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True Widom line for a square-well system
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In the present paper we propose a van der Waals–like model that allows a purely analytical study of fluid
properties including the equation of state, phase behavior, and supercritical fluctuations. We take a square-well
system as an example and calculate its liquid-gas transition line and supercritical fluctuations. Employing this
model allows us to calculate not only the thermodynamic response functions (isothermal compressibility βT ,
isobaric heat capacity CP , density fluctuations ζT , and thermal expansion coefficient αT ), but also the correlation
length in the fluid ξ . It is shown that the bunch of extrema widens rapidly upon departure from the critical
point. It seems that the Widom line defined in this way cannot be considered as a real boundary that divides
the supercritical region into gaslike and liquidlike regions. As it has been shown recently, a dynamic line on the
phase diagram in the supercritical region, namely, the Frenkel line, can be used for this purpose.
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In recent years, increasing attention has been given to the
investigation of properties of supercritical liquids. This interest
is mainly due to the fact that supercritical fluids are widely used
in industrial processes. Their behavior away from the critical
point is therefore an important practical question because it
might affect their applicability in the considered technological
process [1]. Theoretical aspects of the physics of supercritical
fluid are of particular interest as well.

The liquid-gas phase equilibrium curve in the P -T plane
ends at the critical point. At pressures and temperatures above
the critical ones (P > Pc and T > Tc), the properties of a
substance in the isotherms and isobars vary continuously and
it is commonly said that the substance is in its supercritical
fluid state when there is no difference between liquid and
gas. From a physical point of view, the P -T region near the
critical point, where anomalous behavior of the majority of
characteristics is observed (the so-called critical behavior),
is of prime interest [2]. The correlation length of thermo-
dynamic fluctuations diverges at the critical point [2]. One
can also observe a critical behavior of the thermodynamic
response functions, which are defined as second derivatives
of the corresponding thermodynamic potentials, such as the
compressibility coefficient βT , thermal expansion coefficient
αP , and heat capacity CP . These quantities pass through their
maxima during pressure or temperature variations and diverge
as the critical point is approached. Near the critical point, the
positions of the maxima of these values in the T -P plane are
close to each other. The same is true for the density fluctuations,
speed of sound, thermal conductivity, etc. Therefore, in the
supercritical region, there is a whole set of the lines of extrema
of various thermodynamic parameters. The lines of the maxima
for different response functions asymptotically approach one
another as the critical point is approached because all response
functions can be expressed in terms of the correlation length.
This asymptotic line is sometimes called the Widom line and
is often regarded as an extension of the coexistence line into
the one-phase region [3]. The Widom lines for the gas-liquid
and liquid-liquid phase transitions have been investigated
extensively [3–14].

Because of the lack of a theoretical method for constructing
the Widom line, based on the extremum of the correlation
length, the locus of extrema of the constant-pressure specific

heat CP was often used as an estimation for the Widom
line. In Refs. [9,11], using computer simulations, the locus
of extrema (ridges) for the heat capacity, thermal expansion
coefficient, compressibility, and density fluctuations for model
particle systems with the Lennard-Jones (LJ) potential in
the supercritical region have been obtained. It was found
that the ridges for different thermodynamic values virtually
merge into a single Widom line at T < 1.1Tc and P < 1.5Pc

and become almost completely smeared at T < 2.5Tc and
P < 10Pc, where Tc and Pc are the critical temperature and
pressure. The analytical expressions for the extrema of the
heat capacity, thermal expansion coefficient, compressibility,
density fluctuation, and sound velocity in the supercritical
region were obtained in Refs. [10,11] in the framework of
the van der Waals (vdW) model. It was found that the
ridges for different thermodynamic values virtually merge
into a single Widom line only at T < 1.07Tc,P < 1.25Pc and
become smeared at T < 2Tc,P < 5Pc. However, in both of
the studies, the estimation of the Widom line is unsatisfactory
because it is a priori unclear how far from the critical point
the lines of extrema of response functions follow the exact
Widom line, determined by the maximum of the correlation
length.

Recently, construction of the Widom line by using the
approach based on Riemannian geometry was proposed [13].
Previously it was supposed that there is a relation between
the Riemannian thermodynamic scalar curvature R of the
thermodynamic metric and the volume of the correlation length
ξ , i.e., |R| ∝ ξ 3 [15]. Consequently, the locus of the maximum
of |R| describes the locus of the Widom line. In Ref. [13]
this approach was applied to a vdW fluid, while in [14] it
was used to construct the Widom line for the LJ fluid. It
should be mentioned that the location of the lines of the
corresponding maxima depends on the trajectory in the space
of the thermodynamic parameters (along isotherms, isobars,
isochors, etc) [14].

It is of great interest to develop a simple vdW-like model
that can represent a liquid-gas transition and the Widom
line and can be solved analytically. In this case it would
be possible to analyze the relation between the true Widom
line, determined from the correlation function, and the lines of
extrema of response functions.
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We define the model using the approximation for the direct
correlation function [16] of the hard-core system, suggested
by Lovett [17] (see also [18–20]):

c(r) =
{

cHS(r), r � d

− φ(r)
kBT

, r > d,
(1)

where cHS(r) is the hard-sphere direct correlation function and
φ(r) is the attractive part of the potential. This should be a
good approximation when − φ(r)

kBT
is small. The approximation,

though rough, is similar in spirit to the mean spherical
model approximation, which has been found to be a good
approximation in many cases [16]. Such an approximation
formulated directly in terms of c(r) is particularly convenient
for the formulation of the Widom line, as it will be shown
below. This approximation is especially convenient for direct
calculation of the correlation length in the fluid ξ .

Although the method we use is a general tool for liquids,
we consider the so-called square-well (SW) system as more
specific. One can easily generalize the results to other systems.
The square-well system is a system of particles interacting via
the following potential:

�(r) =

⎧⎪⎨
⎪⎩

∞, r � d

−ε, d < r � σ

0, r > σ.

(2)

Although this system is not very realistic, it can serve as
a generic example of a simple liquid. Below we consider the
SW system with σ = 1.35d. In this case, Eq. (1) has the form

c(r) =

⎧⎪⎨
⎪⎩

cHS(r), r � d

ε
kBT

, d < r � σ

0, r > σ.

(3)

We use the Percus-Yevick approximation [16,21] for cHS:

cHS(r) = −λ1 − πρλ2r − π

12
ρλ1r

3, (4)

where

λ1 = (1 + 2η)2

(1 − η)4

and

λ2 = −d2(1 + 1/2η)2

(1 − η)4
,

with η the packing fraction η = π
6 ρd3. The direct correlation

function can be used to obtain the isothermal compressibility

1

kBT

(
∂P

∂ρ

)
T

= 1 − ρ

∫
dr c(r). (5)

Taking into account that the system is isotropic, using Eq. (4)
one obtains

1

kBT

(
∂P

∂ρ

)
T

= λ1 − 8ε

kBT
η�, (6)

where � = (σ 3 − d3)/d3.

FIG. 1. (Color online) Three isotherms for the SW system: below
the critical temperature Tc, at T = Tc, and above Tc.

The integration of Eq. (6) gives the equation of state (EOS)
for the SW system:

P̃ = T̃
η + η2 + η3

(1 − η)3
− 4�η2, (7)

where P̃ = P πd3

6ε
and T̃ = kBT /ε. Later in the paper we

will use only these scaled units, omitting the tilde mark.
Equation (7) has the form of the generalized van der Waals
equation [16,21], where the first part corresponds to the hard-
sphere equation of state in the Percus-Yevick approximation
and the second part is the van der Waals term.

Figure 1 shows three isotherms for the SW system: below
the critical temperature Tc, at T = Tc, and above Tc. The
critical point can be determined from the following conditions:

∂P

∂η
= T

(1 + 2η)2

(1 − η)4
− 8�η = 0 (8)

and

∂2P

∂η2
= T

8 + 20η + 8η2

(1 − η)5
− 8� = 0. (9)

Rewriting these equations in the form

T (1 + 4η + 4η2) = 8�η(1 − η)4

(10)
T (8 + 20η + 8η2) = 8�(1 − η)5,

we obtain the following equation for the critical packing
fraction:

1 − 5η − 20η2 − 12η3 = 0. (11)

From this equation one can get the critical packing fraction
ηc = 0.128 67 . . .. The other two roots of Eq. (11) are negative
and therefore unphysical. It is important to emphasize that in
the approximation (3) the critical density is fully determined
by the hard-core diameter d and does not depend on the well
width σ .

For the critical temperature one obtains

Tc = 8�ηc(1 − ηc)4

(1 + 2ηc)2
. (12)
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Using the value for the critical packing fraction obtained above,
one can write Tc = 0.375 312�. For the system with σ =
1.35d, which we study here, Tc = 0.548. The liquid-gas (LG)
transition line can be obtained by the Maxwell construction.
[Figures 4(a) and 4(b) show the LG curve in the η-T and P -T
planes.]

It is well known that close to the critical point, many
thermodynamic functions have maxima. Here we calculate
the locations of maxima of different thermodynamic functions
in the framework of the method employed. The real advantage
of this method is that it allows us to calculate the correlation
length ξ , i.e., we are able to compare all the definitions of the
Widom line in framework of the purely analytical study of the
same system.

The isothermal compressibility is defined as βT =
− 1

V
( ∂V
∂P

)T . Rewriting it in terms of η, one obtains

βT = 1

η

(
∂η

∂P

)
T

= 1

η

(1 − η)4

T (1 + 2η)2 − 8�η(1 − η)4
. (13)

Thermodynamically, the density fluctuation ζT = (〈N2〉 −
〈N〉2)/〈N〉 is given by [2]

ζT = 〈N2〉 − 〈N〉2

〈N〉 = T ηβT . (14)

From Eq. (14) one can see that the density fluctuation is defined
as ζT = T ( ∂η

∂P
)T . From the equations given above we have

ζT = T

(
∂η

∂P

)
T

= T (1 − η)4

T (1 + 2η)2 − 8�η(1 − η)4
. (15)

Figure 2(a) shows the density fluctuations along several
isotherms. The ζT maxima along isotherms are determined
from

T = 2�(1 − η)5

2 + 5η + 2η2
. (16)

Figure 2(b) shows the compressibilities βT along several
isotherms. The corresponding maxima are obtained from

T = 16�η(1 − η)5

1 + 11η + 20η2 + 4η3
. (17)

The heat capacity CP can be calculated from the formula

CP − CV = −T

(
∂P
∂T

)2
V(

∂P
∂V

)
T

. (18)

In terms of η this formula is

CP − CV = T (1 + η + η2)2

(1 − η)2[T (1 + 2η)2 − 8�η(1 − η)4]
. (19)

Some examples of the heat capacities along isotherms are
shown in Fig. 2(c). The corresponding maxima can be
calculated from

T = 4�(1 − η)4(−1 + 8η + 8η2 + 3η3)

3η(2 + 5η + 2η2)
. (20)

Taking into account that, as in the case of the vdW model [2],
CV above the critical point is equal to the ideal gas value,
Eq. (20) corresponds to the line of the supercritical maxima
of CP . However, in contrast to the vdW model, where the line

(a)

(b)

(c)

(d)

FIG. 2. (Color online) (a) Density fluctuations ζT , (b) isothermal
compressibility βT , (c) heat capacity cP , and (d) isobaric thermal
expansion coefficient αP along several isotherms.
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of CP maxima is located along the critical isochor [10], in
this model the supercritical behavior of CP [see Fig. 2(c)] is
similar to that in the case of the LJ fluid [9,14].

The isobaric thermal expansion coefficient is αP =
− 1

V
( ∂V

∂T
)P . Using the EOS (7), one obtains

αP = 1

η

(
∂η

∂T

)
P

= (1 + η + η2)(1 − η)

T (1 + 2η)2 − 8�η(1 − η)4
. (21)

Some examples of the αP behavior along isotherms are shown
in Fig. 2(d). The corresponding isothermal maxima are given
by

T = −8�(1 − η)4(−1 + 4η + 4η2 + 2η3)

4 + 8η + 3η2 + 8η3 + 4η4
. (22)

The correlation length can be calculated in the following
way [16]:

ξ 2 = R2

1 − ρC̃0(T )
, (23)

where

R2 = ρ

6

∫
c(r)r2dr (24)

and

C̃0(T ) =
∫

c(r)dr. (25)

Using the formulas for the direct correlation function [16], one
can write

1 − ρC̃0(T ) = λ1 − 8η�

T
. (26)

Substituting this equation into the one for R2, one obtains

R2 = ηd2

20

[−16 + 11η − 4η2

(1 − η)4
+ 16�′

T

]
(27)

where �′ = (σ 5 − d5)/d5. Finally, for the correlation length
one obtains

ξ̃ 2 = ξ 2

d2
= 1

20

T (−16η + 11η2 − 4η3) + 16η�′(1 − η)4

T (1 + 2η)2 − 8�η(1 − η)4
.

(28)

Examples of the correlation length along several isotherms
are given in Fig. 3. The maxima of the correlation length at
constant T can be calculated as the solutions of

4�η2(1 − η)3(−53 + 25η − 8η2)

+ 8�′(1 − η)3(−1 + 5η + 20η2 + 12η3)

+ T (8 − 11η − 48η2 + 16η3 + 8η4) = 0. (29)

Figure 4(a) shows the LG curve and the points of maxima of
all the quantities described above. One can see that the curves
of maxima of different thermodynamic functions quickly
diverge and even rather close to the critical point, one cannot
consider the location of the maxima as a single curve. They
actually represent a bunch of curves in the η-T plane. In
particular, one can see that the correlation length maxima
are located between the αP and CP maxima and even the

FIG. 3. (Color online) Correlation length ξ along several
isotherms.

qualitative behavior of the maxima of correlation length is
opposite to that of the heat capacity in the η-T plane.

In Fig. 4(b) the behaviors of maxima of the isothermal com-
pressibility βT , isobaric heat capacity CP , density fluctuations
ζT , thermal expansion coefficient αT , and correlation length ξ

at constant temperature are shown in the P -T plane. One can
see again that the bunch of ridges merges into a single line in
the very vicinity of the critical point and widens rapidly upon

(b)

(a)

FIG. 4. (Color online) Location of maxima of different thermo-
dynamic quantities close to the LG curve in the (a) η-T and (b) P -T
planes.
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departure from the critical point. If the Widom line is defined
with the help of the correlation function ξ , then the Widom
line will not follow the slope of any response function extrema,
except in the very close vicinity of the critical point.

It is interesting to note that the sequence of the ξ , βT , CP ,
ζT , and αT extrema in Fig. 4 is the same as the corresponding
sequence for the vdW and LJ fluids [9,10,14]. It seems that the
similar behavior of the line of the correlation length maxima
in our model and the corresponding lines obtained in [14] may
be considered as evidence of the universality of a particular
location of the true Widom line.

It seems that the Widom line defined in this way cannot
be used as a single boundary that separates the supercritical
region into gaslike and liquidlike regions. For this purpose, a
dynamic line on the phase diagram in the supercritical region,
namely, the Frenkel line, was proposed recently [11,22–25].
The intersection of this line corresponds to radical changes
of system properties. Liquids in this region exist in two
qualitatively different states: rigid and nonrigid liquids. The
rigid to nonrigid transition corresponds to the condition τ ≈
τ0, where τ is the liquid relaxation time and τ0 is the minimal
period of transverse quasiharmonic waves. This condition
defines a different dynamic crossover line on the phase diagram
and corresponds to the loss of shear stiffness of a liquid at all
available frequencies and, consequently, to qualitative changes
in many properties of the liquid. In contrast to the Widom line
that exists only near the critical point, the present dynamic
line is universal. It separates two liquid states at arbitrarily
high pressure and temperature and exists in systems where the
liquid-gas transition and the critical point are absent altogether.
The location of the line can be rigorously and quantitatively
established on the basis of the velocity autocorrelation function
and mean-square displacements. It was also shown that the
positive sound dispersion disappears in the vicinity of the
Frenkel line [8,22–25].

In conclusion, in the present paper we proposed a van
der Waals–like model that allows a purely analytical study
of fluid properties including the equation of state, phase
behavior, and supercritical fluctuations. We took a square-well
system as an example and calculated its liquid-gas transition
line and supercritical fluctuations. Employing this model

allowed us to calculate the correlation length in the fluid
ξ , isothermal compressibility βT , isobaric heat capacity CP ,
density fluctuations ζT , and thermal expansion coefficient
αT . It was shown that, in accordance with our recent results
obtained for Lennard-Jones and van der Waals liquids [9,10],
the bunch of extrema merges into a single line in the very
close vicinity of the critical point and widens rapidly upon
departure from the critical point. If the true Widom line is
defined with the aid of the correlation function ξ , one can see
that the Widom line does not follow the slope of any response
function extrema except those located in the very close vicinity
of the critical point. It seems that the Widom line defined in
this way cannot be used as the boundary that separates the
supercritical region into gaslike and liquidlike regions. As it
has been shown recently, a different dynamic line on the phase
diagram in the supercritical region, namely, the Frenkel line,
can be used for this purpose [11,22–25].

As we mentioned above, the location of the lines of extrema
of the different thermodynamic functions drastically depends
on the trajectory in the space of the thermodynamic parameters
along which we try to calculate the positions of the maxima.
In the present paper we considered one of the simplest cases:
We have calculated all maxima locations along the isotherms.

Here we tried to consider the simplest possible case that
allows one to obtain a completely analytic description of the
problem. The ideas developed in this work can be applied to
other systems. It seems promising to consider the solution of
the Ornstein-Zernike equation for hard spheres with a double
Yukawa closure [26,27] that can model a liquid-gas transition
and supercritical behavior of the system. Another possible
way is to apply to the problem the effective modern technique
of the solution of the nonlinear integral equations for the
radial distribution function [16], which would also allow us
to calculate the necessary properties.
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