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Many roads to synchrony: Natural time scales and their algorithms
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We consider two important time scales—the Markov and cryptic orders—that monitor how an observer
synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are
most efficiently calculated from the ε-machine, a process’s minimal unifilar model. Surprisingly, though the
Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process.
Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than
the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic
orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical
mechanical spin systems by these two complementary length scales.
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I. INTRODUCTION

Stochastic processes are frequently characterized by the
spatial and temporal length scales over which correlations
exist. In physics, the range of correlations is a structural
property giving, for example, the distance over which sig-
nificant energetic coupling exists among a system’s degrees
of freedom [1]. In time-series analysis, knowing the temporal
scale of correlations is key to successful forecasting [2]. In
biosequence analysis, the decay of correlations along DNA
base pairs determines in some measure the difficulty faced by
a replicating enzyme as it “decides” to begin transcribing a
gene [3]. In multiagent systems, one of an agent’s first goals is
to detect useful states in its environment [4]. The common
element in these is that the correlation scale determines
how quickly an observer—analyst, forecaster, enzyme, or
agent—synchronizes to a process; that is, how it comes to
know a relevant structure of the stochastic process.

We recently showed that there are a number of distinct,
though related, length scales associated with synchronizing
to stationary stochastic processes [5]. Here we show that
these length scales are topological, depending only on the
underlying graph topology of a canonical representation of the
stochastic process. This reveals deep ties between the structure
of a process’s minimal sufficient statistic and synchronization
of an observer. We also recently introduced another class of
synchronization length scales based, not on state-based mod-
els, but on the convergence of sequence statistics [6]. We briefly
compare these to the Markov and cryptic orders in Appendix D.

Specifically, we investigate measures of synchronization
and their associated lengths scales for hidden Markov models
(HMMs)—a particular class of processes with an internal (hid-
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den) Markovian dynamic that produces an observed sequence.
We focus on two such measures—the Markov order and the
cryptic order—and show through a series of incremental steps
how they can be efficiently and accurately computed from the
process’s minimal sufficient statistic, the ε-machine.

Our development proceeds as follows. After briefly out-
lining the required background in Sec. II, we introduce the
two primary measures of interest in Sec. III and demonstrate
their calculation via naı̈ve methods in Sec. IV. Reflecting
on a surprising finding in Sec. V, Sec. V B shows to how
alleviate several weaknesses in the naı̈ve approach. Then,
borrowing relevant data structures from formal language
theory, Sec. V C resolves the last of the issues. Together
these result in an efficient algorithm for exactly calculating
the Markov order when it is finite and for determining
(in finite steps) when it is infinite. Building on this new
understanding, Sec. VI goes on to show how to compute
the second time scale—the cryptic order—through similar
means. Leveraging this computational efficiency, we survey
the Markov and cryptic orders among ε-machines in Sec. VII
and conclude that infinite correlation is a dominate property in
the space of memoryful stationary processes. The implication
is that observer synchronization can be difficult, taking an
arbitrarily long time in principle. However, Ref. [7] shows
that synchronization occurs exponentially fast for the family
of processes considered here. To illustrate how these time
scales apply in practice, Sec. VIII characterizes correlations
in one-dimensional spin systems. Finally, we conclude by
discussing how these time scales compare to other measures
of interest and by suggesting applications where they and their
algorithms will prove useful.

II. BACKGROUND

We assume the reader has introductory knowledge of in-
formation theory and finite-state machines, such as that found
in the first few chapters of Ref. [8] and Ref. [9], respectively.
Our development makes particular use of ε-machines, a natural
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representation of a process that makes many properties directly
and easily calculable; for a review see Ref. [10]. A cursory
understanding of symbolic dynamics, such as found in the
first few chapters of Ref. [11], is useful for several results.

We denote subsequences in a time series as Xa:b,
where a � b, to refer to the random variable sequence
XaXa+1Xa+2 · · · Xb−1, which has length b − a. We drop an
index when it is infinite. For example, the past X−∞:0 is
denoted X:0 and the future X0:∞ is denoted X0:. We generally
use w to refer to a word—a sequence of symbols drawn from
an alphabet A. We place two words, u and v, adjacent to each
other to mean concatenation: w = uv. We define a process to
be a joint probability distribution over X: = X:0X0:.

A presentation of a given process is any state-based rep-
resentation that generates the process. A process’s ε-machine
is its unique, minimal unifilar presentation [12]. The recurrent
states of a process’s ε-machine are known as the causal states
and, at time t , are denoted St . The causal states are the minimal
sufficient statistic of X:0 about X0:. For a thorough treatment
on presentations see Ref. [5].

III. PROBLEM STATEMENT

When confronted with a process, there are a number of
natural questions to ask. How much memory does it have? Is
it like coin flips or die rolls with no memory? Does it alternate
between two values, requiring that the process remember
its phase? Does it express patterns that are arbitrarily long,
requiring an equally long memory? This type of memory is
quantified by the Markov order as follows:

R ≡ min {�| Pr(X0|X−�:0) = Pr(X0|X:0)} . (1)

To put it colloquially, how many prior observations must one
remember to predict as well as remembering the infinite past?
Markov chains have R = 1 by their very definition. In hidden
Markov models, though their internal dynamics are Markovian
(R = 1), their observed behavior can range from memoryless
(R = 0) to infinite (R = ∞). A major goal in the following
is to show how to compute a process’s R efficiently and
accurately given its ε-machine. In this vein it is prudent to
recast Eq. (1) using causal states as follows:

Pr(X0|X−R:0) = Pr(X0|X:0)

⇒ X:0 ∼ε X−R:0

⇒ H [S0|X−R:0] = 0

⇒ R = min {�|H [S0|X−�:0] = 0}
= min {�|H [S�|X0:�] = 0} , (2)

where X:0∼εX−R:0 means that the infinite and the finite past
of length R provide equivalent predictions of future behavior.
In effect, since the past R observations predict just as well as
the infinite past, the causal states are a function of length-R
pasts.

The second primary length scale we discuss is the cryptic
order kχ [13]. Its definition builds from Eq. (2) as follows:

kχ ≡ min {�|H [S�|X0:] = 0} . (3)

The difference between the two is that cryptic order is
conditioned on the infinite future, as opposed to a finite one.

This provides our interpretation of the cryptic order: kχ is
the number of causal states that cannot be retrodicted. That
is, no matter how many future symbols we know, the first kχ

internal states the process visited cannot be inferred. Though
it may not be obvious, it has been shown that kχ � R, and we
provide an alternative proof of this in the remark following
Proposition 2 in Appendix B.

There exist other length scales defined in a similar vein,
relating to the information measures discussed in Ref. [6].
At present there is not an understanding of these measures
comparable to that for the Markov and cryptic orders, and so,
algorithms to calculate them do not currently exist. However,
we do discuss several of their features in Appendix D.

IV. NAÏVE APPROACH

To illustrate a direct method of determining a process’s
Markov and cryptic orders, we appeal to yet another form of
their definitions [5],

R = min{�|H [X0:�] = E + � hμ}, (4)

kχ = min{�|H [X0:�,S�] = E + � hμ}, (5)

where E = I[X:0; X0:] is known as the excess entropy and hμ =
H [X0|X:0] is known as the entropy rate [14]. The intuition
for these is identical to those above: Once we reach Markov
(cryptic) order, we predict as accurately as possible. It is worth
noting that these definitions only hold for finitary (E < ∞),
stationary processes.

These definitions lead to a simple way of determining a
process’s Markov and cryptic orders. To compute the Markov
order, we calculate the entropy H [X0:�] of longer and longer
blocks of contiguous observations until it begins to grow
linearly. We call this function of � the block entropy curve.
The first � at which H [X0:�] matches its linear asymptote is
the Markov order. To compute the cryptic order, we perform
a similar test, but rather than calculating the entropy of blocks
of observations alone, we calculate the entropy H [X0:�,S�] of

0 1 2 3 4
0

1

2

3

4

E

Cμ

Rkχ

E + μ

H[X0: , S ]

H[X0: ]

FIG. 1. (Color online) Block entropy and block-state entropy for
the PSB process of Fig. 2: The block entropy curve reaches its
asymptotic behavior (E + � hμ) at � = 3, indicating a Markov order
R = 3. The block-state entropy curve reaches the same asymptote at
� = 2 and so the process is cryptic order kχ = 2.
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FIG. 2. (Color online) The phase-slip backtrack (PSB) process:
Edges are labeled p|s where p is the probability of an edge being
followed and s is the symbol emitted upon traversing it.

those blocks along with the causal states that are induced by
those observations. We call this function of � the block-state en-
tropy curve. The cryptic order is the length at which the block-
state entropy curve reaches its asymptotic linear behavior. This
view of the two orders is shown in Fig. 1. The data for the block
entropy and block-state entropy curves shown there come from
the phase-slip backtrack (PSB) process show in Fig. 2.

It is important to point out the weaknesses of this approach.
They are at least fourfold: One must (i) know hμ exactly,
(ii) know E exactly, (iii) be able to differentiate the block
entropies being exactly on the asymptote from less than
machine precision away from the asymptote, and (iv) be able
to “guess” when R or kχ are infinite in order to terminate
the calculation. The first two are not prohibitive. The entropy
rate hμ can be computed exactly from any unifilar model of
the process, and so its calculation can be done fairly easily
[15]. Similarly, the excess entropy E can be computed if the
joint distribution over both a unifilar model of the process and
a unifilar model of the reverse of the process, at least one of
which gauge-free, is on hand [16].

The last two weaknesses do not have such direct solutions.
How are we to know if our entropy calculation at length �

is exactly equal to E + �hμ? Or, instead, are the curve and
linear asymptote so close that finite-precision estimates cannot
differentiate them? Compounding this, what if H [X0:�] has not
equaled E + �hμ by � = 106? Can one assume that it ever will?
Perhaps the process is Markov order R = 108. These are the
two particular weaknesses that need to be overcome.

V. MARKOV ORDER IS TOPOLOGICAL

In order to overcome the weaknesses of the naı̈ve approach,
we now assume that we possess the process’s ε-machine. Its
structure encodes the information needed to proceed. We start
with the somewhat surprising observation that Markov order is
not a probabilistic property, as seemingly suggested by Eq. (1),
but rather a topological one. The first hint at this comes, though,
in an empirical study. The question then becomes just how is
this so. By way of answering it, we solve the fundamental
problems noted with the naı̈ve approach to Markov order.
Several examples serve to drive home the idea and illustrate
the calculation methods.

A B

CD

1 − p|1

p|0

1 − q|1

q|0

1|0

1|1

FIG. 3. (Color online) Phase-slip backtrack process with
parametrized transition probabilities.

A. An observation

The first step forward in solving the two main problems
encountered in the naı̈ve Markov order method is to take
a step back. Rather than considering the particular process
generated by the machine in Fig. 2, we study the family
of processes generated when its transition probabilities are
varied while the structure remains the same. This family is
shown by the parametrized machine of Fig. 3. If we compute
block and block-state entropy curves for a random ensemble
of processes from this family and plot the derivative of
those curves (subtracting out their asymptotic behavior), we
arrive at the block and block-state entropy convergence shown
in Fig. 4.

As it dramatically demonstrates, the Markov and cryptic
orders are independent of the transition probabilities in the
machine’s structure. Thus, any pattern relevant for prediction is
encoded by the ε-machine’s topology. The topological nature
of the Markov order had previously been discovered and a
loose upper bound provided [17]; our algorithm computes it
exactly.

kχ R

block length

0

ΔH[X0: ] − hμ

ΔH[X0: ,S ] − hμ

FIG. 4. (Color online) Entropy convergence curves versus block
length � for Fig. 3’s family of processes with several dozen random
values for p and q. The linear asymptotic behavior (hμ) has been
subtracted out of each curve (see the inset). The Markov order R

and cryptic order kχ are the lengths � at which the blue (darker) and
green (lighter) lines, respectively, reach zero. Thus, both orders are
independent of the generating machine’s probability parameters.
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B. Synchronizing words

On careful inspection of Eq. (2), however, it is not surprising
that the Markov order is a topological property. A conditional
entropy H [X|Y ] vanishes only if X is a deterministic function
of Y . In our case, H [SR|X0:R] = 0 means that each length-R
word determines a unique state of the model. We say that
each word of length R is synchronizing [5]. (Particularly, we
consider only prefix-free synchronizing words—those which
have no initial subword that also synchronizes.) If one observes
a process having no inkling as to which state its hidden Markov
model began in, then after observing R symbols the exact state
will be known. For a more formal treatment of synchronizing
words, see Appendix A 1.

This provides an improved method of determining the
Markov order. Enumerate all words of increasing length noting
which have synchronized and which have not. When all the
words at the current length have synchronized, then that length
is the Markov order R. This procedure has been completed for
the PSB process in Fig. 5. It can be verified that at lengths 0, 1,
and 2 it is possible to still have ambiguity as to which state this
system is in. For example, if the two symbols 10 are observed,
the system may be in either state C or state D. One more
observation is required to disambiguate which it is. Therefore,
as observed previously, the Markov order for this process
is R = 3. This method is improved by lexicographically
enumerating words of increasing length until they synchronize
to a single state. The longest such word—a prefix-free synchro-
nizing word—is the Markov order R, since by that point every
shorter word will have synchronized and, therefore, the causal
states will be determined uniquely by words of that length.

This method addresses several weaknesses of the naı̈ve
approach. Now, neither E nor hμ are needed, nor do we need
to concern ourselves with the details of comparing nearly equal
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FIG. 5. (Color online) All observable words of length 3 for the
PSB process. Each word has been annotated with the paths through
which that word induces synchrony. It is not until the observation of
three symbols that in all cases there is only a single possible state.
There are, however, some words that induce synchrony more quickly.

numerical values. However, the method relies on enumerating
prefix-free synchronizing words, and it is quite possible for a
process to have an infinite number of prefix-free synchronizing
words. In these situations, it is not feasible to enumerate them
all, hoping to identify the longest. To address this problem, we
turn to formal language theory [9].

C. State subset construction

The remaining problem is to find the longest prefix-free
synchronizing word without having to enumerate them all.
This can be accomplished with a standard algorithm from the
theory of finite automata. We construct an object known as the
power automaton (PA), so named since its states are elements
of the power set of a given automaton’s states.

Construction of the power automaton begins with a single
state: the set of all states from the ε-machine. This is the
PA’s start state. Then, recursively, for each state in the PA
and each symbol, consider all ε-machine states that can be
reached by any ε-machine state within the current PA state on
the currently considered symbol. A new PA state consisting
of the set of ε-machine successor states is added, along with
a directed edge from the current to the new PA state, labeled
with the current symbol. Once the successors to each PA state
have been determined, there will be a subgraph of the PA that
is isomorphic to the recurrent ε-machine. This subgraph is the
PA’s recurrent component. When the ε-machine generates an
ergodic process, this subgraph is the only strongly connected
component with no outgoing edges. The remainder of the PA
consists of transient states.

Synchronizing words are associated with particular PA
paths. Each path begins in the start state and traverses edges in
PA’s transient portion. Eventually, the path continues to a PA
recurrent state. Prefix-free synchronizing words have paths
that end as soon as they reach a recurrent PA state. To find
the longest prefix-free synchronizing word, we weight each
edge in the PA’s transient part with the value −1 and each
edge in its recurrent part with 0. With these modifications, the
Bellman-Ford algorithm can be employed to discover the path
of least weight from the start state to any recurrent state. Due
to the chosen weighting, the path of least weight is the longest.

The alternative Floyd-Warshall algorithm can also be used;
see Ref. [18] for details regarding both. We choose the
Bellman-Ford algorithm for two reasons. First, it works on
graphs with negative weight and, second, it detects negative-
weight cycles. A negative weight cycle here implies that
the longest path is arbitrary (infinite) in length. For a more
pedagogical statement of the algorithm, see Appendices C 1,
C 2, and C 3.

This specifies a complete method for computing a process’s
Markov order efficiently and accurately from its ε-machine.
First, construct the power automaton. Then weight the edges
according to their status as transient or recurrent. Last, find
the path of least weight from the start to a recurrent state. It
runs in O(|A|22N ) time, where A is the number of observable
symbols and N is the number of recurrent states. This quantity
is exponential but finite. And, it depends only on integer
calculations. In this way, it circumvents all the computational
difficulties encountered in the naı̈ve approach. Thus, if one
can infer an accurate model from observations of a system, the
problem of computing that system’s Markov order is solved.
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This method also provides a solution to weakness (iv) of
the naı̈ve algorithm (Sec. IV). When finite, the Markov order
depends on the longest path through the transient states of the
power automaton and, for an n state recurrent ε-machine, there
are at most f (n) := 2n − n − 1 transient states (subtracting
n recurrent states and also the empty set). Since loops in
the transient structure imply infinite Markov order, it follows
that the longest possible path is one that visits each of the
transient states. Thus, if the Markov order has not been
found by L = f (n), then it is safe to conclude that the
Markov order is infinite. Since, the Markov order bounds the
cryptic order, the same bound works for the cryptic order. As
previously mentioned, Ref. [17] provides a tighter bound that
is polynomial in the number of states: f (n) = n(n + 1)/2. It
is an open problem to find a tight upper bound for the Markov
and cryptic orders in terms of both the number of states and
alphabet symbols.

D. Examples

A variety of qualitatively different behaviors can be
exhibited by the Markov order algorithm. Here, we illustrate
the typical cases. Applying it to the PSB process, the
algorithm produces the fairly simple transient structure
consisting of three nodes—PA states ABCD, AB, and
CD—seen in Fig. 6. There are two longest paths starting
from PA start state ABCD and ending in a recurrent node:

ABCD
1→ AB

0→ CD
1→ A, which is traversed with the word

101, and ABCD
1→ AB

0→ CD
0→ D, traversed with the word

100. This means that the longest prefix-free synchronizing
words are 101 and 100, both of length 3, and therefore the
PSB process’s Markov order is R = 3.

The second process we analyze is shown in Fig. 7. Its PA
has a slightly more complicated transient structure than that
of the PSB process. Of particular note is the self-loop on PA

A B

CD

ABCD

ABCD

0
1

0

1

0

1

1

0

1

0

0

1

FIG. 6. (Color online) PSB process power automaton. The
longest path beginning from state ABCD, traversing transient (red)
edges, and ending in a recurrent (black) state is of length 3:

ABCD
1→ AB

0→ CD
1→ A(or

0→ D).

ABC

AC AB

A B C

01

01

0

1

0

0

1

0

1

FIG. 7. (Color online) Typical complications in the PA for a

finite-state non-Markovian process. The signature is the loop AB
0→

AB in the transient structure. This means there is the possibility of
an arbitrarily long series of observations that never synchronize and
that, in turn, cause Markov order to diverge. Generically, loops in the
transient structure can consist of more than one PA state.

state AB. This loop exists because ε-machine states A and B
transition to each other on producing a 0. As a consequence, we
cannot determine the state until observing a 1. The existence
of nonsynchronizing words of arbitrary length implies that this
process is non-Markovian; that is, R = ∞. The Bellman-Ford
algorithm terminates as soon as it detects the corresponding
negative-weight cycle in the transients.

Our third example is the Nemo process, shown in Fig. 8.
Its transient structure is particularly simple: a single state
represents all the recurrent states. Since the recurrent states
simply permute on observing a 0, the word 0000 . . . never
reveals the current state. This is indicated by the self-loop
on PA state ABC. This once again means that the process is
non-Markovian and has R = ∞. This condition is detected by
the algorithm as well.

ABC

A

B C

0

1
1

0

0

0

1

FIG. 8. (Color online) Like Fig. 7’s process, the Nemo process
here is non-Markovian. The Nemo process makes this perhaps
clearer, however, since the recurrent states permute into each other on
observing a 0. The transient structure captures this explicitly: ABC
maps back to itself on a 0.
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VI. CRYPTIC ORDER

We now turn to calculating a process’s cryptic order
kχ . Recall that Eq. (3) involves a condition on the infinite
future. With probability 1, each infinite future synchronizes for
exactly synchronizing ε-machines [7]. We can then consider
the problem of calculating kχ to be that of determining as much
of a state history as possible, given a prefix-free synchronizing
word and the state to which it synchronized. The maximum
number of states we cannot retrodict is then the cryptic order.

A. Calculation

Figure 9 depicts how the cryptic order is determined. Only
the paths in Fig. 5 that survive all the way to synchrony (at the
Markov order) are reproduced. From these, we determine how
many symbols into each word we must parse (from the left)
before the ε-machine is in one state only. The maximum such
length is the cryptic order kχ .

As with the Markov order, we need only consider prefix-free
synchronizing words. However, we are again faced with the
prospect that there may be an infinite number of prefix-free
synchronizing words. Fortunately, a better method is available,
and it too begins by constructing the power automaton. Now we
examine the “veracity” of each transient edge. Take as an ex-

ample the edge ABC
1→ A in Fig. 8. It states that on producing

a 1 from the superposition of states A, B, and C, the system can
only transition to state A. For the cryptic order, we now condi-
tion on the fact that we are in state A and ask what states could
have transitioned to A on a 1. Upon inspection, its clear that
the system could have only transitioned from state A or state
C on a 1. The core of the cryptic order algorithm is to inspect
each transient edge in the power automaton in this manner,
updating the PA’s structure to “honestly” reflect the process’s
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FIG. 9. (Color online) Key paths for determining cryptic order
kχ : We start with the paths in Fig. 5, except we remove paths that do
not survive to the end of the sync word. The surviving paths give us
the cryptic order: They each identify a single state by length � = 2
and so kχ = 2.

dynamics. In this instance, we create a state AC that transitions
to state A on a 1 instead of transitioning from ABC on a 1.

After creating such a state, the automaton must be made
consistent. To do this, subset construction is applied to include
any newly added states. Generally, this creates new edges as
well. And these, too, must be analyzed by use of the cryptic
order algorithm. Once every edge has been inspected, some
transient structure will remain. Once again, the longest path is
the key, and the same edge-weighting method (Bellman-Ford)
is employed to find it and so give the cryptic order. For a more
instructional presentation of the algorithm, see Appendix C 4.

B. Examples

The ways in which the cryptic order algorithm modifies the
power automaton are diverse. Each example from Sec. V D
above illustrates a different behavior.

First, consider its behavior on the PSB process (Fig. 6), the

final result of which is shown in Fig. 10. The edge CD
0→ D

in Fig. 6 can be removed since it does not represent a path that
is true. To see why, note that to get to D on a 0, one must come
from either state A or state C. However, since we are assuming
CD, the process must be in either state C or D. The intersection
of those two sets is state C and it is, therefore, the only possible

state the system could have actually been in. Thus, CD
0→ D is

a misrepresentation from the cryptic order perspective and, in

fact, it corresponds to the edge C
0→ D, which already exists

in the PA. So, the edge CD
0→ D is removed.

This is not all, however. We must maintain the path’s
provenance. The edges that came into CD must be redirected

to C (add edges ABCD
0→ C and AB

0→ C), since those are

A B

CD

ABAC

ABD

1

1

0

1

0

1

0

0

1

FIG. 10. (Color online) Cryptic order algorithm applied to the
PSB process: The power automaton in Fig. 6 suggests that the word
11 could originate in any of A, B, C, or D. Careful inspection of the
recurrent structure, though, shows that C cannot be the originator of
11, whereas the other three states can. The cryptic order algorithm
accounts for such constraints. The longest path from a transient state

to a recurrent state is ABD
1→ AB

1→ B and, therefore, kχ = 2.
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A B C

AC

BC

1

0

0

0

1

0

1

FIG. 11. (Color online) Cryptic order analysis of Fig. 7’s pro-

cess: The transient structure branch shown there—ABC
0→ (AB

0→
AB)∗

1→ C, with the arbitrarily long synchronizing word 00∗1—can
be perfectly retrodicted. Moreover, only a fragment of the left branch
of the transient structure remains. This fragment has a length of 2 and
so kχ = 2.

the edges that would have been traversed immediately prior

to CD
0→ D. Note that these edges are later removed in this

recursive algorithm and so do not appear in Fig. 10. In the end,
we see that the longest path from a start state to the recurrent
states is 2 and, therefore, kχ = 2, one less than the Markov
order R = 3.

Next consider the example from Fig. 7. The final output of
the cryptic order algorithm is shown in Fig. 11. This process’s
PA consists of two major branches: one with a maximum
depth of 2 and the other containing a loop. The cryptic order
algorithm discovers that the branch with a loop is completely

retrodictable. AB
1→ C is actually B

1→ C, and this creates

edges AB
0→ B and ABC

0→ B, again to maintain provenance.
The first of these newly added edges is also retrodictable:

AB
0→ B can only be A

0→ B. The second, ABC
0→ B, is in

fact AC
0→ B. Along this branch of the transient structure,

we are thus only unable to retrodict the word 01, of which

the 1 can be retrodicted, simply leaving us with AC
0→ B.

The previous branch is more easily analyzed, leaving us with

BC
1→ AC

0→ B, the latter part of which was already in the
PA from analyzing the other branch. This leaves a longest path
of length 2, making kχ = 2. Thus, we see that this process is
an example with infinite Markov order but finite cryptic order.

The last example to consider is the Nemo process. Recall
that it is infinite Markov, as observed in Fig. 8. Applying
the cryptic order algorithm results in the structure shown in
Fig. 12. In this case, the transient structure grows under the

algorithm. The edge ABC
1→ A, connecting the transient to

the recurrent structure in the power automaton, is modified
by the algorithm since B cannot transition to A on a 1. The
state AC is created and connected to A. Completing the power
automaton structure from this state results in states AB and
BC being added, forming the cycle AC

0→ AB
0→ BC

0→ AC.

AC

AB BC

A

B C

0

1

0

0

1

0

0

0

1

FIG. 12. (Color online) Cryptic order analysis of the Nemo pro-

cess: Its power automaton (Fig. 8) contains the edge ABC
1→ A.

However, on closer inspection only states A and C can transition to A
on a 1. This creates the AC state. When emitting a 0, AC becomes AB
and on a second 0 that becomes BC. A third 0 completes the cycle.
The edges indicate legitimate transitions as well: States that actually
lead to AC on a 0 are BC and those that lead to BC are AB, and so
on. This leads to a cycle in the cryptic order algorithm’s calculated
transient structure. Therefore, one concludes that kχ = ∞.

The algorithm terminates when the cycle is detected in this
way. The cycle is valid as far as the cryptic order is concerned:
Each of its states can be transitioned to from the recurrent state
associated with the prior state in the cycle. The cycle results
in an arbitrarily long path and, therefore, kχ = ∞.

VII. SURVEY

We illustrate the above results and algorithms, and their
usefulness, by empirically answering several simple, but
compelling, questions about the space of finitary processes. In
particular, how typical are infinite Markov order and infinite
cryptic order?

Restricting ourselves to topological ε-machines—those
ε-machines with a distinct set of allowed transitions
and equiprobable transition probabilities—we enumerate all
binary-alphabet processes with a given number of states to
which one can exactly synchronize. Reference [19] details
their definition, the enumeration algorithm, and how it gives
a view of the space of structured stochastic processes. For
each of these ε-machines, we compute its Markov and cryptic
orders. The result for all of the 1 132 613 six-state ε-machines
is shown in Fig. 13.

The number of ε-machines that share a (R, kχ ) pair is
encoded by the size of the circle at that (R, kχ ). The vast
majority of processes—in fact, 98%—are non-Markovian at
this state-size (six states). Furthermore, most (85%) of those
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FIG. 13. (Color online) Distribution of Markov order R and
cryptic order kχ for all 1 132 613 six-state, binary-alphabet, exactly
synchronizing ε-machines. Marker size is proportional to the number
of ε-machines within this class at the same (R, kχ ).

non-Markovian processes are also ∞ cryptic. However, this
does not imply that synchronization is difficult; quite the
contrary: Synchronization occurs exponentially quickly [7].
What this does mean is that with growing state size it becomes
predominately likely that a given process has particular
sequences which will not induce state synchronization.

Also of interest are the “forbidden” (R, kχ ) pairs within
the space of six-state topological ε-machines. For example,
ε-machines with kχ = 4,5,8,10,11 do not occur with R = 13.
Also, processes with infinite Markov order and finite cryptic
order appear to have a maximum cryptic order of kχ = 11,
despite the fact that larger finite cryptic orders exist for
finite Markov-order processes. These forbidden pairs provide
insight into the space of minimal unifilar information sources.
The space of processes generated by all six-state information
sources, regardless of minimality or unifilarity, is in some
sense “smooth.” The restrictions of unifilarity and minimality
fracture this space, making it harder to reason about. These
forbidden pairs provide us with a probe into this space’s
organization.

VIII. SPIN CHAINS AND BEYOND

Although our primary goal was to precisely define length
scales, several being new, and to present efficient calculation
methods for them, it will be helpful to briefly draw out the
physical meaning of Markov and cryptic orders by analyzing
their role in spin chains and related systems. (A sequel will
delve into this topic in greater depth.)

To start, recall that Ref. [20] showed that the Markov order
R of an ε-machine representing a (one-dimensional) Ising spin
system is upper bounded by the interaction range specified
in a system’s Hamiltonian. Consider first the ferromagnetic,
one-dimensional, nearest-neighbor Ising model at different
temperatures T . The ε-machines for this family of systems are
shown in Fig. 14. As just noted, since the system has nearest-
neighbor interactions, the Markov order should be R = 1. This
is straightforward to see from the first ε-machine, which is for

0 < T < ∞

↑ ↓p|↑
1 − p|↓

1 − p|↑
p|↓

T = 0

↑ ↓1|↑ 1|↓

T = ∞

↑↓1
2 |↑

1
2 |↓

FIG. 14. (Color online) ε-Machines for a one-dimensional fer-
romagnetic Ising model as a function of temperature T , where
p = 1

2 (1 + tanh β), the external field B = 0, and J = kB = 1.

a finite temperature T . Without an observation there are two
possible causal states the system could be in: ↑ or ↓. Once
a single spin has been observed, however, the causal state is
known exactly. This changes markedly at the temperature lim-
its, though. At T = 0, the system is in a ground configuration of
either all up spins or all down spins. Without an external field to
break this symmetry an observation must be made to determine
in which of these states it is and so the Markov order is still
R = 1. In the presence of an external field, however, there is
only a single ground state—that aligned with the field—and
no observation is required to know in which state the system
is. Thus, R = 0. At T = ∞ the system collapses to a single
causal state where the next spin is entirely determined by
thermal fluctuations and so the Markov order is R = 0.

As a second case, consider the antiferromagnetic, one-
dimensional, nearest-neighbor Ising model, which is similar
enough that it makes for a useful contrast; see Fig. 15. The
finite-temperature and high-temperature limits are identical to
those in the ferromagnetic case, but the low-temperature case
differs. At T = 0 the spin system forms a perfect crystal of
alternating spins and so one must make a single observation
to know in which spatial-phase the crystal is. Then the entire
structure is known exactly. Thus, the Markov order is R = 1.
This situation is not a broken symmetry as in ferromagnetic
low-temperature case. Even with a nonzero external field, an
observation is still required to know in which causal state the
system is.

Overall, now that we can directly determine intrinsic
lengths in configurations, we see that the coupling range
specified by a Hamiltonian need not be an intrinsic property
of realized configurations. The simple extremes above make
this easy to understand. At infinite temperature each system
configuration is equally likely: the Hamiltonian range has
no effect on which configurations are realized. At zero
temperature only the ground states are expressed and these

042135-8



MANY ROADS TO SYNCHRONY: NATURAL TIME SCALES . . . PHYSICAL REVIEW E 89, 042135 (2014)

0 < T < ∞

↑ ↓1 − p|↑
p|↓

p|↑
1 − p|↓

T = 0

↑ ↓
1|↓

1|↑

T = ∞

↑↓1
2 |↑

1
2 |↓

FIG. 15. (Color online) ε-Machines for a one-dimensional an-
tiferromagnetic Ising model as a function of temperature T . Here
p = 1

2 (1 + tanh β), the external field B = 0, and J = kB = 1.

need not explore all the possible configurations allowed by the
Hamiltonian. Both of these situations mask the coupling range
specified by the Hamiltonian. Due to this, the Markov order R

captures the effective coupling range and need not match that
specified by the Hamiltonian.

In Ising spin chains, the cryptic order equals the Markov
order. (This is due most directly to the fact that spin
blocks are in one-to-one correspondence with the ε-machine
causal states. In addition, one must add the caveat that
the ε-machine be ergodic.) This equality need not be the
case, however, even in simple physical systems. We note
how restrictive Hamiltonian-specified dynamics are via two
(again, 1D) examples of infinite Markov order, but finite
cryptic order, that arise from finite specification. In the first
class of systems, even though one starts with strictly local
interactions—configurations with finite Markov order speci-
fied by a Hamiltonian with finite coupling range—a 1D system
can anneal to one with effectively infinite-range interactions,
as shown in Ref. [21]. (See the ε-machine in Fig. 2 there.)
In this particular case, the annealed state is non-Markovian,
exhibiting infinite-range structure and Markov order R = ∞.
Notably, the annealed configurations for this example have
finite cryptic order kχ = 4. For the second class of systems we
just briefly note that these unusual length-scale properties are
not restricted to classical systems. They also arise in quantum
systems. See the analyses in Refs. [22] and [23].

Finally, since the results here emphasize properties
intrinsic to realized configurations, let us turn the question
around. Given a single typical instance from the ensemble of
allowed configurations, how much can be inferred about the
Hamiltonian? Though the topological techniques described
above do not provide coupling amplitudes and the like, they do
give the maximum range of effective interactions. What does
one do, though, without a Hamiltonian or some other system
specification? It turns out that a variety of methods exist for

inferring hidden Markov models from a sample. And, since
any hidden Markov model can be converted to an ε-machine
[16], from there the Markov and cryptic orders can be directly
computed. And so the above methods can be applied to a wide
range of theoretically modeled or experimentally realized
physical systems.

IX. CONCLUSION

We began by defining two different measures of memory
in complex systems. The first, the Markov order R, is the
length of time one must observe a system in order to make
accurate predictions of its behavior. The second, the cryptic
order kχ , quantifies the ability to retrodict a system’s internal
dynamics. We showed that despite their statistical nature,
these time scales are topological properties—properties of the
synchronizing words of a process’s ε-machine.

We demonstrated how to compute these length scales for
hidden Markov models, most of which can be motivated in
terms of the synchronization properties of the underlying
process. Interestingly, we found that one of the most fun-
damental and important properties—the Markov order R—is
computable using only the process’s ε-machine (Proposition
2). When calculated with non-ε-machines, the algorithms
yield related quantities, such as the synchronization order. For
more details, see the appendices. In addition, the ε-machine
provides an exact method for computing the cryptic order.
From these results, we constructed very efficient algorithms
for their calculation.

In the empirical setting, we now see that one should first
infer the ε-machine and then, from it, calculate the Markov
and cryptic orders. There are a number of methods of inferring
an ε-machine from data (e.g., Ref. [24] and citations therein).
In the theoretical setting, given some formal description of
a process—such as a Hamiltonian or general hidden Markov
model—one can analytically calculate a process’s ε-machine.
In any case, as soon as one has the ε-machine the preceding
gives exact results.

To appreciate what is typical about these length scales, we
surveyed the range of Markov and cryptic orders in the space
of all structured binary processes represented by ε-machines
with six states. The main result was rather surprising: Infinite
Markov and cryptic orders dominate. Thus, the topological
analysis leads one to conclude that synchronization, even to
finite-state stochastic processes, can be generically difficult.
However, from a probabilistic view it is exponentially fast
[7,25]. A way to resolve this seeming contradiction is to con-
jecture that the topological properties are driven by sequences
whose relative proportion vanishes with increasing length.
The survey also revealed a variety of interesting ancillary
properties that pose a number of open questions, presumably
combinatoric and group theoretic in nature.

We closed analyzing the role these scales play in classical
(and briefly quantum) spin systems, drawing out the physical
interpretations. We emphasized, in particular, the difference
between the interaction range specified by a Hamiltonian and
the effective range of correlation in realized spin configura-
tions. This led us to propose calculating the orders to put
constraints on spin systems whose Hamiltonians are unknown.
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Finally, appendices prove the key claims above, discuss
other related measures of synchronization and length scales,
and provide step-by-step details for each algorithm.
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APPENDIX A: DEFINITIONS

Here we provide additional results on length scales and
synchronization and prove a number of claims made in the
main text. First, we lay out the definitions needed and then
give several key results that follow. Building on these, we
delineate the central algorithms and conclude with a discussion
of companion length scales.

1. Minimal synchronizing words

For the synchronization problem, we consider an observer
who begins with a correct model (a presentation) of a process.
The observer, however, has no knowledge of the process’s
internal state. The challenge is to analyze how an observer’s
knowledge of the internal state changes as more and more
measurements are observed.

At first glance, one might say that the observer’s knowledge
should increase with additional measurements, corresponding
to a monotonically decreasing state uncertainty, but this is
generically not true. In fact, it is possible for the observer’s
knowledge (measured in bits) to oscillate with each new mea-
surement. The crux of the issue is that additional measurements
are being used to inquire about the current state rather than the
state at some fixed moment in time.

It is helpful to identify the set of words that take the
observer from the condition of total ignorance to exactly
knowing a process’s state. First, we introduce what we mean by
synchronization in terms of lack of state uncertainty. Second,
we define the set of minimal synchronizing words.

Definition 1. A word w of length L is synchronizing if the
Shannon entropy over the internal state, conditioned on w, is
zero,

Sync(w) ⇔ H [S�|X0:� = w] = 0, (A1)

where Sync(w) is a Boolean function.
Definition 2. A presentation’s set of minimal synchronizing

words is the set of synchronizing words that have no synchro-
nizing prefix,

Lsync ≡ {w|Sync(w) and ¬Sync(u) for all u:w =uv}.
Remark. Lsync is a prefix-free, regular language. If each

word is associated with its probability of being observed, we
obtain a prefix-free code encoding each path to synchrony—a

word in Lsync—with the associated probability of synchroniz-
ing via that path. These codes are generally nonoptimal in the
familiar information-theoretic sense.

2. Synchronization order

According to Sec. A 1, one is synchronized to a process’s
presentation after seeing word w if there is complete certainty
in the state. We now expand this view slightly to ask
about synchronization over all words of a particular length.
Equivalently, we examine synchronization to an ensemble of
process realizations.

Definition 3. The synchronization order kS [5] is the mini-
mum length for which every allowed word is a synchronizing
word:

kS ≡ min{�|H [S�|X0:�] = 0}. (A2)

As for the Markov and cryptic orders, kS is considered ∞ when
the condition does not hold for any finite �.

APPENDIX B: RESULTS

We now provide several results related to these length scales
that shed light on their nature, introducing connections and
simplifications that make their computation tractable.

Proposition 1. The synchronization order is as follows:

kS = max{R,kχ }. (B1)

Proof. First, note the following:

H [S�|X0:�] = H [X0:�,S�] − H [X0:�]. (B2)

Since the block-state entropy upper bounds the block entropy,
the conditional entropy above can only reach its asymp-
totic value once both terms have individually reached their
asymptotic behavior. The latter are controlled by kχ and R,
respectively. �

This result reduces the apparent diversity of length scales,
eventually allowing one to calculate the Markov order via the
synchronization order, which itself is directly computable.

Proposition 2. For ε-machines,

R = kS. (B3)

Proof. Applying the causal equivalence relation ∼ε to
Definition 1 we find

Pr(X0:|X:0) = Pr(X0:|X−�:0) ⇒ X:0 ∼ε X−R:0. (B4)

This further implies that the causal states S are completely
determined by X−R:0,

H [S0|X−R:0] = 0. (B5)

This statement is equivalent to the Markov criterion. �
Remark. This provides an alternate proof that the cryptic

order kχ is bounded above by the Markov order R in an ε-
machine via a simple shift in indices as follows:

H [S0|X−R:0] = 0, (B6)

⇒ H [SR|X0:R] = 0, (B7)

⇒ H [SR|X0:] = 0. (B8)
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This proposition gives indirect access to the Markov
order via a particular presentation—the ε-machine. Since the
Markov order is not defined as a property of a presentation it
would generally be unobtainable, but due to unique properties
of the ε-machine, it can be accessed through the synchroniza-
tion order.

There is a subclass of ε-machines to which one synchro-
nizes in finite time; these are the exact ε-machines of Ref. [7].

Proposition 3. Given an exact ε-machine with finite
Markov order R, the subshift of finite type that underlies it
has a “step” [11] equal to R.

Corollary 1. Given an exactly synchronizing ε-machine,
the underlying sofic system is a subshift of finite type if and
only if R is finite.

Remark. A process with infinite Markov order can have a
presentation whose underlying sofic system is a subshift of
finite type.

These results draw out a connection with length scales of
sofic systems from symbolic dynamics [11]. Subshifts of finite
type have a probability-agnostic length scale analog of the
Markov order known as the “step.” In the case of ε-machine
presentations, they are in fact equal.

We will now prove that two of the lengths defined—the
cryptic and synchronization orders—are topological. That is,
they are properties of the presentation’s graph topology and
are independent of transition probabilities, so long as changes
to the probabilities do not remove transitions and do not cause
states to merge. Additionally, due to Proposition 2, the Markov
order is topological. All three are topological since they depend
only on the length at which a conditional entropy vanishes, not
on how it vanishes.

Theorem 1. Synchronization order kS is a topological prop-
erty of a presentation.

Proof. Beginning from Definition 3, there is length � = kS
at which

H [S�|X0:�] =
∑

w∈A�

Pr (w)H [S�|X0:� = w] = 0.

Thus, H [S�|X0:� = w] = 0 for all w ∈ A�, the set of length-�
words with positive probability. Since every word of length � is
synchronizing, � is certainly greater than the synchronization
order. As synchronizing words are synchronizing regardless
of their probability of occurring, the synchronization order kS
is topological. �

Corollary 2. Markov order R is a topological property of
an ε-machine.

Proof. Since kS is a topological property by Theorem 1 and
since an ε-machine’s R = kS by Proposition 2, the Markov
order is topological. �

Theorem 2. Cryptic order kχ is a topological property of a
presentation.

Proof. Beginning from Definition 3, there is a length � =
kχ at which

0 = H [S�|X0:�]
(1)=

∑

x0:εA∞
Pr(x0:)H [S�|X0: = x0:]

(2)=
∑

wεLsync

Pr(w,σw)H [S�|X0:|w| = w,S|w| = σw].

Here step (1) simply expands the conditional entropy. Step (2)
is true provided that the sum is over minimal synchronizing
words and σw is the state to which one synchronizes via w.
This final sum is zero only if the sum vanishes term-by-term.
Thus, given a word that synchronizes and the state to which it
synchronizes, each term provides a cryptic-order candidate—
the number of states that could not be retrodicted from that state
and word. Finally, the longest such cryptic order candidate is
the cryptic order for the presentation. �

Restated, the cryptic order kχ is topological as it depends
only on the minimal synchronizing words, which are topolog-
ical by definition.

APPENDIX C: ALGORITHMS

We are now ready to turn to computing the various
synchronization length scales given a presentation. While
all of the algorithms to follow have compute times that are
exponential in the number of machine states, we find them to
be very efficient in practice. This is particularly the case when
compared to naı̈ve algorithms to compute these properties.
For example, computing synchronization, Markov, or cryptic
orders by testing successively longer blocks of symbols is
exponential in the length of the longest block tested. Worse, in
the case of non-Markovian and ∞-cryptic processes the naı̈ve
algorithm will not halt. In addition, the naı̈ve implementation
of Theorem 2 given in the proof to compute the cryptic order
has a compute time of O(22N

), whereas the one presented
below is a simple exponential of N .

Unsurprisingly, given the results provided in Appendix B,
we begin with the minimal synchronizing words as they are the
underpinnings of the synchronization and cryptic orders. The
algorithms make use of standard procedures. Most textbooks
on algorithms provide the necessary background; see, for
example, Ref. [18].

1. Minimal Synchronizing words

We construct a deterministic finite automaton (DFA) that
recognizes Lsync of a given presentation M = (Q,E), where
Q are the states and E are the edges. This is done as follows.

Algorithm 1.
(1) Begin with the recurrent presentation M.
(2) ConstructM’s power automaton 2M, producing a DFA

T = 2M.
(3) Set the node in T that corresponds to all M’s states as

T ’s start state.
(4) Remove all edges between singleton states ofT . (These

are the edges from M.)
(5) Set all singleton states of T as accepting states.
Now enumerate Lsync via an ordered breadth-first traversal

of T and output each accepted word.

2. Synchronization order

Thanks to Eq. (1) we see that kS is the shortest length � that
encompasses all of Lsync. This is, trivially, the longest word in
Lsync. With this, computing the synchronization order reduces
to the following.

Algorithm 2.
(1) If Lsync is infinite, return ∞.
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(2) Determine the longest word w in Lsync, then kS = |w|.
The test in the first step can be done simply by running a

loop-detection algorithm on DFA T . If there is a loop, then
Lsync is infinite. The second step is quickly performed by using
the Bellman-Ford or Floyd-Warshall algorithms.

3. Markov order

Due to Theorem 2, a process’s Markov order can be
computed by finding the synchronization order of the process’s
ε-machine. If one does not have the ε-machine for a process,
but rather some other unifilar presentation, it is still possible
in some cases to obtain the Markov order through the
synchronization order. That is, the algorithms for kS and kχ

provide probes into the presentation’s length scales. It can be
the case that R is accessible to those probes, if kχ < kS, but it
is only guaranteed to be accessible in the case of ε-machines.
Note that there exist techniques for constructing the ε-machine
from any presentation [16].

4. Cryptic order

In the following algorithm T refers to the power automaton
of the machine M. T ’s states—p, q, and r—are elements of
the power set of the states of M. By the predecessors of a
state q along edge p

x→ q we refer to the set p′ = {m|(m x→
n) ∈ M and m ∈ p and n ∈ q}. These are the states m ∈ p that
actually transition to a state n ∈ q on symbol x. By subset
construction below we refer to the standard NFA-to-DFA
conversion algorithm [9].

Algorithm 3.
(1) Construct the power automaton T = 2M via subset

construction.
(2) Push each edge p

x→ q in T to a queue.
(3) While queue is not empty:

(a) Pop edge p
x→ q in the queue.

(b) If edge is in processed list:
(i) Restart loop, popping the next edge from the

queue.
(c) Find the predecessors p′ of q along p

x→ q.
(d) If p′ = p:

(i) Remove edge p
x→ q from T .

(e) If |p′| > 1:
(i) Perform subset construction on p′ (implicitly, this

adds the edge p′ x→ q to T ).
(ii) Push each edge created in the prior step into the

queue.

(iii) For each r
y→ p in T :

(A) Add edge r
y→ p′ to T .

(B) Add edge r
y→ p′ to the queue.

(iv) Add p
x→ q and p′ x→ q to the processed list.

The result is an automaton T ′. The longest path in
T ′ through transient states ending in a recurrent state is
the cryptic order. Skipping previously processed edges is
important since for some topologies the algorithm can enter a
cycle where it will remove and then later add the same edge
ad infinitum.

There are three simple additions to this algorithm that result
in a sizable decrease in running time. The first is to store the
edges to be processed in a priority queue, such that an edge

p
x→ q is popped before an edge r

y→ s if |q| < |s|, or if
|q| = |s|, then pop if |p| < |r|. The second optimization is to
trim dangling states after each pass through the outer loop. A
dangling state is a state p such that there is no path from p to
the recurrent states. The last method for improving speed is to
not add edges between recurrent states to the queue in step (2).

This algorithm for computing the cryptic order only holds
for unifilar presentations.

APPENDIX D: OTHER NATURAL TIME SCALES

Paralleling the interpretation of the Markov and cryptic
orders as the block lengths at which an associated information
measure reaches its asymptotic behavior, this section briefly
defines several new time scales associated with the multivariate
information measures recently introduced in Ref. [6] to dissect
the information in a single measurement.

The first order kI is the length at which the multivariate mu-
tual information I[X0; X1; . . . ; XN−1] reaches its asymptotic
behavior. Unfortunately, no bounds are known for this order.

The next collection of time scales—denoted kR, kB, kQ, and
kW—are the lengths at which the ephemeral information rμ,
bound information bμ, enigmatic information qμ, and local
exogenous information each reach their respective asymptotes
[6]. Furthermore, these four orders are equal, due to the linear
interdependence of their respective measures. It turns out that
there are lower and upper bounds for these with respect to
the Markov order, which can be easily explained. Consider
Fig. 8 in Ref. [6]: By definition H [X:0] can be replaced
with H [X−R:0] and, if the process is stationary, H [X1:] with
H [X1:R+1]. It is therefore reasonable that one requires at least
R symbols and most 2R symbols to accurately dissect H [X0].
In fact, numerical surveys that we have carried out agree with
these limits.

Finally, a sequel analyzes the elusive information σμ,
showing that the Markov order R equals the length kσ at which
the present measurement block X0:� renders the past and future
conditionally independent.

While we have defined these orders and provided bounds, it
remains to be seen if there exist efficient methods to calculate
them, let alone topological interpretations for each.
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