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Equation of state of sticky-hard-sphere fluids in the chemical-potential route
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The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles,
is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route
(μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results
corresponding to the three-dimensional case (Baxter’s model) are derived within the Percus-Yevick approximation
by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling
parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ

route and compared with predictions from other thermodynamics routes and from computer simulations. The
results show that the μ route yields a general better description than the virial, energy, compressibility, and
zero-separation routes.
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I. INTRODUCTION

The chemical potential of a fluid can be evaluated as
the change in the Helmholtz free energy when a new
particle is added to the system through a coupling parameter
[1–4]. The coupling parameter determines the strength of the
interaction of the added particle to the rest of the system
and usually varies between zero (no interaction) and unity
(full interaction). This method provides the equation of state
(EOS) of the fluid in the so-called chemical-potential route
(or μ route). This can be considered as the fourth route in
addition to the better known routes based on the pressure
(or virial), energy, and compressibility equations [5]. It must
be noted that all these ways to obtain the EOS are formally
equivalent.

In practice, the various thermodynamic routes have been
mostly developed, under the assumption of additive pair
interactions, using the so-called radial distribution function
(RDF) g(r). Within this class of interactions, the evaluation
of thermodynamic properties of a classical fluid reduces
to finding the corresponding RDF. Since all well-known
theoretical methods to obtain g(r) give approximate solutions,
with the exception of a few simple fluid models (for example,
one-dimensional systems whose particles interact only with
their nearest neighbors [6]), the EOS obtained from different
routes differ in general from one another.

The μ route has been largely unexplored, except in the
scaled-particle theory [7–11]. Recently, one of us used this
method to obtain a hitherto unknown EOS for the hard-sphere
(HS) model in the Percus-Yevick (PY) approximation [12].
This method was then extended to multicomponent fluids for
arbitrary dimensionality, interaction potential, and coupling
protocol [13]. Its application to HS mixtures allowed us to
provide a new EOS of this classical model in the PY approxi-
mation [13] and to derive the associated fourth virial coefficient
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in the hypernetted-chain approximation [14]. Evidently, the μ

route represents a helpful tool for the construction of new EOS
and the analysis of thermodynamic properties of fluids. It is
therefore of great interest to consider its application to non-HS
models.

In this paper we use the μ route to evaluate the EOS
of the three-dimensional sticky-hard-sphere (SHS) model
introduced by Baxter [15]. In this fluid, impenetrable particles
of diameter σ interact through a square-well potential of
infinite depth and vanishing width. The study of this pair
potential model has two advantages. First, it admits an exact
analytical solution to the Ornstein-Zernike equation with the
PY closure [15], its thermodynamic properties being described
in terms of two simple parameters, the packing fraction η

and a stickiness parameter α [16]. Second, the SHS model
has proved to provide an excellent starting point for the
study of colloidal systems with short-range attraction [17–21],
interactions between protein molecules in solution [22], and
other interesting applications [23,24].

We will exploit the known exact solution of the PY
integral equation for both single and multicomponent SHS
fluids [15,25] to obtain the EOS through the μ route and
compare the outcome with the three standard routes (virial,
energy, and compressibility), with the less known zero-
separation (ZS) route [26,27], and with Monte Carlo (MC)
simulations [28]. As we will see, the μ route EOS in the
PY approximation changes with the choice of the prescription
followed to switch on the extra particle to the rest of the system.
Despite this, the spread is typically much smaller than the
one existing among the different routes. Interestingly enough,
the μ route generally provides the best results, including the
gas-liquid transition properties of the fluid.

The paper is organized as follows. In Sec. II we give the
mathematical formulation of the μ route for SHS fluids. In
Secs. III and IV we use the known exact and PY solutions of
the SHS system in one and three dimensions, respectively to
derive the μ route EOS of those systems. Section V is reserved
for discussions of the results. The relevant calculations are
presented in a series of appendixes.
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II. CHEMICAL-POTENTIAL ROUTE

We consider a d-dimensional system of volume V contain-
ing N = ρV spherical particles of diameter σ with surface
adhesion. The SHS interaction potential φ(r) between two
particles with centers separated a distance r is defined by

e−βφ(r) = �(r − σ ) + ασδ(r − σ ), (2.1)

where β = 1/kBT , kB , and T being the Boltzmann constant
and the absolute temperature, respectively. The dimensionless
parameter α measures the strength of surface adhesion (stick-
iness). The equality in (2.1) must be interpreted as the limit
of an increasingly deeper (ε → ∞) and narrower (� → 0)
square-well potential of depth ε and (relative) width � with

α = eβε� (2.2)

kept constant. The stickiness parameter α is related to the
Baxter temperature τ [15] by τ = 1/12α. The pure HS model
is recovered from Eq. (2.1) in the limit α → 0.

We now include into the system an additional particle (the
solute). Its interaction with any other particle in the fluid (the
solvent) is given by

e−βφξ (r) = �(r − ξσ ) + αξξσδ(r − ξσ ), (2.3)

where ξ plays the role of a coupling parameter and αξ is a
continuous function of ξ encoding the strength of the solute-
solvent attractive force. It runs from αξ = 0 at ξ = 0 to αξ = α

at ξ = 1.
For large N , the excess chemical potential μex = μ − μid,

μid being the contribution of the corresponding ideal fluid, can
be written as follows [2–4,12,13]

− βμex = ln
Q

(ξ=1)
N+1

Q
(ξ=0)
N+1

, (2.4)

where

Q
(ξ )
N+1 = 1

V N+1

∫
drN

∫
dr0 e−β�

(ξ )
N+1(rN+1) (2.5)

is the configurational integral of N solvent particles plus one
solute particle with a coupling parameter ξ . Here, rN+1 =
{rN,r0}, where rN refers to all the translational coordinates of
the N solvent particles and r0 refers to the coordinates of the
solute particle. Furthermore,

�
(ξ )
N+1(rN+1) = 1

2

N∑
i �=j

φ(rij ) +
N∑

i=1

φξ (r0i) (2.6)

is the total potential energy, rij being the distance between
particles i and j . Hence,

Q
(ξ )
N+1 = 1

V N+1

∫
drNe−β�N (rN )

∫
dr0

N∏
i=1

e−βφξ (r0i ), (2.7)

where �N (rN ) denotes the solvent potential energy.
For convenience, we decompose the right-hand side of

Eq. (2.4) into two separate contributions,

− βμex = ln
Q

( 1
2 )

N+1

Q
(0)
N+1

+
∫ 1

1
2

dξ
∂ ln Q

(ξ )
N+1

∂ξ
. (2.8)

Henceforth, for the sake of simplicity, we adopt σ = 1. The
two contributions in Eq. (2.8) are worked out as follows. First,
with Eq. (2.3), we write

N∏
i=1

e−βφξ (r0i ) =
N∏

i=1

�(r0i − ξ )

+ αξξ

N∑
i=1

δ(r0i − ξ )
∏
j �=i

�(r0j − ξ )

+ (αξξ )2
N∑

i �=j

δ(r0i − ξ )δ(r0j − ξ )

×
∏
k �=i,j

�(r0k − ξ ) + O
(
α3

ξ

)
. (2.9)

For ξ < 1
2 , the N surfaces defined by r0i = ξ (i = 1, . . . ,N)

do not overlap, so that the condition r0i = ξ implies r0j >

ξ ∀j �= i. As a consequence, the integrals in (2.7) of order
two or higher in αξ vanish. On the other hand, integration of∏N

i=1 �(r0i − ξ ) over r0 gives the free volume of the solute
particle,∫

dr0

N∏
i=1

�(r0i − ξ ) = V − N�ξ, ξ <
1

2
, (2.10)

where �ξ = [πd/2/�(1 + d/2)]ξd is the volume of a d sphere
of radius ξ . Furthermore,∫

dr0 δ(r0i − ξ )
∏
j �=i

�(r0j − ξ ) = �ξ, ξ <
1

2
, (2.11)

�ξ = ∂�ξ/∂ξ = d�ξ/ξ being the surface of a d sphere of
radius ξ . Therefore,∫

dr0

N∏
i=1

e−βφξ (r0i ) = V − N�ξ + Nαξξ�ξ , ξ <
1

2
.

(2.12)

With this result, Eq. (2.7) yields

Q
(ξ )
N+1 = [1 − ρ�ξ (1 − dαξ )]QN, ξ <

1

2
, (2.13)

where

QN = 1

V N

∫
drNe−β�N (rN ) (2.14)

is the configurational integral of the solvent. As shown in
Appendix A, the case ξ = 1

2 is singular if α 1
2

�= 0. This
difficulty can be overcome by the choice α 1

2
= 0. Therefore,

taking into account that Q
(0)
N+1 = QN , and taking the limit

ξ → 1
2 in Eq. (2.13), the first term on the right-hand side of

Eq. (2.8) becomes

ln
Q

( 1
2 )

N+1

Q
(0)
N+1

= ln(1 − η), (2.15)

where

η ≡ ρ� 1
2

(2.16)

is the packing fraction.
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For ξ > 1
2 one must follow another strategy because

integration over r0 in Eq. (2.7) depends upon the coordinates
of all the solvent particles. In this case, we consider

∂e−β�
(ξ )
N+1(rN+1)

∂ξ
= e−β�N (rN ) ∂

∏N
i=1 e−βφξ (r0i )

∂ξ

= e−β�N (rN )
N∑

i=1

∂e−βφξ (r0i )

∂ξ

N∏
j �=i

e−βφξ (r0j )

= e−β�
(ξ )
N+1(rN+1)

N∑
i=1

eβφξ (r0i )
∂e−βφξ (r0i )

∂ξ
.

(2.17)

The solute-solvent RDF is expressed as [3]

gξ (r01) = V −(N−1)

Q
(ξ )
N+1

∫
dr2 · · ·

∫
drN e−β�

(ξ )
N+1(rN+1). (2.18)

It follows from Eqs. (2.7), (2.17), and (2.18) that

∂ ln Q
(ξ )
N+1

∂ξ
= V −(N+1)

Q
(ξ )
N+1

∫
drN+1 ∂e−β�

(ξ )
N+1(rN+1)

∂ξ

= 1

V 2

N∑
i=1

∫
dr0

∫
dri yξ (r0i)

∂e−βφξ (r0i )

∂ξ

= ρ

∫
dr yξ (r)

∂e−βφξ (r)

∂ξ

= d2dηMξ (η,α), (2.19)

where

yξ (r) ≡ gξ (r)eβφξ (r) (2.20)

is the solute-solvent cavity function,

Mξ (η,α) ≡
∫ ∞

0
dr rd−1yξ (r)

∂e−βφξ (r)

∂ξ
, (2.21)

and in the last step of Eq. (2.19) we have used spherical
coordinates.

Finally, inserting Eqs. (2.15) and (2.19) into Eq. (2.8), we
obtain

βμex(η,α) = − ln(1 − η) − d2dη

∫ 1

1
2

dξ Mξ (η,α). (2.22)

This gives the excess chemical potential of d-dimensional SHS
fluids as obtained from the coupling parameter procedure. To
have an expression for Mξ more explicit than Eq. (2.21), we
note that, according to Eq. (2.3),

∂e−βφξ (r)

∂ξ
= ∂(αξ − 1)ξ

∂ξ
δ(r − ξ ) − αξξ

∂δ(r − ξ )

∂r
. (2.23)

Thus,

Mξ (η,α) = ∂(αξ − 1)ξ

∂ξ
ξd−1yξ (ξ ) + αξξ

∂[rd−1yξ (r)]

∂r

∣∣∣∣
r=ξ

.

(2.24)

We may now derive the compressibility factor Z ≡ βp/ρ

(p being the pressure) in the μ route. The familiar thermody-
namic relation (

∂p

∂ρ

)
T

= ρ

(
∂μ

∂ρ

)
T

, (2.25)

can be expressed as

∂[η(Z − 1)]

∂η
= η

∂(βμex)

∂η
, (2.26)

so that

Z(η,α) = 1 + βμex(η,α) −
∫ 1

0
dt βμex(ηt,α). (2.27)

Thus, making use of Eq. (2.22), we obtain

Z(μ)(η,α) = − ln(1 − η)

η
− d2dη

∫ 1

1
2

dξ

[
Mξ (η,α)

−
∫ 1

0
dt tMξ (ηt,α)

]
. (2.28)

This constitutes the EOS of d-dimensional SHS obtained from
the μ route (hence the superscript in Z(μ)). The better known
virial, energy, and compressibility routes are worked out in
Appendix B.

III. STICKY HARD RODS: EXACT RESULTS

As a test of the correctness of Eq. (2.22), we prove in this
section that it leads to the exact EOS for the one-dimensional
system (d = 1). In that case, Eq. (2.22) reduces to

βμex(η,α) = − ln(1 − η) − 2η

∫ 1

1
2

dξMξ (η,α) (3.1)

with

Mξ (η,α) = ∂(αξ − 1)ξ

∂ξ
yξ (ξ ) + αξξy

′
ξ (ξ ). (3.2)

As shown in Appendix C,

yξ (ξ ) = βp/η

1 + βpαξξ
, y ′

ξ (ξ ) = − (βp)2/η

1 + βpαξξ
. (3.3)

Thus, Eq. (3.2) may be written in the form

Mξ (η,α) = −βp

η
+ 1

η

∂

∂ξ

ln(1 + βpαξξ ). (3.4)

Then, Eq. (3.1) becomes

βμex(η,α) = − ln(1 − η) + βp − 2 ln(1 + βpα). (3.5)

This result is exact and does not depend on the explicit form
of αξ in the interval 1

2 < ξ < 1. Making use of Eq. (C4), it is
straightforward to check that Eq. (2.26) is indeed satisfied.

IV. STICKY HARD SPHERES: PERCUS-YEVICK THEORY

The excess chemical potential for three-dimensional
SHS fluids (d = 3) is obtained from Eqs. (2.22) and
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FIG. 1. (Color online) The αξ stickiness parameter scaled by α,
in the prescriptions A, B, and C given by Eq. (4.4).

(2.24) as

βμex(η,α) = − ln(1 − η) − 24η

∫ 1

1
2

dξ Mξ (η,α), (4.1)

Mξ (η,α) = ∂(αξ − 1)ξ

∂ξ
ξ 2yξ (ξ ) + αξξ

∂[r2yξ (r)]

∂r

∣∣∣∣
r=ξ

.

(4.2)

The associated μ route compressibility factor is given by [see
Eq. (2.28)]

Z(μ)(η,α) = − ln(1 − η)

η
− 24η

∫ 1

1
2

dξ

[
Mξ (η,α)

−
∫ 1

0
dt tMξ (ηt,α)

]
. (4.3)

The evaluation of Eq. (4.2) requires the contact values of the
solute-solvent cavity function yξ (r) and its derivative ∂ryξ (r).
These may be obtained using the PY approximation for an
SHS binary mixture (see Appendix D). In particular, yξ (ξ )
and y ′

ξ (ξ ) are given by Eqs. (D19) and (D20), respectively.
For an explicit evaluation of Eqs. (4.1)–(4.3) we need to

specify the ξ dependence of αξ (within the constraints α 1
2

= 0
and α1 = α). In this paper, we shall consider results based on

three representative prescriptions:

αξ =
⎧⎨
⎩

(2ξ − 1)2α, (A),
(2ξ − 1)α, (B),√

2ξ − 1α, (C).
(4.4)

These three protocols are depicted in Fig. 1. In all of them,
the solute-solvent stickiness monotonically grows from zero
to the solvent-solvent value as the solute diameter (2ξ − 1)
grows from zero to the solvent diameter (σ = 1). At a given
solute diameter, the strength of the solute-solvent attraction
increases when going from A to C.

Since the PY integral equation is an approximate theory, a
common RDF is expected to yield different EOSs depending
on the route followed. In the case of the μ route, as will be
seen below, an extra source of thermodynamic inconsistency
arises: the EOS depends on the choice for the protocol αξ .

A. Virial expansion

A standard method of examining different approximations
in statistical mechanics is to compare the successive terms in
the virial expansion of the compressibility factor. For SHS
fluids,

Z(η,α) = 1 +
∞∑

j=2

bj (α)ηj−1. (4.5)

The virial coefficients bj (α) in the virial, energy, compressibil-
ity, and chemical-potential routes can be respectively evaluated
from Eqs. (B4), (B10), (B8), and (4.3), complemented by
the PY results summarized in Appendix D. The virial coef-
ficients corresponding to an additional route, the so-called ZS
route [26,27], can be derived within the PY approximation
from Eq. (D14).

All the routes in the PY approximation yield the exact
second virial coefficient:

b2(α) = 4 − 12α. (4.6)

As for the third virial coefficient, its exact expression,

b3(α) = 10 − 60α + 144α2 − 96α3, (4.7)

is recovered from the virial, energy, compressibility, and
chemical-potential routes, but not from the ZS route. The ZS
result is

b
(ZS)
3 (α) = − 4

3 + 8α + 96α2 − 192α3, (4.8)

which is especially wrong in the HS limit (α → 0).

TABLE I. Numerical values of the coefficients bHS
4 and b4,i [cf. Eq. (4.9)].

bHS
4 b4,1 b4,2 b4,3 b4,4 b4,5 b4,6

Exact 18.36477 −165.283 880.416 −2623.10 3607.65 −1576.39 −194.468
v 16 −144 864 −2784 4032 −2304 0
e Undetermined −144 756 −2448 3888 −2073.6 0
c 19 −171 864 −2448 3456 −1728 0
ZS 5 −45 216 −1296 5184 −5184 0
μA 16.75 −150.75 853.795 −2711.64 4097.84 −2208.61 0
μB 16.75 −150.75 860.384 −2737.15 4094.45 −2234.15 0
μC 16.75 −150.75 866.194 −2759.45 4090.70 −2261.45 0
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FIG. 2. (Color online) Comparison of the exact fourth virial
coefficient b4(α) with the PY predictions in the virial (v), energy
(e), compressibility (c), zero-separation (ZS), and chemical-potential
(μA, μB, and μC) routes.

The exact fourth virial coefficient is a sixth-degree polyno-
mial in α [29], i.e.,

b4(α) = bHS
4 +

6∑
i=1

b4,iα
i, (4.9)

where the numerical coefficients are given by the first row
of Table I. The PY predictions for b4(α) depend on the
thermodynamic route. They have the structure of Eq. (4.9),
except that b4,6 = 0. The corresponding numerical coefficients
are displayed in Table I. Note that the energy route is unable
to fix the HS EOS, so that the coefficients bHS

j remain
undetermined in that route. All the coefficients b4,i derived
from the μ route are rational numbers although a limited
number of digits is shown in Table I. Note that the three
protocols of the μ route agree in the values of bHS

4 = 67
4 and

b4,1 = − 603
4 . However, the coefficients b4,2–b4,5 depend on the

choice of αξ . For an arbitrary function αξ , they are

b
(μ)
4,2 = 837

[
1 + 12

31

∫ 1

1
2

dξ

(
ξ 2 − 1

4

)
ξ 2α2

ξ

α2

]
, (4.10)

b
(μ)
4,3 = −2646

[
1 + 24

49

∫ 1

1
2

dξ

(
ξ 2 + ξ 2αξ

6α
− 3

8

)
ξ 2α2

ξ

α2

]
,

(4.11)

b
(μ)
4,4 = 4104

[
1 − 3

19

∫ 1

1
2

dξ

(
1 − 4ξ 2αξ

3α

)
ξ 2α2

ξ

α2

]
, (4.12)

b
(μ)
4,5 = −2160

(
1 + 2

5

∫ 1

1
2

dξ
ξ 4α3

ξ

α3

)
. (4.13)

The three protocols in Eq. (4.4) have the common form
αξ = (2ξ − 1)qα with q = 0.5, 1, and 2 for C, B, and A,
respectively. Taking q > 0 as a free parameter and using
Eqs. (4.10)–(4.13), it is possible to find the optimal value
of q that makes b

(μ)
4 (α) = bexact

4 (α) for a given value α >

0.282. For instance, the optimal values are q = 0.199, 1.208,
2.076, 3.702, and 4.997 for α = 0.3, 0.5, 0.7, 0.9, and 1,
respectively. For α < 0.282 the mathematical solutions of
b

(μ)
4 (α) = bexact

4 (α) are q < 0, but these are nonphysical values
violating the condition α 1

2
= 0.

Figure 2 compares the exact b4(α) with various PY routes,
where the Carnahan-Starling (CS) [5] value bHS

4 = 18 has
been taken in the case of the energy route. A very poor
behavior of the ZS route is observed. In what concerns the
other four routes, small deviations occur among them for low
and moderate stickiness (α � 0.35), a good agreement with
the exact values being found in that range. For α � 0.35,
however, larger discrepancies occur, with the energy and
virial routes showing the most extreme deviations with respect
to the exact solution. The μ route predictions lie between
the virial and the compressibility ones, becoming closer to
the exact values as a softer stickiness prescription is used
(protocol A).

Although, to the best of our knowledge, the fifth virial
coefficient is not exactly known, it is worthwhile comparing
the different PY predictions for it. They have the polynomial
structure

b5(α) = bHS
5 +

7∑
i=1

b5,iα
i, (4.14)

the coefficients being presented in Table II. Again, all the
coefficients are rational numbers. The dependence of b5(α) on
the stickiness parameter is shown in Fig. 3 (with the CS choice
bHS

5 = 28 for the energy route). As expected, the influence of
the thermodynamic route on b5(α) is stronger than in the case
of b4(α). The general shapes of b5 in the μ and compressibility
routes are intermediate between those in the virial and energy
routes.

TABLE II. Numerical values of the coefficients bHS
5 and b5,i [cf. Eq. (4.14)].

bHS
5 b5,1 b5,2 b5,3 b5,4 b5,5 b5,6 b5,7

v 22 −264 2700 −16 920 63 072 −134 784 152 064 −69 120
e Undetermined −264 2160 −13 104 51 840 −120 268.8 138 240 −59 245.7
c 31 −372 2916 −15 048 50 112 −100 224 103 680 −41 472
ZS −5.6 67.2 86.4 −3974.4 29 030.4 −124 416 248 832 −165 888
μA 23.8 −285.6 2680.78 −16 322.8 61 654.4 −135 696.4 152 203.3 −65 563.1
μB 23.8 −285.6 2715.20 −16 592.7 62 400.3 −136 366.0 153 001.7 −66 620.8
μC 23.8 −285.6 2745.36 −16 831.5 63 063.1 −136 973.3 153 850.2 −67 765.8
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FIG. 3. (Color online) Fifth virial coefficient b5(α) as predicted
by the PY theory in the virial (v), energy (e), compressibility (c),
zero-separation (ZS), and chemical potential (μA, μB, and μC) routes.

B. Weakly sticky limit

As a complement of the virial expansion (4.5), it is of
interest to examine the leading terms in the series expansion

Z(η,α) = ZHS(η) +
∞∑
i=1

Zi(η)αi (4.15)

of the compressibility factor in powers of the stickiness
parameter. Obviously, the zeroth-order coefficient in the α

expansion is just the compressibility factor of the pure HS sys-
tem. Equation (4.15) can be interpreted as a high-temperature
expansion.

Making use of the results of Appendix D in
Eqs. (B4), (B10), (B8), (D14), and (4.3), the first-order and
second-order coefficients from the different routes can be
derived. The results are displayed in Table III. Interestingly,
one has Z

(v)
1 (η) = Z

(e)
1 (η), thus generalizing the results b

(v)
4,1 =

b
(e)
4,1 and b

(v)
5,1 = b

(e)
5,1 observed in Tables I and II. This reinforces

that the natural extension of the energy route to HS fluids is
the virial EOS [30,31].

The HS EOS Z
(μ)
HS (η) was already derived in Ref. [12]. We

observe that Z
(μ)
1 (η) is protocol independent. This generalizes

to any order in density the behavior observed for b
(μ)
4,1 and b

(μ)
5,1

FIG. 4. (Color online) Coefficients Z1(η) and Z2(η) in the α

expansion of Z(η,α) [cf. Eq. (4.15)] from the PY equation in the
energy (e), compressibility (c), and chemical-potential (μA, μB, and
μC) routes, relative to the coefficients Z

(v)
1 (η) and Z

(v)
2 (η) obtained in

the virial route.

in Tables I and II, respectively. The expression of Z
(μ)
2 (η) for

arbitrary αξ is

Z
(μ)
2 (η) = −540

ln(1−η)

η
−18(30 − 105η + 122η2 − 77η3)

(1−η)4

− 3888
∫ 1

1
2

dξ ξ 2

(
ξ − 1

2

)(
ξ − 1

6

)[
ln(1 − η)

η

+
1 − 7

2η + 13
3 η2 − 13ξ− 11

6
6ξ−1 η3

(1 − η)4

]
α2

ξ

α2
. (4.16)

The coefficients Z1(η) and Z2(η), relative to the virial-
route predictions, obtained from various PY routes (except
the ZS one, in order to avoid distortion of the scales) are
shown in Fig. 4. The discrepancies grow as density increases.
In particular, the largest inconsistencies occur between the
energy and compressibility routes. On the other hand, the μ

TABLE III. Expressions for ZHS(η) and the coefficients Z1(η) and Z2(η) [cf. Eq. (4.15)].

ZHS(η) Z1(η) Z2(η)

v
1+2η+3η2

(1−η)2 − 12η(1+2η)
(1−η)3

36η2(2+η)(2+3η)
(1−η)4

e Undetermined − 12η(1+2η)
(1−η)3

36η2(4+5η)
(1−η)4

c
1+η+η2

(1−η)3 − 3η(2+η)2

(1−η)4
36η2(2+η)2

(1−η)5

ZS − ln[(1+2η)(1−η)4]
η

− 1 −3 ln[(1+2η)(1−η)4]
η

− 6(1+5η)
(1−η)(1+2η) −3 ln[(1+2η)5(1−η)64]

η
− 18(9+25η−17η2−71η3)

(1−η)2(1+2η)2

μA −9 ln(1−η)
η

− 16−31η

2(1−η)2 −27 ln(1−η)
η

− 3(18−37η+49η2)
2(1−η)3 −648 ln(1−η)

η
− 9(8064−28 224η+33 152η2−20 257η3)

112(1−η)4

μB −9 ln(1−η)
η

− 16−31η

2(1−η)2 −27 ln(1−η)
η

− 3(18−37η+49η2)
2(1−η)3 − 96 363

140
ln(1−η)

η
− 27(7138−24 983η+29 438η2−17 820η3)

280(1−η)4

μC −9 ln(1−η)
η

− 16−31η

2(1−η)2 −27 ln(1−η)
η

− 3(18−37η+49η2)
2(1−η)3 − 28 917

40
ln(1−η)

η
− 9(6426−22 491η+26 566η2−15 967η3)

80(1−η)4
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route deviates only slightly from the virial route, especially in
the case of Z2.

C. Finite density and stickiness

After having examined the low-density and low-stickiness
(or high-temperature) regimes, we now consider the full non-
perturbative regime. The density dependence of the reduced
pressure ηZ(μ) is plotted in Fig. 5 for different values of α

and for the three protocols (4.4). Of course, in the limit of
zero stickiness (α = 0), the choice of the protocol becomes
irrelevant and one recovers the EOS Z

(μ)
HS (η) (see Table III)

corresponding to the PY theory in the μ route [12]. As α

increases, the pressure decreases with respect to the HS value
and the influence of the protocol is practically negligible up
to α ≈ 0.5. For higher stickiness, however, the values of Z(μ)

are increasingly sensitive to the protocol chosen. We observe
that, as expected on physical grounds, the stronger the relative
stickiness αξ/α, the smaller the pressure.

The three higher values of α in Fig. 5 correspond to the
gas-liquid critical values α(v)

c , α(e)
c , and α(c)

c predicted by the PY
approximation in the virial, energy, and compressibility routes,
respectively (see below). In fact the kink in Z(μ) at α = α(c)

c

and η = η(c)
c 
 0.121 32 reflects the fact that (η(c)

c ,α(c)
c ) is the

critical point for the existence of real solutions of the PY
equation (see Appendix D).

In Fig. 6 we compare MC simulations at α = 5
9 [28] with

PY predictions from the different routes. Since, as discussed
before, the energy route leaves the integration constant ZHS(η)
undetermined, henceforth the CS EOS [5]

ZCS
HS(η) = 1 + η + η2 − η3

(1 − η)3
(4.17)

will be taken to complete the determination of Z(e)(η,α) via
Eq. (B8), despite the fact that the choice Z

(e)
HS = Z

(v)
HS would be

more consistent [30,31]. The virial, compressibility, and ZS

FIG. 5. (Color online) Reduced pressure ηZ(μ) of SHS fluids, as
obtained from the PY solution in the μ route according to the protocols
A (- · - · - ·), B (— · — · — ·), and C (· · · · · · ). The values of α are
(from left to right) α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, α(v)

c 
 0.612 418,
α(e)

c 
 0.703 209, and α(c)
c 
 0.853 553.

FIG. 6. (Color online) Reduced pressure ηZ as a function of the
packing fraction for SHS fluids at α = 5

9 
 0.556 (τ = 3
20 = 0.15).

The curves correspond to PY results from various routes as indicated
on the plot. Open circles represent MC calculations [28].

data have been obtained from Eqs. (B4), (B10), and (D14),
respectively. In all the cases, use has been made of the PY
solution detailed in Appendix D.

We observe that in the low-density range (η � 0.15) all
PY routes and simulation data agree very well. For higher
densities, the ZS pressure grows too rapidly and the curves
corresponding to the three different protocols of the μ route
remain rather close in comparison with those from the virial,
energy, and compressibility routes, which show a larger spread.
In the range 0.2 � η � 0.4, the μ route gives the best fits to the
simulation data. In the same region, Z(e) and Z(c) overestimate
the simulation values, while Z(v) underestimates them. Up
to η ≈ 0.4, one has Z(v) < Z(μC) < Z(μB) < Z(μA) < Z(e) <

Z(c). Finally, there is a rather strong disagreement of all the PY
routes at high densities, 0.4 � η � 0.5, where the simulation
data exhibit lower pressure values than the theoretical ones.
Aside from the ZS curve, the compressibility route shows
the largest deviations from MC results on the whole range of
studied densities.

D. Gas-liquid transition

The two highest values of α in Fig. 5 show a domain
of mechanical instability, ∂(ηZ)/∂η < 0 (i.e., ∂p/∂ρ < 0),
which indicates a phase transition according to the μ route
in the various protocols analyzed. As is well known, the SHS
fluid has a (metastable) fluid-fluid transition, which was early
predicted in the compressibility [15] and energy [32] routes of
the PY approximation. Critical values of the parameters α and
η (or τ and ρ) can be determined by the conditions ∂p/∂ρ = 0
and ∂2p/∂ρ2 = 0. Results concerning to various PY routes
are summarized in Table IV, where they can be compared
to the ones obtained by Miller and Frenkel [28] using MC
simulations.

As is known, the compressibility route produces a gross
underestimation of the critical density. An even higher un-
derestimation of ηc is obtained from the ZS method. The
critical density is much better approximated by the virial route
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TABLE IV. Comparison of the SHS gas-liquid critical values of
α, η, τ = 1/12α, and ρ = 6η/π from MC simulations [28] and PY
solutions in the virial, energy, compressibility, and chemical-potential
routes.

MC v e c ZS μA μB μC

αc 0.7355 0.6124 0.7032 0.8536 0.7112 0.6858 0.6605 0.6412
τc 0.1133 0.1361 0.1185 0.0976 0.1172 0.1215 0.1262 0.1300
ηc 0.2660 0.2524 0.3187 0.1213 0.1039 0.2761 0.2691 0.2645
ρc 0.5080 0.4820 0.6086 0.2317 0.1985 0.5274 0.5140 0.5051

(deviation of 5%) and, especially, the μ route (deviations of
4%, 1.2%, and 0.6% for protocols A, B, and C, respectively).
On the other hand, the critical value of the stickiness parameter
evaluated from the virial and the compressibility routes differ
significantly from those predicted by numerical experiments.
For this parameter, the ZS route (deviation of 3%), the energy
route (deviation of 4%), and the μ route (deviations of 7%,
10%, and 13% for A, B, and C, respectively) give the best
results. In view of the general poor performance of the ZS
route, its good prediction of the critical stickiness can be
viewed as accidental. In addition, it must be remarked that
the critical point obtained from Z(e) is quite sensitive to the
choice of ZHS. If, instead of the CS EOS (4.17), the more
consistent choice [30,31] ZHS = Z

(v)
HS is used, then no SHS

critical point is predicted by the energy route. In conclusion,
the parameters of the critical points obtained from the μ route
show the best global agreement with simulations.

We have also computed coexistence curves with the familiar
equal-area Maxwell construction that is applicable when
∂p/∂ρ < 0. Figure 7 displays the coexistence curve and the
location of the critical point derived by various PY routes

FIG. 7. (Color online) Phase diagram of the SHS fluid showing
the gas-liquid coexistence curves from PY solutions in the virial (—),
energy (– – –), compressibility (- - -), ZS (– - – -), and chemical-
potential (- · - · - ·) routes. Results in the μ route are based on
prescription A. MC simulation data taken from Ref. [28] are shown
with error bars. The critical points are indicated with circles.

and from computer simulations [28]. For simplicity, in the
case of the μ route only results from protocol A are shown.
As may be seen in Fig. 7, the curves obtained from the
virial, compressibility, and ZS routes differ substantially from
computer evaluations. On the contrary, the agreement is
reasonably good for the energy and μ- routes. As already seen
from Table IV, the critical Baxter temperature τc predicted by
the energy route is more accurate than the one obtained from
the μ route. However, the general shape of the coexistence
curve (both the gas and the liquid branches) is better described
by the μ route.

V. CONCLUSIONS

In this paper we have studied the SHS fluid using the
concept of a partially coupled particle, whereby the interaction
potential connecting this particle (the solute) to all other
particles in the fluid (the solvent) is regulated by a charging
parameter ξ , which varies from ξ = 0 (no interaction) to
ξ = 1 (full interaction). With this method, first introduced by
Onsager [1] and subsequently developed by Kirkwood [2] and
other authors [3,7], we have derived the chemical potential of
d-dimensional SHS fluids in terms of the contact values of
the solute-solvent cavity function yξ (ξ ) and its first derivative
y ′

ξ (ξ ) [see Eqs. (2.24) and (2.22)].
The procedure requires yξ (ξ ) and y ′

ξ (ξ ) in the range
1
2 < ξ < 1, where the effective diameter (2ξ − 1) of the
coupled particle varies between zero to the solute diameter
σ = 1. Thus, the explicit evaluation of the EOS of the
fluid in the μ route requires the structural functions of the
corresponding binary system in the infinite dilution limit.
While this may represent a practical disadvantage with
respect to the other standard routes (which only require the
RDF of the one-component fluid), it nicely complements
them. As is well known, the natural variables of the free
energy F are the temperature (T ), the volume (V ), and
the number of particles (N ). The internal energy, the pres-
sure and the isothermal compressibility are directly related
to ∂F/∂T , ∂F/∂V , and ∂2F/∂V 2, respectively. Therefore,
the chemical potential, being related to ∂F/∂N , completes
the picture.

The μ route also requires a prescription for the solute-
solvent interaction potential, i.e., the dependence of the solute-
solvent stickiness αξ on the coupling parameter ξ must be
specified. Here, in order to avoid the effects of trimer particle
configurations, we have selected prescriptions with αξ = 0 at
ξ = 1

2 . The resulting EOS, Eq. (2.26), is exact if the correct
contact values yξ (ξ ) and y ′

ξ (ξ ) are used, regardless of the
explicit form of αξ in the range 1

2 < ξ � 1. This has been
checked for the one-dimensional sticky fluid, in which case
the exact EOS is recovered from the μ route (see Sec. III).

We have also applied the μ route to three-dimensional
SHS fluids in the PY approximation. In this case, since the
associated RDF is only approximate, the μ route EOS is
influenced by the choice of the αξ protocol. On the other
hand, this thermodynamical inconsistency becomes small in
comparison with the spread of results obtained from the
other routes (virial, energy, compressibility, and ZS). When
compared with available simulation data [28], the μ route
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EOS exhibits a general better agreement than those evaluated
from the other routes. The gas-liquid phase transition has also
been analyzed. The μ route provides the best prediction for
the critical density, being only improved by the ZS and energy
routes in the prediction of the critical stickiness parameter. To
put this latter fact in perspective, it is important to remark that,
as usually done [32], the energy route has been complemented
ad hoc by the accurate CS EOS for the HS fluid. As for the
coexistence curve, the best global agreement with simulation
data is obtained from the μ route. In addition, comparison of
the fourth virial coefficient with exact results shows that the
best performance corresponds to the μ route with a slower
switching on of stickiness (protocol A).

To conclude, we expect that the results presented in this
paper may contribute to place the μ route on the same footing
as the other three conventional routes. This is especially
important in the case of mixtures [13], where the chemical-
potential concept fits in a more natural way. Regarding the PY
approximation, it is interesting to note that, whereas in the case
of the HS fluid [12,13] the best behavior corresponds to the
compressibility route (followed by the μ route), the inclusion
of an attractive part in the interaction potential seems to favor
the μ route as the most advantageous one.
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APPENDIX A: LIMIT ξ → 1
2

In contrast to the situation with ξ < 1
2 , a solute particle

with ξ = 1
2 allows spatial configurations where the solute and

two solvent particles are simultaneously touching each other.
Such configurations have a nonzero statistical weight in the
evaluation of Eq. (2.7) through the term of order α2

ξ in Eq. (2.9),
unless α 1

2
= 0. Such a term is

Q
( 1

2 ,2)
N+1 ≡

α2
1
2

4V N+1

∫
drNe−β�N (rN )

∫
dr0

N∑
i �=j

δ

(
r0i − 1

2

)

× δ

(
r0j − 1

2

) ∏
k �=i,j

�

(
r0k − 1

2

)

= α2
1
2

N (N − 1)

4V N+1

∫
drNe−β�N (rN )

×
∫

dr0 δ

(
r01 − 1

2

)
δ

(
r02 − 1

2

)
, (A1)

where we have taken into account that, if r0i = r0j = 1
2 , one

has r0k > 1
2 ∀k �= i,j . Next, r01 = r02 = 1

2 is compatible with

r12 � 1 only if r12 = 1. Thus, using spherical coordinates,

Q
( 1

2 ,2)
N+1 = α2

1
2

d

8
� 1

2

N (N − 1)

V N+1

∫
drNe−β�N (rN )δ(r12 − 1)

= α2
1
2

d

8
ρ2� 1

2
QN

∫
dr δ(r − 1)g(r), (A2)

where

g(r12) = V −(N−2)

QN

∫
dr3 · · ·

∫
drNe−β�N (rN ) (A3)

is the solvent RDF. Finally, introducing the solvent cavity
function

y(r) ≡ g(r)eβφ(r) (A4)

and using Eq. (2.3), we obtain

Q
( 1

2 ,2)
N+1 = α2

1
2
d22d−3η2y(1)QN lim

r→1
[�(r − 1) + αδ(r − 1)],

(A5)

where η is defined by Eq. (2.16). This contribution is singular
by a twofold reason. First, the Heaviside function implies that
the result depends on whether ξ → 1

2 from below or from
above. Second, and more importantly, the δ function gives a
divergent term. Both singularities are avoided by the choice
α 1

2
= 0.

APPENDIX B: VIRIAL, ENERGY, AND
COMPRESSIBILITY ROUTES

For systems of particles interacting through two-body
central forces, the thermodynamic functions can be evaluated
in terms of the RDF g(r). In particular, the pressure p, the
excess internal energy per particle uex, and the isothermal
susceptibility χ are given by [3,5,33,34]

p = ρkT − ρ2

2d

∫
dr

∂φ(r)

∂r
rg(r), (B1)

uex = ρ

2

∫
dr φ(r)g(r), (B2)

χ ≡ kBT

(
∂ρ

∂p

)
T

= 1 + ρ

∫
dr [g(r) − 1]. (B3)

Equations (B1)–(B3) are usually known as the pressure (or
virial), energy, and compressibility equations, respectively.

For SHS fluids, the compressibility factor, Z ≡ p/ρkT , can
be expressed from Eqs. (B1) and (2.1) in terms of the contact
values of the cavity function and its radial derivative y ′(r) as

Z(v)(η,α) = 1 + 2d−1η{y(1) − α[dy(1) + y ′(1)]}. (B4)

Here, the superscript v specifies that the compressibility factor
proceeds from the virial equation.

In turn, the excess of internal energy per particle is related
with the compressibility factor as follows:

ρ
∂uex

∂ρ
= −kBT 2 ∂Z

∂T
. (B5)
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For SHS fluids, the changes of variables ρ → η and T → α

yield

η
∂uex/ε

∂η
= α

∂Z

∂α
, (B6)

where we have taken into account that, according to Eq. (2.2),
∂T = −(εα/kBT 2)∂α . Moreover, the excess energy can be
expressed from Eq. (B2) in terms of the cavity function using
Eqs. (A4) and (2.1):

uex

ε
= −d2d−1ηαy(1). (B7)

Integration of Eq. (B6) with (B7) yields the compressibility
factor in the energy route as

Z(e)(η,α) = ZHS(η) − d2d−1η

∫ α

0
dα′

(
∂[ηy(1)]

∂η

)
α′
, (B8)

where ZHS(η) is the compressibility factor for pure HS (which
here remains undetermined) and in the integrand y(1) is a
function of η and α′.

As for the compressibility route, taking into account that
χ−1 = (∂ηZ/∂η)T and introducing the moments

Hn ≡
∫ ∞

0
dr rnh(r) (B9)

of the total correlation function h(r) = g(r) − 1, one can find

Z(c)(η,α) =
∫ 1

0

dt

χ (ηt)
=

∫ 1

0

dt

1 + d2dηHd−1(ηt)
. (B10)

APPENDIX C: RDF OF STICKY HARD RODS

The exact solution of one-dimensional (d = 1) fluids with
nearest-neighbor interactions is well known [6,10,35–37]. In
the case of an infinitely diluted solute particle in a solvent, the
Laplace transform

Gξ (s) =
∫ ∞

0
dr e−rsgξ (r) (C1)

of the RDF gξ (r) is given by

Gξ (s) = 1

ρ

�ξ (s + βp)/�ξ (βp)

1 − �(s + βp)/�(βp)
, (C2)

where �(s) and �ξ (s) are the Laplace transforms of e−βφ(r)

(solvent-solvent interaction) and e−βφξ (r) (solute-solvent inter-
action), respectively.

In the particular case of sticky hard rods, use of Eqs. (2.1)
and (2.3) gives

�(s) =
(

1

s
+ α

)
e−s , �ξ (s) =

(
1

s
+ αξξ

)
e−sξ . (C3)

Moreover, the exact EOS is

βp =
√

1 + 4αη/(1 − η) − 1

2α
. (C4)

Expansion of the right-hand side of Eq. (C2) in powers of
e−s allows one to obtain gξ (r) in the shells 0 < r < 1 + ξ ,

1 + ξ < r < 2 + ξ , . . . In particular, if r < 1 + ξ ,

gξ (r) = αξξδ(r − ξ ) + e−βp(r−ξ )�(r − ξ )

η(αξξ + 1/βp)
, r < 1 + ξ.

(C5)

Taking into account Eqs. (2.3) and (2.20), one has

yξ (r) = e−βp(r−ξ )

η(αξξ + 1/βp)
, ξ � r < 1 + ξ. (C6)

From here one easily gets Eq. (3.3).

APPENDIX D: SOLUTION OF THE
PY EQUATION FOR SHS

In this Appendix we summarize the main results obtained
from the exact solution of the PY integral equation for SHS.
The reader is referred to Refs. [15,16,25,26,38–41] for further
details.

1. Solvent properties

The PY solution is expressed in terms of the Laplace
transform

G(s) =
∫ ∞

0
dr e−rsrg(r) (D1)

of rg(r). Such a solution is

s2esG(s) = L0 + L1s + L2s
2

1 − 12η[ψ2(s)L0 + ψ1(s)L1 + ψ0(s)L2]
,

(D2)

where

ψn(s) ≡ 1

sn+1

[
n∑

m=0

(−s)m

m!
− e−s

]
. (D3)

The quantities L0, L1, and L2 are given as functions of η and
α by

L0 = 1 + 2η

(1 − η)2
− 12η

1 − η
L2, L1 = 1 + η/2

(1 − η)2
− 6η

1 − η
L2,

(D4)

L2 = 1 − (1 − 12α)η − K

24α(1 − η)η
, (D5)

where

K ≡
√

(1 − η)[1 − η(1 − 24α + 48α2)] + 72α2η2. (D6)

The large-s behavior of G(s) provides the contact values of
y(r) and y ′(r). The results are

y(1) = L2

α
, (D7)

y ′(1) = − 9η(1 + η)

2(1 − η)3
+ 12η(1 + 5η)

(1 − η)2
L2 − 12η(1 + 11η)

1 − η
L2

2

+ 144η2L3
2. (D8)
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Insertion of these expressions into Eq. (B4) (with d = 3) gives
the virial equation

Z(v) = 1 + 2η + 3η2

(1 − η)2
+ 18α

η2(1 + η)

(1 − η)2

− 12η

1 − η

[
1 + 3η + 4α

η(1 + 5η)

1 − η

]
L2

+ 48η2

(
1 + α

1 + 11η

1 − η

)
L2

2 − 576η3αL3
2. (D9)

Analogously, insertion of Eq. (D7) into Eq. (B8) yields an
analytical expression for Z(e) − ZHS.

The moment H2 of the total correlation function [cf.
Eq. (B9)] can be obtained from the small-s behavior of G(s) as
s2G(s) = 1 + H1s

2 − H2s
3 + O(s3). Inserting the resulting

expression of H2 into χ = 1 + 24ηH2 [cf. Eq. (B3)], one
obtains

1

χ
= [1 + 2η − 12η(1 − η)L2]2

(1 − η)4
. (D10)

The compressibility factor Z(c) by the compressibility route is
readily obtained in analytical form by application of Eq. (B10).
For conciseness, the explicit expressions of Z(c) and Z(e) will
be omitted here.

As a consequence of the square root present in K(η,α)
[cf. Eq. (D6)], the PY solution is not physically meaningful
if α > α(c)

c ≡ 2+√
2

4 
 0.853 55 (or τ < 1/12α(c)
c = 0.097 63)

and η−(α) < η < η+(α), where

η±(α) = 1 − 12α + 24α2 ± 6α
√

2 − 16α(1 − α)

1 − 24α + 120α2
. (D11)

In the limit α → α(c)
c one has η± → η(c)

c = (3
√

2 − 4)/2 

0.121 32. It can be easily checked that the right-hand side of
Eq. (D10) vanishes at (η,α) = (η(c)

c ,α(c)
c ). This implies that

(η(c)
c ,α(c)

c ) is the critical point in the compressibility route.
As an extra route, Barboy and Tenne [26] applied the so-

called ZS theorem [27] to the PY solution for SHS fluids.
According to this ZS route, the excess chemical potential is
expressed as

βμex = ln yreg, (D12)

where

yreg = [1 − 4η − (1 − η − K)/2α]2

(1 − η)4
(D13)

is the regular part of the cavity function at r = 0. The
associated compressibility factor is then obtained from the
thermodynamic relation (2.27), i.e.,

Z(ZS)(η,α) = 1+ ln yreg(η,α) −
∫ 1

0
dt ln yreg(ηt,α). (D14)

2. Solute-solvent RDF

From the exact solution of the PY equation for an SHS binary
mixture [25,41] one can take the limit where one of the
species (the solute) is infinitely dilute. As a result, the Laplace
transform

Gξ (s) =
∫ ∞

0
dr e−rsrgξ (r) (D15)

of rgξ (r) is given by

s2esξGξ (s)= L0 + L
(ξ )
1 s + L

(ξ )
2 s2

1 − 12η[ψ2(s)L0 + ψ1(s)L1 + ψ0(s)L2]
,

(D16)

where

L
(ξ )
1 = ξ + η(2ξ − 3/2)

(1 − η)2
− 6η(2ξ − 1)

1 − η
L2, (D17)

L
(ξ )
2 =

(
1

αξξ
+ 6η

1 − η
− 12ηL2

)−1

L
(ξ )
1 . (D18)

From the large-s behavior of Gξ (s) we can obtain the contact
values of yξ (r) and y ′

ξ (r) as

yξ (ξ ) = L
(ξ )
2

αξξ 2
, (D19)

ξy ′
ξ (ξ ) = 12ηL

(ξ )
2 [3η(L0 − 2L1 + 2L2)2 − L0 + L1]

+L0 + 6ηL
(ξ )
1 (L0 − 2L1 + 2L2) − yξ (ξ ). (D20)
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