
PHYSICAL REVIEW E 89, 042126 (2014)

Dual structure of thermodynamics

A. Porporato*

Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA
(Received 12 October 2013; revised manuscript received 26 February 2014; published 16 April 2014)

Based on the properties of exponential distribution families we analyze the Fisher information of the Gibbs
canonical ensemble to construct a new state function for simple systems with no mechanical work. This function
possesses nice symmetry properties with respect to Legendre transform and provides a connection with previous
alternative formulations of thermodynamics, most notably the work by Biot, Serrin, and Frieden and collaborators.
Logical extensions to systems with mechanical work may similarly consider generalized Gibbs ensembles.
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I. INTRODUCTION

The theory of classical thermodynamics elegantly links
energy and matter states in macroscopic systems in thermody-
namic equilibrium [1,2]. It also allows us to rigorously describe
the overall effect of transformations between different states
of equilibrium, although it does not provide information about
their actual dynamics. While historically thermodynamics
developed from the intuitive notions of heat and temperature,
subsequently the existence of more abstract, fundamental
quantities such as internal energy, entropy, and their corre-
sponding Legendre transforms became apparent; these are now
considered primitive concepts in axiomatic and postulational
theories of thermodynamics. Considerable effort has also been
devoted to rigorously reformulating thermodynamics starting
from temperature and heat as primitive quantities. We refer,
in particular, to the work by Serrin and Silhavy [3–6], who
derived the internal energy and entropy starting from an
analytical formulation of the integral for cyclic processes
based on temperature and a newly defined heat accumulation
function. Related theories were also proposed in [7,8].

The inability of classical thermodynamics to describe
nonequilibrium dynamics also spurred the search for more
general theories. In particular, Onsager’s theory [1], based on
local equilibrium and a variational principle for a dissipation
function (proportional to entropy production), helped explain
the coupling among processes for small deviations from
thermodynamic equilibrium. However, as has been repeatedly
pointed out [1,9–12], a variational formulation based on
entropy production extremization does not lead to the observed
linear phenomenological laws commonly used in applications
(e.g., Fourier’s law of heat conduction has a constant conduc-
tivity, while entropy production maximization leads to a heat
conductance which is inversely proportional to the square of
the temperature). Several attempts were thus pursued to find
alternative variational formulations. The work of Biot [13,14],
in particular, showed that a variational formulation based on
a quadratic function of temperature, obtained from a suitable
linearization of thermodynamic availability for constant heat
capacity, provides the familiar Fourier’s heat conduction law.
The theoretical bases of Biot’s function were not completely
clarified, however, and the extension to compressible media
has remained elusive. More recently, Guo and coworkers
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[12,15] resumed Biot’s function and used a similar quantity,
called entransy and justified on the bases of a formal analogy
between heat and electrical currents, to optimize engineering
design in heat transfer (see also [16]).

Independently, a series of remarkable contributions by
Frieden and collaborators [17–21] showed that variational
formulations based on Fisher information may serve as a
powerful means to obtain several physical laws, at the same
time providing a reason for the ubiquitous presence of squares
of gradients in such laws. Within this context, the additivity
property of the Fisher information and its ability to measure
“disorder” [20] are particularly appealing features from a
thermodynamic point of view. More importantly, Frieden et al.
[20,21] showed that Fisher information is endowed with a
Legendre-transform structure which mirrors that of classical
thermodynamics. This contribution was largely formal and
the link with the usual thermodynamic variables remained
somewhat unexplored. In an interesting step in this direction
[22], much like Biot’s function, Fisher information too was
found to be a quadratic function of temperature for the case
of constant heat capacity, with a proportionality coefficient
containing a reference temperature which was left unspecified.

The three main lines of research described above developed
independently and have remained disconnected. In what
follows we discuss how they are related and show how
a dual structure of thermodynamics emerges from the the
formalism of exponential families (to which Gibbs equilibrium
distributions belong) and their link to Legendre and cumulant
transforms [23–25]. With specific reference to a simple
system with constant volume and mass, we show how the
correspondence between thermodynamic potentials, in either
the entropy or the energy representation [1], is mirrored by an
equivalent, dual representation based on Fisher information,
with an interesting symmetry of the Legendre transformation.
As pointed out by Biot [14] and Frieden and coworkers [20],
this dual structure may be useful in variational formulations
of nonequilibrium field theories of thermodynamics and
continuum media.

II. CANONICAL ENSEMBLE AND ITS FISHER
INFORMATION

Consider a simple system with fixed volume V and
particle number N in thermal equilibrium with a reservoir
at temperature T = 1/β (to simplify notation, the temperature
is in natural units so that the Boltzmann constant is equal

1539-3755/2014/89(4)/042126(6) 042126-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.042126


A. PORPORATO PHYSICAL REVIEW E 89, 042126 (2014)

to 1). For our purposes here, it is convenient to write the
Gibbs canonical distribution for a single random variable
representing the internal energy, Û , as

pÛ (Û ; β) = g(Û )

Z(β)
e−βÛ = e−�(β)−βÛ−hÛ (Û ), (1)

where Z(β) is the partition function, and hÛ (Û ) = − ln g(Û ),
with g(Û ) the density of states, a function linking the
microstates to the internal energy [26]; the Massieu function
is �(β) = ln Z(β) = −F/T , with F the Helmholtz free
energy. The probability density function, (1), belongs to the
exponential family [23–25], for which several interesting
properties are known (see the Appendix). In particular, −� is
related to the the cumulant transform [24] of the distribution,
(1), in that its derivatives with respect to the parameter β

readily give the cumulants of Û (see the Appendix). As a
consequence,

−d�

dβ
= 〈Û 〉 = U. (2)

More importantly, their second derivatives are both the Fisher
information of the distribution with respect to the parameter β

(see the Appendix) and the variance of Û ,

FU = d2�

dβ2
= 〈(Û − U )2〉, (3)

which is

FU = −dU

dβ
= C(β)

β2
= C(T )T 2, (4)

where C(T ) = Ncv(T ), with cv the specific molar heat
capacity. This result is in agreement with the well-established
theory of fluctuations (see [28] and, in particular, Eq. (19.6) in
[27]).

III. DUAL STRUCTURE OF THERMODYNAMICS

It is well known that the couple S and � and the couple U

and F are linked by Legendre transform in the entropy, S =
S(U ), and energy, U = U (S), representations, respectively
[1,29]. A similar correspondence involving Fisher information
can be found starting from the first equality in (4),

FU (β) = −dU

dβ
, (5)

which implies ([1], p. 142) that U (β) is related by Legendre
transform to another function FS , where

FS = βFU + U. (6)

Although the previous equation is in units of energy, it is
formally analogous to S = βU + � in the familiar entropy
representation of thermodynamics. Thus, the relationship
FS = FS(FU ) may be used as the fundamental equation, as an
alternative to S(U ), for systems with no reversible (volume)
work and mass exchanges.

It is also natural to consider a dual version of the energy
representation, by dividing the previous equation, (6), by β

and re-expressing it in terms of T ,

FU = TFS + FF , (7)

TABLE I. Correspondence among thermodynamic variables in
the dual representation.

Entropy Fisher information

S FS

U FU

� U

F = −T � FF = −T U

S = S(U ) FS = FS(FU )
U = U (S) FU = FU (FS)

S = βU + � FS = βFU + U

U = T S + F FU = TFS + FF

β = dS

dU
β = dFS

dFU

T = dU

dS
T = dFU

dFS

−U = d�

dβ
−FU = dU

dβ

−S = dF

dT
−FS = dFF

dT

where FF = −UT . This equation corresponds to the familiar
expression U = T S + F in the energy representation and
implies that FU and FF are Legendre transforms in the dual
version of the “energy” representation, FU = FU (FS). The
correspondence is summarized in Table I.

Note that (6), because of (4), can also be written as

FS = CT + U. (8)

This underlies another Legendre transform,

T = FS

C
+ FT , (9)

with FT = −U/C, and of course also means that

C = FS

T
+

∫ T

0 C(T ′)dT ′

T
, (10)

which corresponds to Eq. (4) in [30].

IV. PARAMETER FLUCTUATIONS

For the system at constant V and N , FU may be related to
the ability to measure the inverse temperature β of the reservoir
by observing the state of the internal energy of the system.
This ability increases with the size of the system, N , because
the fluctuations get smaller with N . It also increases with T 2

proportionally to the heat capacity at that temperature, cv(T ),
because larger heat capacities buffer temperature fluctuations,
which would otherwise impair the estimate [see Eq. (4)]. This
idea of using the system as a temperature measurement device
can be traced back to [31,32] and is rooted in the theory of
statistical inference [24,25].

For the exponential family, the maximized log-likelihood
function is also the Legendre transform of the cumulant
transform (see the Appendix); in our case of Eq. (1), the
maximized log-likelihood function is −S(U ), which is also
the Legendre transform of the cumulant transform −�(β). It
thus follows that

dS

dU
= β (11)
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and

d2S

dU 2
= − β2

Ncv

= − 1

NcvT 2
, (12)

as well as

− d2S

dU 2
= − dβ

dU
= 〈(β̂ − β)2〉 = F−1

U . (13)

On the one hand, this allows us to make immediate contact
with the stability theory of equilibrium conditions (see, e.g.,
Eq. (8.7) in [1]) and with the Riemanninan representation of
thermodynamics [33,34]. In this context, Eq. (12) has been
used as a measure of the curvature of the thermodynamic space
and has been linked to the availability (i.e., the free energy
difference with respect to equilibrium) lost, as, when starting
from small perturbations, an isolated system irreversibly goes
back to equilibrium [35] (a version of the Gouy-Stodola
theorem [2]).

On the other hand, returning to the statistical inference
interpretation, the maximum likelihood estimate β̂ is known
to have mean β and variance (nFU )−1, where n is the number
of independent observations of the internal energy of the
system. The analogy of the foregoing expressions with those
in Sec. II suggests the existence of a distribution of β̂, with
corresponding Fisher information and Legendre transform
structure. In a Bayesian context this would correspond to
the posterior distribution attributed to the uncertainty in the
parameter β, of the type

pβ̂(β̂; U ) = eS(U )−Uβ̂−hβ̂ (β̂), (14)

so that S(U ) is related to its cumulant transform and

− d2S

dU 2
= Iβ = 1

FU

(15)

is its Fisher information with respect to the parameter U . A
Legendre structure for Iβ can be constructed similarly to what
was done for FU in Sec. III, although it does not appear to be
of immediate interest here.

We conclude this section by noting that (15) also corre-
sponds to a relation between variances of Û and β̂,

〈(Û − U )2〉〈(β̂ − β)2〉 = 1, (16)

which is formally analogous to an uncertainty relationship.
While the interpretation of such a relationship in the context
of statistical inference is quite clear, its physical interpretation
is more controversial and its discussion is outside the scope
of the present work; we refer to the quite extensive literature
(e.g., [36–40] and references therein) for this issue.

V. CONSTANT HEAT CAPACITY

The case of a constant heat capacity, C = Nc, is particularly
simple and in this case the Legendre transforms acquire nice
symmetry properties. Microscopically such a condition results
from energy equipartition ([1], pp. 291, 376), which implies
that the internal energy has a quadratic dependence on the
(micro)states of the ν = 2C degrees of freedom. The resulting
canonical distribution, (1), is a � distribution with scale
parameter β, shape parameter C, mean C/β, and variance

TABLE II. Expressions of the thermodynamic variables for the
case of a constant heat capacity, C. Note that S0, U0, and T0 are
assumed equal to 0.

Entropy Fisher information

S(U ) = C ln U FS(FU ) = 2
√

CFU

U (S) = eS/C FU (FS) = 1
4C
F2

S

�(β) = C(1 − ln(β/C)) U (β) = C/β

F (T ) = CT (1 − ln(CT )) FF (T ) = 1
C
U 2

C/β2:

pÛ (Û ; β) = βC

�(C)
ÛC−1e−βÛ

= eC ln β−ln �(C)−βÛ−(1−C) ln(Û ). (17)

The fundamental relations and the resulting thermodynamic
potentials are reported in Table II and illustrated graphically
in Fig. 1. The symmetries of the Legendre transformations,
S(U ) and �(β) as well as FU (FS) and FF (T ), respectively,
are clearly visible, in the first case being logarithmic func-
tions and in the second case being quadratic functions (see
Table II).

VI. CONNECTION TO PREVIOUS WORK

The above results are directly connected to the previous
work by Friden, Soffer, Plastino, and collaborators [17–21] on
the Fisher information and the Legendre structure, the novelty
here being in the explicit expressions for various quantities
related to the canonical ensemble and the connection with
the properties of the exponential families of distributions and
their Legendre transformation symmetries (especially evident
in the case of a constant heat capacity). The connections
to the Bayesian interpretations of statistical mechanics and
thermodynamics and the related uncertainty relationships have
also been mentioned in Sec. IV, but the link to the other lines
of work mentioned in the introduction remains to be discussed.

We begin with the work of Biot [13,14] and Guo et al.
[12,15]. For the case of a constant heat capacity, (4) gives a
Fisher informationFU which is quadratic with temperature and
corresponds to the function used by Biot [13,14] and Guo et al.
[12,15] in their variational formulation of heat conduction,
as well as to the quantity obtained in [22]. In the general
case of C(T ), FF is found to be equal to the negative of
twice the entransy function of Guo et al. [12,15], obtained
there following Biot and using a formal analogy with electrical
capacitance.

Note also that for a constant heat capacity, because
of (20), one has that, for both reversible and irreversible
transformations between equilibrium states,

� lnFU = −�S

C
. (18)

Thus, considering the classical process of heat flow between
two bodies of equal mass and heat capacity, initially at
equilibrium at different temperatures (e.g., [1], p. 101), heat
conduction always increases both the entropy and FU when
approaching equilibrium.

042126-3



A. PORPORATO PHYSICAL REVIEW E 89, 042126 (2014)

F
0.5 0.5 1.0 1.5 2.0

U

0.5

0.5

1.0

1.5

S U

F
0.5 0.5 1.0 1.5 2.0

S

0.5

0.5

1.0

1.5

U S

S

0.5 0.5 1.0 1.5 2.0
Β

0.5

0.5

1.0

1.5

U

0.5 0.5 1.0 1.5 2.0
T

0.5

0.5

1.0

1.5

F T

U

FF
0.5 0.5 1.0 1.5 2.0

FU

0.5

0.5

1.0

1.5

FS

U

FF

0.5 0.5 1.0 1.5 2.0
FS

0.5

0.5

1.0

1.5

FU

FS

0.5 0.5 1.0 1.5 2.0
Β

0.5

0.5

1.0

1.5

U

FU

0.5 0.5 1.0 1.5 2.0
T

1.5

1.0

0.5

0.5
FF

FIG. 1. (Color online) Sketch of the various thermodynamic
functions and their Legendre transforms for the case of a constant
heat capacity.

It should be noted, however, that, for the general case C(T ),
Biot (see [14], p. 86) used a different function, defined as

FB =
∫ U

0
T (U ′)dU ′, (19)

where T (U ) is the inverse function of U (T ) = ∫ T

0 C(T ′)dT ′.
While FB is proportional to FU in Sec. II and is equal to the
entransy for a constant heat capacity, i.e.,

FB = 1
2FU = 1

2CT 2, (20)

it is not so in the general case. To find such a link, consider
first that, using (5) and for reversible heat flow only,

−dβFU = dU = dQrev = T dS, (21)

so that

FU

T
= T 2 dS

dT
. (22)

Since from (19), dFB/dU = T , then

dFB

dS
= dU

dS

dFB

dU
= T 2, (23)

and finally, combining (22) and (23),

FU = T
dFB

dT
, (24)

which is formally analogous to the relationship between the
heat capacity and the entropy, C = T dS/dT .

We conclude by discussing the link of the present analysis
with Serrin’s theory [3,4,41], which provides an alternative for-
mulation of thermodynamics based on heat (i.e., temperature)
and heat flow, without assuming internal energy and entropy
as primitive concepts (similar concepts were developed by
Silhavy [5,6]; see also [7]). The theory is formulated using an
accumulation function, A(T ), defined for cyclic processes as
the total heat added in a process at a temperature lower than
or equal to T , ∮

dQ

T
=

∫ ∞

0

A(T )

T 2
dT � 0. (25)

Based on this definition, A(T ) is 0 in adiabatic processes
as well as whenever the input and output of heat cancel
at every temperature, while it is a step function for the
isothermal process. Considering an infinitesimal reversible
transformation with heat transfer only,

dS = dQrev

T
= A(T )

T 2
dT = dFB

T 2
. (26)

Thus, it follows that

A(T ) = dFB

dT
= CT = 1

T
FU , (27)

which establishes our last connection to previous work.

VII. CONCLUSIONS

We have highlighted in detail some interesting connections
among alternative formulations of equilibrium thermodynam-
ics. Following the original spirit of Biot’s work, the elegant
structure endowed by the properties of the exponential family
distributions may prove to be also practically useful for the
solution of problems of nonequilibrium thermodynamics using
variational formulations.

Our considerations have been limited to the case of heat
processes at constant volume and mass in simple systems.
A logical way to extend the analysis to processes including
mechanical work or mass flow would be to consider gen-
eralized Gibbs ensembles [1,42,43], along with their Fisher
information matrices. Such an extension and its consequences
for field theories of thermodynamics, especially for the case in
which mechanical work is involved, as in compressible fluids,
will be explored in future contributions.
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APPENDIX

For convenience, we briefly review here the main definitions
and properties related to the Fisher information and the
exponential family distributions. For the case of interest
here, a univariate probability density function, p(x̂; θ ), with
one parameter θ , the maximum likelihood estimate of the
parameter θ̂ , based on n independent observations of x, solves
for θ = θ̃ the equation

∂

∂θ

(
n∑

i=1

ln p(x̂i ; θ )

)
= 0, (A1)

where the left-hand side is the so-called score function,
considered as a function of θ for given (observed) values x̂i

assumed to be extracted from the distribution p(x̂; θ ). The
score can be shown to have zero mean, while its variance is
the Fisher information [25],

Fx(θ ) =
∫ (

∂ ln p(x̂; θ )

∂θ

)2

p(x̂; θ )dx̂

= −
∫

∂2 ln p(x̂; θ )

∂θ2
p(x̂; θ )dx̂, (A2)

where the second form follows by integration by parts and
holds under suitable regularity conditions met here. The
Fisher information is thus the expected curvature of the log-
likelihood: the greater the curvature, the sharper the inference
for a given number of observations.

Exponential family distributions are typically defined as
[24]

p(x̂; θ ) = e−φ(θ)+θx̂+α(x̂), (A3)

where θ is known as the canonical parameter. The cumulant
generating function is κ(t) = φ(t − θ ) − φ(t), so that the
cumulants can be obtained directly by differentiating φ(θ )
with respect to θ ,

κr = drφ

dθr
, (A4)

where κr is the rth cumulant; for this reason, φ(θ ) is called
the cumulant transform [24]. Its second derivative can also be
shown to be equal to the Fisher information. As a result,

∂φ

∂θ
= 〈x̂〉 = x (A5)

and

∂2φ

∂θ2
= Fx(θ ) = 〈(x̂ − x)2〉 = σ 2. (A6)

The form used in thermodynamics, (1), differs in the sign of
the canonical parameter,

p(x̂; ϑ) = e−ϕ(ϑ)−ϑx̂−h(x̂). (A7)

This sign difference is responsible for the appearance of a sign
change in front of the the odd cumulants, when adopting (1);
see Eq. (2).

A final important result is that φ(θ ) is a convex function
whose Legendre transform is the maximized log-likelihood
function (Theorem 6.1, Eq. (6.42), in [24]). The Legendre
transform used in mathematics and statistics, φ∗(x), is different
from the one used in thermodynamics, φ†(x), which uses the
opposite sign:

φ∗(x) = θx − φ(θ ) = −φ†(x). (A8)

Both φ(θ ) and φ∗(x) can be differentiated infinitely often, and
(Theorem 6.1, Eq. (6.42), in [24])

∂φ

∂θ
= x,

∂φ∗

∂x
= θ, (A9)

∂2φ

∂θ2
= σ 2,

∂2φ∗

∂x2
= 1

σ 2
. (A10)

In thermodynamics, the sign difference in the exponential
family distributions, that is, θ = −ϑ and φ(θ ) = ϕ(ϑ) =
ϕ(−θ ), results in

∂ϕ

∂ϑ
= −x (A11)

[see Eq. (2)] and

∂2ϕ

∂ϑ2
= σ 2 (A12)

[see Eq. (3)]. Moreover, combined with the different conven-
tion for the Legendre transform, it follows that

ϕ†(x) = ϕ(ϑ) − ϑ
∂ϕ

∂ϑ
= φ(θ ) − θx = −φ∗(x), (A13)

whence

∂ϕ†

∂x
= −θ = ϑ, (A14)

as in Eq. (11), and

∂2ϕ†

∂x2
= − 1

σ 2
,

as in (13).
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