activation setup is recovered. The first-passage time
density has exponential tails and it has a well-defined mean
value. Otherwise, the mean first-passage time diverges and
cannot be used to characterize the performance of escape
kinetics. This is the case with the studied model in the
non-Markovian regime, i.e., for ν < 1, when the first-passage
time density has power-law tails with the exponent −(ν + 1).
Nevertheless, that is the point which requires special attention.
The calculation of resonant activation characteristics is based
on a large, yet finite sample of first passage times. The
finite-size effects result in the effective truncation of the
first-passage time density. Consequently, from a finite sample
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FIG. 3. Various measures of resonant activation: median location q0.5 (left column) and interquantile width q0.9 − q0.1 (right column) for
the non-Markovian case with ν = 0.6 and α = {2,1.9,1.8,1.7} (from top to bottom).

it is still possible to calculate the mean first-passage time.
However, due to heavy-tails, this quantity fluctuates very
strongly and becomes meaningless.

For a general type of continuous-time random walks,
which can be characterized by the diverging waiting time,
different measures have to be employed. Therefore, one needs
to consider more robust measures, which can be based on
distributions of the first-passage time or directly derived
from this density, e.g., quantiles of the first-passage time
distribution,

Prob(τ � qp) = p (0 < p < 1); (5)

i.e., such a value of the first-passage time that the probability
to find a smaller value than qp is p. Quantiles can be also
expressed by the cumulative density of the first-passage time
F(t) by the relation F(qp) = p. In particular, one can use the
median location (q0.5) or the interquantile width (q0.9 − q0.1)
in order to measure the system’s performance. The efficiency
of quantile-based measures relies on the fact that optimal
escape kinetics should affect the properties of the first-passage

time distributions, which should be further manifested by the
dependence of quantiles on control parameters (in particular
the switching rate γ ).

Within the model, properties of the resonant activation
phenomenon are studied in the non-Gaussian (α < 2) and
non-Markovian regime (ν < 1). However, for the reference
point, also the Markovian-Gaussian case is studied (ν = 1
with α = 2). It is assumed that the potential switches between
V±(x,t) = H±x configurations with H+ = 8 and H− = 0.
Changes in the height of the potential barrier H± are described
by a symmetric Markovian dichotomous process with the
rate γ , i.e., the dichotomous process stays constant for an
exponentially distributed time with the intensity equal to the
switching rate γ ; see Refs. [3,22].

In order to study properties of alternative measures of
resonant activation, the Markovian non-Gaussian case (ν = 1
with α < 2) was studied. Figure 1 shows the dependence of
the mean first passage time 〈τ 〉, the median location q0.5, and
the interquantile width q0.9 − q0.1 on γ for relatively large
values of the stability index only; i.e., α = {2.0,1.9,1.8,1.7}
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FIG. 4. Survival probability S(t) = 1 − F(t) for low switching rate γ (left column) and high switching rate γ (right column) for ν = 1
(top row) and ν = 0.7 (bottom row). Various lines correspond to various α = {2.0,1.7,1.5}. Please note log-lin (top row) and log-log (bottom
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from top to bottom. In such a situation the first-passage time
distribution has a well-defined mean and consequently the
phenomenon of resonant activation can be captured by the
examination of the mean first-passage time; see left column
of Fig. 1. In line with earlier studies, strong deviations from
the Gaussian distribution of jump lengths result in diminishing
resonant activation; see Fig. 1 and Ref. [8]. However, a full
disappearance of the effect is observed for lower values of the
exponent α than presented in Fig. 1; see Ref. [8].

Resonant activation is understood as an optimal escape
kinetics as measured by the mean first-passage time. Decrease
in the mean first-passage time is a consequence of changes
in the first-passage time distribution and corresponds to the
narrowing of the first-passage time density. This can be
measured not only by the mean first-passage time but also
by the width of the first-passage time density, which can be
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FIG. 5. Survival probability S(t) = 1 − F(t) for extreme statis-
tics: Smin

N (t) and Smax
N (t). Solid lines present theoretical results

obtained from “single-particle simulations,” while points represent
results of “N = 10” particles simulation. Other simulation parame-
ters: switching rate γ = 10, number of repetitions Nrep = 106, time
step of integration 	t = 10−3, subdiffusion paremeter ν = 1, and
stability index α = 2.

characterized by the interquantile distance, e.g., q0.9 − q0.1.
The interquantile distance provides a robust measure, because
it exists independently of the existence of the mean or the
variance of the first-passage time distribution. The interquan-
tile distance is sensitive to the modulation of the barrier and
properly captures resonant activation, as it can be observed
in the right column of Fig. 1. Nevertheless, the narrowing of
the first-passage time distribution is not necessarily reflected
in the dependence of the median location of the first-passage
time density on the rate of the potential switching γ ; see the
middle column of Fig. 1. Therefore, the median can be used
as a measure for the phenomenon of resonant activation only
for a very limited set of system parameters.

Both possible initial states of the potential are equally
probable. Thus, in the Markovian case, for a low and moderate
switching rate γ , half of the events correspond to fast
escapes (over a low-barrier configuration), while the other
half corresponds to slow escapes (high-barrier configurations).
This makes the median not very sensitive as a measure
of resonant activation. The different situation is with the
interquantile width, which is of the same monotonicity as the
mean first-passage time, because it neglects some fraction of
the fastest and slowest escape events.

In the non-Markovian case (ν < 1), the mean first-passage
time, due to the divergence of the mean waiting time for a
next jump, diverges and cannot be used to characterize the
resonant activation effect. Therefore, measures that can be used
in such cases are quantile-based. Consequently, the median
and the interquantile width will be used to characterize the
system performance. Moreover, for ν < 1 the system has only
one characteristic time scale, i.e., the one associated with the
barrier switching process, which is 1/γ .

Figures 2 and 3 demonstrate quantile-based measures of
resonant activation for a selected set of non-Markovian sys-
tems. For ν < 1, the interquantile width clearly demonstrates
that the dependence of the width of the first-passage time
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FIG. 6. Various measures of resonant activation derived from the order statistics Fmax
N (t) with N = 10: median location q0.5 (left column)

and interquantile width q0.9 − q0.1 (right column) for the non-Markovian case with ν = 0.9 and α = {2,1.9,1.8,1.7} (from top to bottom).

density is a nonmonotonous function of the switching rate γ .
One can find an optimal switching rate leading to the lowest
width of the first passage time density. The nonmonotonous
dependence of the width of the first-passage time distribution
is a signature of a phenomenon similar to resonant activation.
With decreasing the value of the jump-length exponent α the
resonant activation effect disappears, compare various rows
of Figs. 2 and 3. Likewise, the decrease in the waiting-time
exponent ν weakens the effect, compare Figs. 2 and 3.

Figure 4 shows the survival probability of a random walker
in various scenarios, including a Gaussian-Markovian case.
For the low switching rate γ (with α = 2 and ν = 1), the
survival probability attains a pronounced double exponential
form; see the top left panel of Fig. 4. As the jump-length
distribution departs from the Gaussian, a random walker can
perform longer jumps with a significantly larger probability.
This facilitates the escape kinetics, which could be corrob-
orated by the smaller average time required to reach the
absorbing boundary. This is further confirmed by the decrease
of the survival probability with the decrease of the stability

index α. On the one hand, when the system drifts into the
non-Markovian regime, subdiffusion becomes stronger, escape
kinetics is hindered, and long waiting times cause the survival
probability to be nonnegligible for a significantly longer time.
On the other hand, it is well visible that longer jumps result in
lower values of the survival probability, indicating an increase
in the efficiency of the escape kinetics with the decrease of
the stability index α; compare the top and bottom rows of
Fig. 4.

For ν < 1, the median behaves in a more informative way
than in the Markovian case, but quickly loses sensitivity to
resonant activation as the non-Gaussianity of the system pro-
gresses. The dependence of the median and the interquantile
width on the switching rate γ clearly confirms the occurrence
of the resonant activation effect. While both the median and
the interquantile width can be used as indicators of resonant
activation, in a strongly non-Gaussian and non-Markovian
regime both undergo fluctuations, rendering both measures
less reliable for determining the exact position of an optimal
switching rate; see the bottom rows of Figs. 2 and 3.
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FIG. 7. Various measures of resonant activation derived from the order statistics Fmax
N (t) with N = 10: median location q0.5 (left column)

and interquantile width q0.9 − q0.1 (right column) for the non-Markovian case with ν = 0.6 and α = {2,1.9,1.8,1.7} (from top to bottom).

Measures characterizing resonant activation do not need to
be based on single particle simulations. Instead of considering
a single particle system it is possible to study the motion
of N independent (noninteracting) particles. The presence of
multiple random walkers allows us to calculate minimal and
maximal first-passage times. The minimal first-passage time
is the exit time of the fastest random walker out of N , while
the maximal exit time is the exit time of the last (slowest)
random walker out of N . If random walkers are independent,
instead of examining N random walkers it is also possible
to study a single random walker and to divide data into N

elements disjoint sets. For every set the minimal (maximal)
first-passage time is just a minimal (maximal) exit time of an
N random-walker system. The properties of order statistics are
well known [35,36]. In particular, it is known that first-order
statistics has a significantly faster decay than the probability
density of an original variable. While the N th (last)-order
statistics has the same asymptotics as the original variables,
i.e., the first passage times τ ; see Ref. [37].

The first (minimum)-order statistics accounts for the fastest
events only. It does not provide sufficient resolution to measure
the system performance and as such is not very sensitive to
the manipulation of the model parameters (results not shown).
The maximum statistics is suitable for quantifying the resonant
activation effect because it uses only maximal first-passage
times. The width of this distribution is more sensitive to the
manipulation of the model parameters. Consequently, the same
analysis, which was performed in Figs. 1–3, is conducted for
the maximum (last-order) statistics; see Figs. 6 and 7.

Figure 5 demonstrates that maximal and minimal first-
passage time densities constructed from the simulation
(N = 10) are exactly the same as the ones estimated from the
single-particle experiment. More precisely, the single-particle
experiment allows us to estimate F(t), which in turn can
be used to calculate Fmax

N (t) = [F(t)]N and Fmin
N (t) = 1 −

[1 − F(t)]N ; see Refs. [35,36]. Instead of F(t), Fmax
N (t), and

Fmin
N (t), it is more convenient to inspect the survival probability

S(t) = 1 − F(t), because it reveals asymptotic behavior more
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FIG. 8. Strength of resonant activation as measured by the relative
depth of: mean first-passage time 〈τ 〉 (top panel), median location q0.5

(middle panel), and interquantile width q0.9 − q0.1 (bottom panel).
Various curves correspond to various values of the subdiffusion
parameter ν.

clearly. For illustrative purposes, α = 2 with ν = 1 have been
chosen.

Figures 6 and 7 show the dependence of the median of the
maximum (last-order) statistics for a N = 10 particle system.
Due to smaller statistics, fluctuations are larger. Among
two measures of the escape kinetics efficiency (median and
interquantile width) the median position is more robust with
respect to fluctuations (in the single-particle simulations it
is the opposite). Nevertheless, the analysis of the last-order
statistics supports the main conclusion that with the decrease of
the stability index α and the subdiffusion parameter ν resonant
activation disappears.
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FIG. 9. Strength of resonant activation as measured by the
relative depth of extreme statistics: median location q0.5 (top panel)
and interquantile width q0.9 − q0.1 (bottom panel). Various curves
correspond to various values of the subdiffusion parameter ν.

Figures 1–3 and 6–7 show quantifiers as a function of the
switching rate γ . In order to determine the existence of the
resonant activation effect, the strength of the effect is measured
by the deviation of the minimal value of a given quantifier from
the lowest asymptotics of that quantifier, i.e.,

	(u) = min{u(γ = −∞),u(γ = ∞)} − min(u), (6)

where u could be the mean first-passage time (〈τ 〉), the
median (q0.5), or the interquantile width (q0.9 − q0.1). Such
a quantifier measures the separation of the minimum of a
given characteristic from its lower asymptotics, which can be
reached either for a low or large switching rate γ . Therefore,
it is the relative depth of the minimum (if it exists).

Figures 8 and 9 show the separation of the minima of
resonant activation measures from lower asymptotics [	(. . . )]
for all quantifiers used: the median and the interquantile width.
The values of 	 for any of the quantifiers used with ν < 1 are
in general smaller than for ν = 1, indicating the weakening of
the resonant activation effect when the system departs from the
Markovian regime. Analogously, resonant activation weakens
with decreasing the value of the jump-length exponent α, i.e.,
when the jump-length distribution becomes heavy-tailed. The
situation is very similar for extreme statistics when the range of
the relative depth variation is larger than in the single-particle
case; compare Figs. 8 and 9. The changes in the jump-length
distribution (α) and waiting-time distribution (ν) modify the
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system performance, resulting in the disappearance of resonant
activation with the decrease of α and ν exponents as measured
by 	.

III. SUMMARY AND CONCLUSIONS

Resonant activation is one of classical effects demonstrating
a constructive role of noises in physical systems. It proves that
the noise-induced escape events can be further optimized by
an additional modulation of the energy landscape. Typically,
resonant activation has been studied in Markovian systems
and it is considered as a generic property of a barrier-crossing
process in a modulated energy landscape. Here, we show
that resonant activation is not only observed in a plenitude
of noise-driven systems but its signature is also visible in
non-Markovian and non-Gaussian systems. However, in such
realms, it has to be inspected by more robust measures than the
typically used mean first-passage time (which can diverge).

The classical Gaussian-Markovian case was used as a test
bench in order to verify whether quantile-based measures can
be used to analyze properties of resonant activation. This test
confirmed suitability of such measures. Next, quantile-based
measures were applied in the non-Markovian regime in order to
prove existence of the effect similar to resonant activation also
in situations when, due to long trapping events, the mean first-
passage time diverges. Such a signature of resonant activation
is visible in general continuous-time random walks in time-
modulated potentials. The strength of the effect weakens with
the widening of the jump-length distribution and waiting-time
distribution, finally resulting in the disappearance of resonant
activation.

ACKNOWLEDGMENT

Computer simulations have been performed at the Aca-
demic Computer Center Cyfronet AGH (Kraków, Poland)
under CPU Grant No. MNiSW/Zeus_lokalnie/UJ/052/2012.

APPENDIX: NUMERICAL METHODS

The applied numerical scheme is based on the subordination
method [31,38,39], which has been extended [19,20,25,26]

to give a proper stochastic representation of trajectories of
the process X(t) whose evolution of the probability density
is described by the bifractional Smoluchowski-Fokker-Planck
equation [17,19–21]:

∂p(x,t)

∂t
=

[
∂

∂x
V ′(x,t) + σα ∂α

∂|x|α
]

0D
1−ν
t p(x,t). (A1)

The solution p(x,t) of Eq. (A1) can be estimated from the
probability density of the subordinated process

X(t) = X̃[Sν(t)], (A2)

where X̃(s) fulfills the following Langevin equation:

dX̃(s) = −V ′[X̃(s),U (s)]ds + σdLα,0(s), (A3)

driven by the standard α-stable motion [40]. The inverse-time
subordinator Sν(t) is defined

Sν(t) = inf{s : U (s) > t}, (A4)

where U (s) stands for a strictly increasing ν-stable
Lévy motion whose Laplace transform is 〈exp[−kU (s)]〉 =
exp(−skν) [40]. The inverse ν-stable subordinator links the
real time t with the operational time s.

In the general case of the time-dependent force F (x,t) =
− ∂

∂x
V (x,t), displacements due to the deterministic force

acting on a particle are approximated as −V ′[X̃(s),U (s)]ds;
see Refs. [25,26]. This assures that the force acting on a particle
is changing in the physical time t ; see Refs. [25,26]. In the less
general case of the time-independent force, the deterministic
force is approximated by −V ′[X̃(s)], and the fractional
Smoluchowski-Fokker-Planck equation can be rewritten in the
usual form, i.e., with the Riemann-Liouville fractional-time
derivative acting on the whole right-hand side of Eq. (A1).
Approximation of the stochastic processes X(t) and U (s)
requires generation of pseudorandom numbers distributed
according to the symmetric α-stable densities [X(s)] or the
totally skewed (ν < 1) ν-stable densities [U (s)], which can
be generated according to well-known formulas [41,42]. For
the detailed description of the subordination method and its
sample implementation, see Refs. [19,20,25,26].
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