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There is presently considerable interest in accurately simulating the evolution of open systems for which
Markovian master equations fail. Examples are systems that are time dependent and/or strongly damped. A
number of elegant methods have now been devised to do this, but all use a bath consisting of a continuum of
harmonic oscillators. While this bath is clearly appropriate for, e.g., systems coupled to the electromagnetic field,
it is not so clear that it is a good model for generic many-body systems. Here we explore a different approach
to exactly simulating open systems: using a finite bath chosen to have certain key properties of thermalizing
many-body systems. To explore the numerical resources required by this method to approximate an open system
coupled to an infinite bath, we simulate a weakly damped system and compare to the evolution given by the
relevant Markovian master equation. We obtain the Markovian evolution with reasonable accuracy by using an
additional averaging procedure, and elucidate how the typicality of the bath generates the correct thermal steady
state via the process of “eigenstate thermalization.”
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I. INTRODUCTION

Many important applications of quantum mechanics in-
volve small systems that are coupled to a large environment
that acts as a thermal bath. The challenge of simulating the
behavior of these systems is the enormity of the environment.
If the damping induced by the bath is sufficiently weak, and the
Hamiltonian of the system is constant, then simple Markovian
master equations can be derived for the system density matrix
alone [1]. While these are useful for weakly damped systems,
there are many situations in which they are insufficient. Even
when more complex master equations can be derived outside of
the weak-coupling regime [2,3], their accuracy is often difficult
to determine without exact simulations [2,4,5]. Applications
of current interest that require simulation of open systems
beyond that of simple Lindblad equations include the coherent
dynamics of photosynthetic complexes [6–9], and coupled
qubits under time-dependent control [3].

In the past few years a number of numerical methods have
been devised to simulate, essentially exactly, the dynamics
of open systems coupled to infinite environments. This is
possible because the infinite environment can be very well
approximated by a system with fewer degrees of freedom,
and in such a way that the accuracy of the approximation can
be checked. These methods include the hierarchy of coupled
master equations developed by Ishizaki and Tanimura [10],
those of Bulla et al. [11] and the group of Plenio [12,13] that
use renormalization-group techniques, and the path-integral
method of Makri and Makarov [14,15]. All these methods
provide essentially exact simulations of a system coupled
to a specific kind of bath, that of a continuum of harmonic
oscillators. This particular bath has become the standard for
modeling open quantum systems, essentially by default. While
it certainly applies to an atom coupled to the modes of the
electromagnetic field, it is not so clear that it correctly models
an open system strongly coupled to some “generic” many-body
system. The assumption, of course, regardless of what bath
model one is using, is that there is such a thing as a generic bath.

For this to be true there must be a large class of many-body
systems that produce the same behavior in small systems to
which they are coupled. While this is true for weak coupling
due to Fermi’s golden rule, the question is open for strong
coupling.

Here we explore the possibility of exactly simulating an
open system by using a very different kind of bath. The
bath we use, which we will refer to as a “typical” thermal
bath, is designed to possess certain key properties of many-
body thermal baths. To the extent that baths consisting of
thermalizing many-body systems induce a universal behavior
in small systems to which they are coupled, one expects
our bath to reproduce this behavior. The question of the
universal behavior of thermal baths for strong coupling
could be explored by comparing simulations of the standard
harmonic-oscillator bath with the bath we consider here. To
determine the numerical resources required to simulate an
open system with our bath, we compare our exact simulations
for a weakly coupled system with the evolution given by the
Markovian Redfield equation for the same system [1,16,17].

Our choice of bath draws from an understanding of the
structure of thermalizing many-body systems that emerged
initially with the work of Srednicki [18,19] and Deutsch [20],
and is related to Berry’s conjecture [18,21]. The essential
observation is that (almost) all of the eigenstates of a
(thermalizing) large system reproduce the properties of the
microcanonical ensemble at their respective eigenenergies
(this microcanonical ensemble is the completely mixed state
within a narrow energy band about the given eigenenergy),
and thus places every small system in a canonical equilib-
rium state. It was noted also by those studying chaos that
(almost all) the eigenstates of random Hamiltonians have the
same property, which they described as ergodicity, and that
random Hamiltonians therefore reproduce thermal (ergodic)
behavior [22–28]. The ergodicity of the eigenstates of certain
(nonrandom) multibody Hamiltonians was also investigated
in the context of understanding thermalization [23,29,30].
Much more recently, it was shown by Popescu, Short, and
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Winter [31], and Goldstein et al. [32] (see also [33–37]),
that almost every pure state within a narrow energy band
will behave as the microcanonical ensemble, from which
it follows that random states will have the same property.
Since almost all states have this ergodic property, states that
do are called typical states. It has been conjectured that all
many-body systems that thermalize have eigenstates that are
almost all typical. This conjecture is called the “eigenstate
thermalization hypothesis,” a term coined by Srednicki [18],
and it is supported by all numerical studies that have been
performed to date [38–44].

We choose the bath so that the combined system (by
convention “the universe”), consisting of the small system
and the bath, has typical states. This is achieved by choosing
the bath operator that couples to the system to be a random
matrix, and we explain below why this generates eigenstate
thermalization for the universe. The notion that a bath with
typical states, also referred to as a “random-matrix bath” [45],
will provide a good model of a thermal bath is not new. There
have been a number of studies showing that a random-matrix
bath will induce damping and thermalization, and approximate
master equations have been derived from these baths [2,45–49]
(see also [50] which uses a “chaotic” bath). Breuer, Gemmer,
and Michel used a typical bath to obtain a simulation of a single
qubit interacting with a thermal environment [2]. What has
not been attempted before is to construct a bath to accurately
simulate an arbitrary open system coupled to a thermal
environment. As per the fundamental assumptions of statistical
mechanics, this requires that the density of energy eigenvalues
of the bath increases exponentially with energy [51]. The fact
that the bath energy levels must be sufficiently dense with
respect to those of the system, and that the bath must also have
a total energy range that is at least twice that of the system (see
below), places lower limits on the size of the bath.

In Sec. II we present the details of the bath model, and
in Sec. III explain why it can be expected to thermalize
the system via the mechanism of eigenstate thermalization.
In Sec. IV we present numerical results demonstrating the
resulting thermalization for an arbitrary four-level system and
a bath of 5000 states. In Sec. V we discuss the increase in
the thermodynamic entropy of the system and bath during
the equilibration, and how this is related to the entanglement
between them. In Sec. VI we show that by averaging over
many initial states of the bath, our simulation reproduces the
relaxation given by the standard weak-coupling rate equations,
namely the Markovian Redfield master equation [1,16,17].
We also discuss the question of when any bath model, and
especially random-matrix models, might reproduce potentially
universal relaxation induced by real many-body systems.
Section VII concludes with a summary of our results.

II. MODEL

Our model consists of a small system (from now on “the
system”) coupled to a large system that we call the bath. The
combined system is the tensor product of the system and bath,
and we will refer to it as the universe. The Hamiltonian of our
universe is given by

Hunv = Hsys + �gXsys ⊗ Ybath + Hbath, (1)

where Hsys is the system Hamiltonian, Hbath is the bath
Hamiltonian, Xsys is the system coupling operator, Ybath is the
bath coupling operator, and g is a constant setting the overall
size of the coupling. In what follows we always work in the
joint energy eigenbasis of the system and bath, so that Hsys

and Hbath are diagonal. We also need to distinguish between
the energy eigenstates of the universe when the interaction
is turned off (these are merely the tensor products of the
energy eigenstates of the system and the bath), and the energy
eigenstates of the universe when the interaction is on. We will
refer to the former as the universe “basis states,” and those with
the interaction turned on as the universe energy eigenstates.

Since the bath must thermalize any system, it is the
properties of the bath, along with those of Ybath, that are the
key to obtaining thermal behavior. The properties of our bath
are as follows.

(1) The density of states of the bath: the bath must be
chosen to have a density of energy eigenstates that increases
exponentially with energy. This condition is essentially just the
usual equilibrium thermodynamic assumption: the Boltzmann
distribution for a small system in contact with a bath results
directly from the assumptions that (1) the density of states of
the bath is exponential as a function of energy, (2) that the
energy of the universe is conserved, and (3) that all states of
the universe are equally likely. The temperature of the bath is
given by T = 1/(kBβ), where the energy density of states is
D(E) ∝ exp(βE). By definition, the temperature of a thermal
bath should not change as energy is added (the bath is “big”),
which means merely that β is a constant, independent of E.

Note. In fact, many-body systems have a density of states
that peaks in the middle of the spectrum. (Consider, for
example, a collection of spin-half particles in a magnetic field:
at the maximum and minimum energy the particles are either
all up or all down, so that there is only one state. Conversely,
there are many states in which exactly half the particles are up,
and thus when the energy is in the middle of the spectrum.)
The reason that many-particle systems obey thermodynamics
is that in practice, unless specially prepared, the states of these
systems are always in the lower half of the spectrum where the
density of states increases exponentially with energy.

(2) The energy range of the bath: this must be large enough
that the system can explore all its state-space while conserving
the energy of the universe. Thus the system must be able to
dump all its energy into the bath, and conversely absorb the
same amount of energy from the bath. In choosing our system
(below) we make an essentially arbitrary choice for the total
energy range of the system, which is �Esys = 3.5�μ. Here μ

sets the overall energy scale of the simulation. We will also
have to choose the initial state of the bath so that it overlaps
with a relatively large number of the bath energy eigenstates.
If our bath was infinitely large we would not have to do this; a
single initial energy state would suffice. But because our bath
is not especially large, choosing the initial state to overlap
with many bath states allows more averaging in the dynamics,
reducing the random fluctuations in the evolution. Let us say
that our initial bath state overlaps with all the bath energy
eigenstates with energies in the interval [Emin

ψ ,Emax
ψ ]. To ensure

that the system can dump energy �Esys into the bath, given this
initial state, the maximum bath energy Emax

bath must be no less
than Emax

ψ + �Esys. Similarly, the minimum bath energy must

042131-2



TYPICAL, FINITE BATHS AS A MEANS OF EXACT . . . PHYSICAL REVIEW E 89, 042131 (2014)

FIG. 1. Here we show the relationships between the energy ranges
of the bath, the system, and the initial state of the bath. The energy
range of the bath is the interval [Emin

bath,E
max
bath ], depicted by the light

gray region in diagram. The initial state of the bath is chosen to
be a random superposition of all the bath energy eigenstates with
energies in the interval [Emin

ψ ,Emax
ψ ], for a total energy width of

�Eψ = Emax
ψ − Emin

ψ . The energy range of the initial state is denoted
by the dark gray region in the diagram. The energy range of the system
is denoted in the diagram by �Esys. The energy windows given by the
light gray areas on either side of the dark gray region must be at least
as wide as the energy range of the system. This is so that the system
has the ability to dump all its energy into the bath, and extract all its
energy from the bath. Without this ability the bath cannot thermalize
the system to the Boltzmann state.

be no greater than Emin
ψ − �Esys. This relationship between

the various energy ranges is depicted in Fig. 1.
We must also ensure that the energy states of the bath that

play a role in the evolution are sufficiently densely packed
in energy. The reason is that in order to thermalize the
system, each energy eigenstate of the universe must contain
a reasonable number of adjacent universe basis states. In
particular, each universe energy eigenstate must be a typical
state within a narrow energy window of the universe. By
“narrow” we mean that the window is smaller than the energy
gaps between the states of the system. The universe eigenstates
will only overlap with a large number of universe basis states
if the interaction, being on the order of �g, is strong enough to
mix many adjacent basis states. Thus the energy gaps between
adjacent basis states must be much less than �g, and for weak
coupling �g must be much less than the gaps between the
system states. Thus the energy levels of the bath must be dense
compared to those of the system. We chose the interaction rate
g = 5 × 10−3.

We choose a bath of 5000 states, and set the lowest energy
to be 3�μ. To obtain a spectrum whose density increases
exponentially, we start at the lowest level, and add levels one at
a time. If the last energy level added has energy E, then the next
energy level is chosen to have energy E + �μe−βE . Starting
with E = 3�μ, and adding 5000 levels, the maximum energy
level is Emax

bath ≈ �μ20. With these choices the lowest 100 or
so levels are not very dense, so we chose the energy range of
the initial bath state to be �μ[12.4,14.1]. This means that the
lowest energy of the bath explored during the evolution will be
approximately �μ(12.4 − 3.5) = �μ8.9, and the highest bath
energy will be approximately �μ(14.1 + 3.5) = �μ17.6.

It is important to note that for larger values of β (lower
temperatures), the density of the bath energy states will be
more skewed. This means that for a given size of the bath, and
a given energy range for the bath, the lower energy levels will
become more sparse with decreasing temperature. For lower
temperatures we will therefore have to use larger baths, and

so the numerical resources will increase as the temperature
decreases. We discuss this further in the next section.

(3) The initial state of the bath: for the reasons explained
in (2), we choose the initial state of the bath to contain
the 350 contiguous energy eigenstates that span the interval
�μ[12.4,14.1]. Since our purpose in having the initial state
contain many bath eigenstates is to reduce fluctuations via the
resulting averaging, we choose the initial state to be a random
superposition of these eigenstates. In particular, we choose all
the coefficients in the superposition to have equal amplitudes
and independently chosen random phases.

(4) The bath interaction operator: this operator, which
we denote by Ybath, requires some complexity—that is, its
elements should, at least locally, vary in a more-or-less random
fashion. So long as the elements of the interaction operator,
gXsys ⊗ Ybath, are large enough to mix together a significant
number of adjacent universe basis states, this randomness
ensures that the eigenstates of the universe are typical states
within narrow energy bands. This typicality ensures in turn
that the bath will thermalize the system (see Sec. III below).
The random nature of the interaction operator is simple to
achieve by choosing the off-diagonal elements of Ybath to be
Gaussian random numbers with unit variance. We set the
diagonal elements of Ybath to zero, so as to minimize their
effect on the bath spectrum. (When the diagonal elements are
zero, Ybath modifies the bath spectrum only to second order in
perturbation theory, rather than first order.) We also choose the
interaction, along with all other contributions to the universe
Hamiltonian, to be real. This reduces the numerical overhead
in diagonalizing the Hamiltonian.

The average size of the elements of Ybath should be uniform,
in order to reproduce, in the weak-damping (Markovian) limit,
the result that the relaxation rates are independent of the initial
state of the system [45]. Further, this is implied by the structure
of many-body baths: in this case the system interacts only with
its nearest neighbors, and even though there may be many of
these it cannot immediately tell the overall energy of the bath.
One therefore expects the interaction strength not to vary with
the energy of the bath states that it couples.

Because the bath states are necessarily more sparse in the
lower part of the spectrum, and given that the interaction rate
g is limited, the lower states will not be as well mixed by
the interaction, and the deviations from the thermal state will
be larger. While unjustified, it is therefore tempting to increase
the magnitude of the elements of Ybath so as to increase the
mixing of the lower energy levels. This is what we do in our
numerical simulation. In particular, if the element Yij couples
the bath energy levels Ei and Ej , then we chose

Yij = grij [1 + f
√

(Ej − Ej−1)(Ei − Ei−1)], (2)

where rij is a Gaussian random number with mean zero and
unit variance, Ek−1 is the energy level less than and adjacent
to level Ek (for all k), and we set f = 100.

(6) The system: now that we have determined the structure
of the bath, it is time to couple it to a small system. To
limit the numerical overhead, we use a system with just
four states. Naturally, the bath is required to thermalize any
system, including any system interaction operator Xsys, with
the only condition that Xsys be sufficiently noncommuting
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with Hsys. Essentially any matrix will do for Xsys so long as it
provides enough transitions between the system states: it must
be possible to go from any system state to any other system
state by using a sequence of these transitions. We therefore
make an arbitrary choice for the system energy levels and
interaction operator Xsys. By “arbitrary” we mean that there
is no special relationship (symmetries) between the various
energy gaps of the system, and between the elements of Xsys.
If the bath correctly thermalizes such a system, then we can
be confident that it will thermalize any system. We choose the
energy levels of the system to be �μ[0.5,1.5,2.2,4]. Denoting
the matrix elements of Xsys by xij , we choose x12 = −0.7,
x13 = 0.3, x14 = −0.9, x23 = −1.2, and x24 = −0.4 = −x34.
The diagonal elements of Xsys are set to zero, since there is no
sense in unnecessarily perturbing the system.

III. EIGENSTATE THERMALIZATION

We now explain why it is that the above model of a
system-bath interaction can be expected not only to thermalize
the system to the Boltzmann distribution, but to do so via
the mechanism of eigenstate thermalization. Note that since
many-body systems have been shown to thermalize via this
mechanism [38], if our model does so then it is correctly
reproducing this behavior. Let us denote the energy eigenstates
of the system by |εk〉, where k = 1, . . . ,Nsys, and those of the
bath by |Ej 〉, with j = 1, . . . ,Nbath. The energy eigenstates of
the universe, before the interaction Hamiltonian is turned on,
are then given by

|Ekj 〉 = |εk〉|Ej 〉, (3)

where the total energy of the universe for each state is Ekj =
εk + Ej . As in the previous section we will refer to these states
as the “basis states” of the universe.

First we note that the interaction Hamiltonian, since it
has elements of magnitude ∼ �g, will couple together (mix)
only those basis states |Ekj 〉 whose energies are within
approximately �g of each other. Consider now all the basis
states within an energy band of width 2�g, centered at the
energy Etot. Each system state with energy εk will appear in
this set of basis states when it is paired only with bath states
that have energies between Etot − εk − �g and Etot − εk + �g.
System states with lower energies are therefore paired with
bath states that have higher energies. Since the number of
bath states per unit energy increases exponentially, this means
that there will be many more states in this set that contain
the lowest system energy state than higher system energy
states. Let us denote the number of basis states in the band
[Etot − �g,Etot + �g] that contain system state k as Nk . Then
these numbers Nk decrease exponentially with the system
energy εk , exactly as the Boltzmann ratios:

Nm

Nk

= exp[−β(εm − εk)]. (4)

If the total number of basis states in the band is Nband, then the
Boltzmann probability distribution is

Pk = exp[−βεk]/Nband. (5)

Next we consider the eigenstates of the universe when the
interaction is turned on. Let us denote these states by |Ẽ〉.

The state |Ẽ〉 is a superposition of the basis states |Ekj 〉 that
have energies in the band [E − �g,E + �g]. The crucial point
is that because the interaction Hamiltonian is random, one
expects the state |Ẽ〉 to be a random superposition of all the
basis states in the band. Because there are a large number
of states in the band, the law of large numbers now tells us
that the total contribution of the states that contain the system
state with energy εk will be approximately Nk/Nband. This
is, of course, precisely the Boltzmann weighting, Pk . The
larger Nband, then the more closely the contribution of the
system state |εk〉 will be to Pk . If we now take the state |Ẽ〉,
and trace out the bath, the contributions of the system states
become the probabilities of the system states in the resulting
mixture. That is,

Trbath[|Ẽ〉〈Ẽ|] ≈
∑

k

(
exp(−βεk)∑
n exp(−βεn)

)
|εk〉〈εk|, (6)

which is the thermal steady state for the system. Thus
we expect every energy eigenstate of the universe to give
the Boltzmann state for the system, and this is eigenstate
thermalization.

The above analysis also tells us that we can obtain a steady
state for the system that has a different distribution over the
energy states by choosing the bath energy states to have a
density profile equal to that new distribution (but reflected
in energy). The density profile of the bath energy levels is
copied onto the system steady state, just as is predicted by
the fundamental assumption of statistical mechanics. But note
that here the origin is not the assumption that all states of
a given energy band are equally likely, but the assumption
that the universe eigenstates are effectively random (within
small energy bands), or equivalently that they are typical states
within such bands [31,32].

IV. NUMERICAL SIMULATIONS

To demonstrate thermalization we must evolve the system
for an arbitrarily long time. Obtaining an essentially exact
evolution for long times can be achieved by performing
a full diagonalization of the Hamiltonian for the universe,
Hunv. Since the Hamiltonian is a (real) 20 000 dimensional
matrix, this diagonalization does require a very large RAM.
Nevertheless, with currently available computing resources,
and absolute addressing, this is now quite feasible. In fact, we
have already diagonalized real Hamiltonians that are twice this
size, and even larger problems are clearly feasible.

In Fig. 2 we present the results of the simulation, for two
initial states of the system, being respectively the lowest and
highest energy levels. Both initial states relax as desired to
the thermal Boltzmann distribution and remain there, albeit
with small fluctuations. Interestingly, when the system starts
in its ground state, the residual fluctuations are larger than
when it starts in its highest energy state. We will return to this
phenomena below, which is due to the finite size of the bath.

We now turn to the question of eigenstate thermaliza-
tion [18,38]. If eigenstate thermalization occurs, then for each
eigenstate of the universe, the reduced state of the system (that
is, traced over the bath) will be the thermal Boltzmann state. We
will refer to the population for a system energy eigenstate that
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FIG. 2. (Color online) Evolution of the populations of the energy eigenstates of a nonlinear four-level system coupled to a bath with 5000
states, for two initial states of the system. The horizontal lines give the populations for the Boltzmann thermal distribution at the relevant
temperature. In plot (a) the initial state is the one with lowest energy, and in (b) it is the state with the highest energy. The insets are expanded
versions of the plots for early times, showing the initial relaxation to the thermal state.

results from the universe being in a single energy eigenstate,
as the “eigenstate value” for that population. These eigenstate
values are shown in the four plots in Fig. 3. In each of
the four plots, the horizontal solid line gives the Boltzmann

population for the respective state. The dark (noisy) line gives
the eigenstate values for the population as a function of the
energy of the eigenstates. We see that the eigenstate values
are not in fact equal to the thermal value, since they fluctuate

FIG. 3. (Color online) Each of the four plots shows the populations of one of the system energy levels (of which there are four). In each
plot: the dashed horizontal line (yellow) is the desired thermal (Boltzmann) value. The light-gray solid horizontal line (green) is the actual
steady-state population when the initial state is state 4. The dark noisy line (dark blue) is the population given by each of the energy eigenstates
of the universe, as a function of their energy. The solid light gray curve (cyan) is the moving average of the noisy line over a window of 200
adjacent eigenstates. Thermalization happens in the region where the light gray curve (cyan), light gray horizontal line (yellow), and horizontal
dashed line (green) coincide. In the dashed box in the plot for level 1 we display the distribution of the initial state of the universe, over its
eigenstates, when the system starts in state 1 (left, red) and 4 (right, mauve).
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significantly. However, we expect precisely such fluctuations
if the number of states within each energy band (the number
coupled together by the interaction) is not sufficiently large
(see Sec. III). To make Nband large, the energy separation
between adjacent bath states must be much less than �g. The
difficulty is that the exponential form of the density profile,
together with the need for the bath to span a sufficient energy
range, forces the energy spacings between the lower energy
bath states to be relatively large. We would therefore expect
eigenstate thermalization to be true for the highest energy
states, and the deviations from the Boltzmann populations to
increase as the energy decreases. This is precisely what we see
in Fig. 3. Note that increasing the interaction strength g will
increase Nband, and thus reduce the fluctuations of the universe
eigenstates. But recall that g is also limited by the requirement
g � μ.

A quantitative measure of the degree to which eigenstate
thermalization is realized in a particular system is given in
Eq. (6) of [52]. This measure, which we will call ξ , is the
ratio of the variance across the eigenstates of the quantum
mean of an observable A for each eigenstate to the mean
across the eigenstates of the quantum variance of A for each
eigenstate. Eigenstate thermalization is achieved when ξ � 1.
If we denote the eigenstates by |En〉, and the initial probability
that the universe is in state |En〉 by pn, then

ξ =
∑

n pn〈En|A|En〉2 − [∑
n pn〈En|A|En〉

]2∑
n pn[〈En|A2|En〉 − 〈En|A|En〉2]

. (7)

Calculating ξ for the population of level 1 (that is, choosing
A to be the projector onto level 1), using the data displayed
in Fig. 3 and averaging over the eigenstates with E/(�μ) ∈
[10,15], we find that ξ = 0.02. This shows us that the universe
has achieved eigenstate thermalization to a significant degree.

If we decrease β, and thus increase the temperature, the
density profile of the bath energy states becomes more even,
allowing the lowest bath energy levels to be more closely
spaced. This increases the mixing that can be achieved across
all the states of the bath, and eigenstate thermalization is
approached more closely. Thus the higher the temperature, the
easier it is to realize thermalization, in that smaller baths will
suffice. For any temperature, as the size of the bath is increased,
the separation of the energy levels decreases, increasing the
mixing and reducing the fluctuations in the populations from
one eigenstate to the next. In the limit of a macroscopic bath,
the fluctuations of the populations of the eigenstates tends to
zero, and true eigenstate thermalization will be achieved.

We also obtain insight into why the average of the eigenstate
values gives the correct thermal value, independent of the
extent to which eigenstate thermalization is realized. The key
to this behavior can be seen by turning of the interaction
(setting g = 0). The eigenstates of the universe are now merely
the tensor-product states of the system eigenstates and the
bath eigenstates. But the average of the eigenstate values
of these tensor-product states is still equal to the thermal
value, precisely because the bath has an exponential density
of states. That is, even before we turn the interaction on,
the eigenstate values are already what they need to be. To
realize thermalization all the interaction has to do is to mix
the tensor-product states sufficiently so that each universe

FIG. 4. (Color online) Here we plot an estimate of the mean
square of the off-diagonal elements of the projector onto the ground
state, P1 = |1〉〈1|. This estimate is calculated, for each value of n, by
averaging the square of the off-diagonal elements for m = n + 1 to
m = n + 10.

eigenstate is a superposition over a sufficiently large number
of the tensor-product states, while preserving the average of
the eigenstate values.

We return now to the question of why the fluctuations of
the populations are significantly smaller when the system starts
in its highest energy state, as opposed to its ground state, as
evident in Fig. 2. The answer lies in the fact that we chose the
same energy window for the bath in both cases. As a result,
in the former case, the state of the universe covers a higher
energy window, a window over which the density of states of
the bath is higher. The higher the density of states, the more
we expect the averaging process (the mixing of the states due
to the interaction) to reduce the fluctuations. In particular, if
we use a similar method to that in [18], we can show that the
variance of the temporal fluctuations of the quantum mean of
a Hermitian operator A is approximately

Vss(A) =
∑

n,m
=n

pnpm〈En|A|Em〉2, (8)

where we are using the same definitions as in Eq. (7) above. The
temporal fluctuations of the system populations will therefore
decrease as the off-diagonal elements of the projectors onto
the system states decrease. In Fig. 4 we display an average
of the mean square of these off-diagonal elements, for the
projector onto the ground state, as a function of energy of
the bath. This shows, as expected, that these elements decrease
as the density of bath states increases.

V. ENTROPY PRODUCTION AND ENTANGLEMENT

We now examine the increase in thermodynamic entropy,
both of the bath and the system, associated with the (effec-
tively) irreversible evolution. In fact, the relationship between
the von Neumann entropy, SvN, and the thermodynamic
entropy, Sth, is not the same for the system and the bath. Nor
does entanglement play the same role for each. This is because
the microstates of the system are accessible (by definition),
whereas those of the bath are not, and this inaccessibility is
part of the definition of the latter’s thermodynamic entropy.
We first consider the thermodynamic entropy of the system.
The system starts in a nonequilibrium state, and we must
therefore be careful to specify the context in which we define
its thermodynamic entropy—different contexts may motivate
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different definitions. For a standard thermodynamic system
in an equilibrium state, and in contact with a thermal bath
at temperature T , the maximum work that can be extracted
by manipulating the system is given by the free energy,
F = E − T Sth, where E is the internal energy and T is the
temperature of the bath. It has been shown that for a quantum
system in contact with a thermal bath at temperature T , in
which all unitary operations on the system are available to
the controller (and thus all microstates of the system are
accessible), the maximum work that can be extracted is given
by F = 〈E〉 − T SvN(ρ), where ρ is the density matrix of the
system [53–55]. This is true for all states, equilibrium or
otherwise. Thus, in the context of work extraction, the von
Neumann entropy of a mesoscopic quantum system can be
identified with its thermodynamic entropy.

If the bath starts in a pure state, which is well motivated
from a fundamental point of view, then since the evolution is
unitary, any increase in the von Neuman entropy of the system
can only be generated by entanglement between the system
and bath. Further, if the joint state of two systems is pure, then
a good measure of the entanglement between the two is the
von Nuemann entropy of either [56]. Since the steady state of
the system is the Boltzman state, the total entropy produced
in the system is simply the difference between the initial von
Neumann entropy of the system and the von Neumann entropy
of the Boltzmann state. This increase in entropy is entirely
entropy production because no work is extracted in the process,
so that the free energy lost cannot be regained.

The thermodynamic entropy of the bath is kB ln(Nacc),
where Nacc is the number of accessible microstates for the
given macrostate. To put an absolute value on this entropy we
need to fix the width of an energy window that we consider
to be the region of accessible energy. This “course grains” the
microstates into macro states. One way to define this width is as
the average size of the elements of the interaction Hamiltonian
that couples the system and bath. This energy scale gives the
energy width over which the bath eigenstates are coupled
together, and thus determines the number of bath eigenstates
that are explored during the evolution. But we will not concern
ourselves here with the absolute value of the entropy, merely
the increase in the entropy of the bath during the thermalization
of the system.

We note that under the above definition, the thermodynamic
entropy of the bath has nothing to do with the von Neumann
entropy. We make a connection with the von Neumann entropy
only if we consider the state of knowledge of a macroscopic
observer that is ignorant of the microstate up to the course
graining specified above. In this case the thermodynamic
entropy is given by (kB times) the von Neumann entropy of
the macroscopic observer’s state of knowledge. But there is
no need to introduce such an observer. Since the density of
bath energy levels increases by the factor e�E/kBT with an
increase in energy �E, given a fixed width for the energy
window, an increase of energy �E increases the bath’s
thermodynamic entropy by �Sth = �E/T , in accordance
with standard thermodynamics. Now let us see how this plays
out in more detail, given the final (equilibrium) state of the
system. This final state is a mixture over the energy eigenstates
of the system. Let us say, for simplicity, that the initial state
of the system is a single energy eigenstate. For each final

eigenstate of the system, |εi〉, the energy of the bath has been
changed by the negative of the change to the energy of the
system, which we denote by �εi . The change in the entropy of
the bath for each final system eigenstate is then −�εi/T . The
total change in the entropy of the bath is the average of these
changes over the final probabilities of the system eigenstates,
−〈�ε〉/T . We note that if we write the final state of the bath
as the state of knowledge of an observer who is ignorant of
the microstates under the course graining, but knows the final
density matrix of the system, then the total von Neumann
entropy change of the state of the universe is precisely the
sum of the von Neumann entropy change of the system, and
that given above for the thermodynamic entropy change of the
bath (divided by k), due to the well-known course-graining
property of the entropy [57]. Thus the definitions of entropy
of the system and bath are consistent.

To summarize, the thermodynamic entropy production for
the system is

�S
sys
th = kB�SvN (due entirely to entanglement), (9)

and that for the bath is

�Sbath
th = −〈�ε〉

T
(unrelated to entanglement), (10)

where 〈�ε〉 and �SvN are, respectively, the average change in
the energy of the system and the change in the von Neumann
entropy of the system. The sum of these two entropy changes is
always non-negative, which follows from the results in [53,55].

VI. REPRODUCING THE REDFIELD EVOLUTION, AND
THE QUESTION OF UNIVERSALITY

Even when we use a bath containing 5000 states, there are
still significant fluctuations in the relaxation dynamics. We
can reduce these fluctuations by averaging the evolution over
many randomly chosen initial states of the bath. The goal of
reducing the fluctuations is to obtain a better approximation
to the dynamics induced by a bath with an infinite number
of states. After averaging away the fluctuations, we can
compare the relaxation dynamics for different bath sizes, and
determine how many bath states are sufficient to reproduce
the behavior of a macroscopic bath. We can also compare
this thermal relaxation to that of the Markovian Redfield
master equation [16,17]. This Redfield equation is derived
using a bath consisting of a continuum of harmonic oscillators,
quite different from our random bath. However, the Redfield
equation is a perturbative master equation, valid for weak
damping, and as such is a set of rate equations, where the
rates are determined by Fermi’s golden rule. Thus we expect
that for weak damping our bath should agree with the Redfield
equation, since Fermi’s golden rule is a result of the near
continuum of the energy levels of the bath, and our system-bath
coupling is essentially generic as far as the bath is concerned.

The Redfield master equation gives the following rate
equations for the populations of the system [1,16]:

Pj = −
(∑

i

γi←j

)
Pj +

∑
i

γj←iPi, (11)

where γj←i is the transition rate from level i to level j . We
note that the Markovian Redfield equation is a result of the
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FIG. 5. (Color online) Here we plot the dynamics of the thermal
relaxation of the system, averaged over 200 initial states of the bath,
randomly chosen within the same energy window (dashed lines). This
averages out the fluctuations due to the finite size of the bath, and
we obtain a good approximation to the evolution for the macroscopic
bath. We also plot the thermal relaxation given by the equivalent
Markovian Redfield master equation (solid line). The main plot is for
a bath with 5000 states, and the inset gives the result for a bath of
2500 states.

rotating-wave approximation (secular approxmation) valid for
weak coupling. Weak coupling is defined by γj←i � |εi − εj |,
for all i,j , where as above εm denotes energy level m of the
system.

Applying Fermi’s golden rule to our model, the transition
rates resulting from our system-bath coupling should be

γj←i = 2π |xij |2
〈|Y |2j←iρj←i

〉
, (12)

where |Y |2j←i is the square of an element of the bath interaction
operator that couples an initial state of the bath to the
corresponding final state, for the transition j ← i, and ρj←i

is the density of the final bath states with respect to energy for
this bath transition. The values of |Y |2j←i and ρj←i depend on
the initial state of the bath, so we must average these quantities
over the initially populated states of the bath.

In Fig. 5 we show the evolution for a bath of 5000 states,
averaged over 200 initial states of the bath, randomly chosen
within the fixed energy window used above, and the inset is
for a bath of 2500 states. Both cases agree quite well with
the Redfield rate equations, although fluctuations are more
pronounced for the smaller bath. Thus our bath is able to give
a good approximation to the dynamics induced by an infinite
(macroscopic) Markovian bath with the same structure.

Since all baths have a near continuum of states, one might
be tempted to assume that the dynamics of the damping of
open systems coupled to thermal baths is universal, but this is
not the case. Simulations of a small system coupled to a single
spin that forms one end of a spin chain (a one-dimensional
spin lattice) show that the relaxation in this case is not merely
the simple exponential decay generated by rate equations, but
depends on the details of the coupling between the system
and the spin on the end of the chain, as well as the coupling
between the spins. This behavior is quite reasonable: in finite

time the evolution of the system can only be affected by a
finite number of the spins in the chain, since only nearest
neighbors are coupled. Because of this only a small number
of spins contribute to the evolution of the system during the
initial relaxation, and so the dynamics is determined by the
local coupling Hamiltonians. Typicality determines the steady
state, but cannot determine the initial relaxation.

We can conclude from the above discussion that the
damping induced by many-body baths can only be universal
if the system is coupled to a large number of the bodies.
In this case, even if the system is weakly coupled to each
body, the result can be either weak or strong damping. If
in either case the dynamics of the thermal relaxation turns
out to be universal, then it will be useful to determine what
models correctly reproduce this dynamics. Since we know
that many-body systems that thermalize do have a density
of states that is exponential in the energy, and have typical
eigenstates, the random bath is a good candidate for such a
model. While the oscillator-bath model has become, by default,
the gold standard for describing the damping of both weakly
and strongly damped systems (e.g., Brownian motion), there
is little justification for this special status. To obtain Brownian
motion using an oscillator bath one must choose the coupling
to have an “ohmic” dependence on frequency, a rather arbitrary
choice. The efficacy of any model of thermal relaxation will
depend on the extent to which the dynamics of relaxation is
universal, and the extent to which it reproduces this relaxation.
These questions are interesting topics for future work.

VII. SUMMARY

We have shown that the thermal relaxation of a small system
can be modeled, to good approximation, by exactly simulating
the evolution of the system coupled to a bath containing a few
thousand states. To do so, we chose the bath so as to have
certain key quantities possessed by many-body systems, and
we average the resulting time evolution for the system over
a few hundred initial states of the bath. The latter procedure
greatly reduces the fluctuations in the evolution of the system
due to the finite size of the bath.

We suggest that the model we have presented is a good
candidate for simulating the evolution of small systems
strongly coupled to real many-body systems, because it is
derived using the assumption of typicality. Of course, any
generic model of thermalization will reproduce the damping
induced by many-body systems only for classes of couplings
for which this damping is universal. What these classes may
be is as yet an open question.

ACKNOWLEDGMENTS

The authors are indebted to Professor Daniel Steck at the
University of Oregon and the Oregon Center for Optics; this
work would not have been possible without access to the
large memory nodes of his parallel cluster, funded by the
National Science Foundation under Project No. PHY-0547926.
In the latter stages of this work we used the supercomputing
facilities managed by the Research Computing Group at the
University of Massachusetts Boston. During this work K.J.
was partially supported by the National Science Foundation

042131-8



TYPICAL, FINITE BATHS AS A MEANS OF EXACT . . . PHYSICAL REVIEW E 89, 042131 (2014)

under Projects No. PHY-0902906, No. PHY-1005571, and No.
PHY-1212413, and the ARO MURI Grant No. W911NF-11-
1-0268. L.S. was supported by the NSF under Project No.

PHY-0902906, and M.O. and V.D. were supported by the
Office of Naval Research Grant No. N00014-12-1-0400 and
the National Science Foundation Grant No. PHY-1019197.

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[2] H.-P. Breuer, J. Gemmer, and M. Michel, Phys. Rev. E 73,
016139 (2006).

[3] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, New J. Phys.
14, 123016 (2012).

[4] C. H. Fleming and N. I. Cummings, Phys. Rev. E 83, 031117
(2011).

[5] A. Rivas, A. Douglas, K. Plato, S. F. Huelga, and M. B. Plenio,
New J. Phys. 12, 113032 (2010).

[6] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik,
J. Chem. Phys. 129, 174106 (2008).

[7] M. Thorwart, J. Eckel, J. Reina, P. Nalbach, and S. Weiss, Chem.
Phys. Lett. 478, 234 (2009).

[8] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio,
J. Chem. Phys. 131, 105106 (2009).

[9] M. Sarovar, Y.-C. Cheng, and K. B. Whaley, Phys. Rev. E 83,
011906 (2011).

[10] A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005).
[11] R. Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601

(2003).
[12] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev.

Lett. 105, 050404 (2010).
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