⁴He adsorption on a H₂-plated C₂₀ molecular surface: The formation of helium buckyballs

Sungjin Park and Yongkyung Kwon*

Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, Korea (Received 10 January 2014; published 9 April 2014)

We perform path-integral Monte Carlo calculations to study the adsorption of ⁴He atoms on a H₂-plated C₂₀ molecular surface. It is found that 32 H₂ molecules form a complete solid layer on C₂₀, where each H₂ molecule is located either above one of the 12 pentagon centers or above one of the 20 carbon atoms. The angular density profiles of the first ⁴He layer on the (H₂)₃₂-C₂₀ surface reveal different quantum states as the number of ⁴He atoms N varies. Especially, the helium layer exhibits an icosidodecahedron structure for N = 30, where each ⁴He atom is located at one of the vertices of 20 corner-sharing triangles. While the ⁴He density peaks for N = 60 constitute a truncated icosahedron with 12 pentagonal and 20 hexagonal faces, the additional atoms beyond N = 60 are found to be placed at the hexagon centers of the truncated icosahedron to form a hexakis truncated icosahedron for N = 30 and to be significantly suppressed for N = 60 and 80, reflecting the formation of compact buckyball structures.

DOI: 10.1103/PhysRevE.89.042118

PACS number(s): 67.10.Fj, 67.25.dr, 67.25.dw, 61.46.Bc

I. INTRODUCTION

A system of ⁴He atoms adsorbed on a substrate has been a test bed to study how reduced dimensionality or finite size affects physical properties of a quantum fluid in a confined geometry. While superfluid transition in a thin film of ⁴He on an extended flat substrate exhibited characteristics of a Kosterlitz-Thouless transition [1,2], the ⁴He atoms confined inside a nanopore were predicted to show the Luttinger liquid behavior as a one-dimensional quantum fluid [3]. Graphite, the most abundant carbon allotrope in nature, is known to be a strong substrate for ⁴He on which multiple distinct helium layers have been observed [4]. Similar layering structures of the ⁴He adatoms have been predicted on the surfaces of other carbon allotropes including carbon nanotubes [5] and graphene [6-9]. Through the interplay between the ⁴He-⁴He interaction and the ⁴He-substrate interaction, these helium layers could manifest various quantum phases such as commensurate and incommensurate solids.

The ⁴He adsorption on the outer surface of a fullerene molecule was first studied using a spherically averaged isotropic ⁴He-fullerene potential, from which distinct layered structures of ⁴He atoms were predicted to form on the fullerene molecular surfaces as on graphite [10,11]. A series of recent path-integral Monte Carlo (PIMC) calculations based on anisotropic ⁴He-fullerene potentials, which allowed the investigation of the helium corrugations on fullerene surfaces, showed that the completed first ⁴He layer on a single fullerene would be in different quantum states depending on the size of a fullerene molecule, for example, a commensurate solid on C_{20} [12], an inhomogeneous fluid on C_{28} [13], and an incommensurate solid on C₆₀ [14]. Furthermore, while the ⁴He layer on C₂₀ showed nanoscale supersolidity near its completion [12], the helium monolayer on C_{60} was predicted to undergo a commensurate-incommensurate (C-IC) solid transition as the number of ⁴He adatoms increased [14], a

phenomenon akin to helium on graphite. This C-IC transition was also predicted from global optimization and path-integral molecular dynamics calculations of Calvo [15] for C_{60}^+ -doped ⁴He clusters. On the other hand, recent mass spectroscopic measurements for ⁴He adsorbed on an isolated C_{60}^+ confirmed experimentally the existence of a commensurate solid state where each of 12 pentagons and 20 hexagons on the fullerene surface was occupied by a single ⁴He atom [16].

As discussed above, physical properties of the ⁴He adlayer on a fullerene molecule are expected to depend on the size of the molecule as well as on its surface corrugation. One can tune these factors, along with the strength of the surface binding potential, by plating the fullerene surface with other particles more strongly bound to a fullerene than ⁴He. We here consider a system of ⁴He atoms adsorbed on the C₂₀ molecular surface coated with a single layer of para-H₂ molecules. Para-H₂, hereafter simply H₂, is a spinless bosonic compound, which has been long considered as the best candidate to find superfluidity other than a system of helium isotopes of ⁴He or ³He. Unlike helium, however, bulk H₂ is solidified at low temperatures because of strong interparticle interaction before a condensation phenomena such as superfluidity takes place. Therefore some scientists have focused on a confined or a finite-sized system to find hydrogen superfluidity [17–19]. Motivated by this along with possible application for hydrogen storage, Turnbull and Boninsegni performed ground-state quantum Monte Carlo calculations for H2 molecules adsorbed on the outer surface of a fullerene molecule, from which they predicted a transition from a commensurate to an incommensurate layer with the increase of the chemical potential from its equilibrium value but did not find any evidence for hydrogen superfluidity [20]. Recent high-resolution mass spectroscopic measurements for $(H_2)_N C_{60}^+$ revealed the formation of an energetically favorable commensurate phase for N = 32, where each face of a C_{60}^+ ion is covered by one H_2 molecule [21].

Some years ago, Ebey and Vilches reported thermodynamic measurements of monolayer ⁴He adsorbed on graphite plated with a few layers of H_2 , which revealed a low-temperature and

^{*}ykwon@konkuk.ac.kr

low-density region for gas-liquid coexistence and probable solidification at high helium densities [22]. The torsional oscillator measurements of Nyéki *et al.* showed finite superfluid response in the second ⁴He layer adsorbed on hydrogen-plated graphite but provided no evidence for superfluidity in the first helium layer [23,24]. Chan and his coworkers later showed that the thickness of the nonsuperfluid or inert ⁴He layer on a substrate increased monotonically with the strength of the ⁴He-substrate interaction and hence it could be reduced by plating strongly binding substrates with some inert gas atoms or hydrogen molecules [25,26].

Using the PIMC method, we here investigate structural and superfluid properties of the ⁴He monolayer adsorbed on C_{20} plated with a single layer of H₂ molecules. It is found that the ⁴He layer shows various quantum states as the number of ⁴He adatoms N varies. While ⁴He adatoms form clusters at low helium coverages, the helium layer is found to exhibit an icosidodecahedron structure for N = 30, where ⁴He atoms are located at the vertices of 20 corner-sharing triangles on the near-spherical surface of a H₂-plated C₂₀. More dense buckyball structures of truncated icosahedrons are found for N = 60 and 80, even though they are not as rigid as the N = 30 icosidodecahedron. The superfluid response of the ⁴He monolayer on the H₂-plated C₂₀ is also found to depend on its helium coverage; the superfluid fraction is negligible at low helium coverages but increases rapidly at T = 0.6 K as the helium coverage increases beyond N = 40. Significant suppression of superfluidity observed at N = 60 and 80 reflects the formation of the compact buckyball structures. The paper is organized as follows. Section II deals with the computational details including the description of the ⁴He-C₂₀ and the H₂-C₂₀ potentials. The PIMC results along with the related discussions are presented in Sec. III. We summarize our findings in Sec. IV.

II. COMPUTATIONAL DETAILS

In this study, both H₂ molecules and ⁴He atoms are treated quantum mechanically while a C₂₀ molecule is fixed at the origin without rotation. This is justified by the fact that a C_{20} molecule has much larger mass than H_2 or ⁴He. The ⁴He-C₂₀ (H₂-C₂₀) interaction is assumed to be a sum of the pair potentials between each of the 20 carbon atoms and a ⁴He atom (a H₂ molecule). For the ⁴He-C interatomic pair potential, we employ an isotropic 6-12 Lennard-Jones potential proposed by Carlos and Cole to fit the helium scattering data on graphite [27,28]. Our H₂-C pair potential is also of the 6-12 type, which was used by Levesque et al. [29] to describe the H₂-nanotube interaction in their study of hydrogen storage in carbon nanotubes. As noted in Ref. [12], these substrate potentials allow us to investigate H2 and ⁴He corrugations on the C₂₀ molecular surface. While we use an empirical exp-6 potential proposed by van den Bergh and Schouten [30] for the ⁴He-H₂ interaction, the well-known Aziz potential [31] and the Silvera-Goldman potential [32] are used for the ⁴He-⁴He interaction and the H₂-H₂ interaction, respectively.

In order to calculate thermodynamic properties of ⁴He- H_2 - C_{20} complexes, we here employ the PIMC method which is based on Feynman's original idea of mapping the path integrals of quantum particles onto classical polymers. In

the discrete path-integral representation, the thermal density matrix at a low temperature, T, is written as a convolution of M high-temperature density matrices with a time step of $\tau = (Mk_BT)^{-1}$. All pair potentials between the constituents are used to derive exact two-body density matrices at the high temperature MT [33,34], which was found to provide an accurate description of all involved interactions with a time step of $\tau^{-1}/k_B = 80$ K. The multilevel Metropolis algorithm described in detail in Ref. [33] is used to sample permutations among ⁴He atoms or among H₂ molecules as well as their imaginary-time paths.

With the PIMC method, one can compute the superfluid fraction of a quantum fluid as a function of temperature. Both H_2 and ⁴He superfluidities in the ⁴He-H₂-C₂₀ complexes are computed using an area estimator [33]:

$$f_{\alpha}^{s} = \frac{4m^{2} \langle A_{\alpha}^{2} \rangle k_{B} T}{\hbar^{2} I_{\alpha}^{cl}},$$
(1)

where *m* is the mass of a ⁴He atom or a H₂ molecule, I_{α}^{cl} is the classical moment of inertia, and A_{α} is the area of a Feynman path projected onto a plane perpendicular to the principal axis \hat{x}_{α} . This estimator for the superfluid fraction has non-negligible values only when the sizes of exchange-coupled paths are comparable to the system size [33].

III. PIMC RESULTS

With the H_2 - C_{20} potential described above, We first performed the PIMC calculations for H₂ molecules adsorbed on C₂₀. We found that the first hydrogen layer is completed with 32 H₂ molecules, whose angular and radial density distributions are shown in Figs. 1(a) and 1(b), respectively. One can see 32 distinct density peaks located at the angular positions corresponding to 12 pentagon centers (P sites) and 20 carbon sites (C sites) on the C_{20} molecular surface. The same commensurate structure was also observed in the ⁴He monolayer on C₂₀. While the first ⁴He layer on C₂₀ was shown to exhibit the nanoscale supersolidity induced by mobile vacancies near its completion, we observed no superfluidity in the first H₂ layer on C₂₀, regardless of the number of H_2 molecules. This distinction between the H_2 and the ⁴He adlayers could be understood by the fact that the H_2 - C_{20} interaction has a potential barrier much higher than that of the ⁴He-C₂₀ interaction. Since the global minima of the H_2 -C₂₀ potential are located in the directions of the P sites and the C sites involve only its saddle points, 12 H₂ molecules at the *P* sites are expected to be more tightly bound to C_{20} than 20 H_2 molecules at the C sites. This is confirmed in Fig. 1(b), where the dotted (dot-dashed) line represents the radial density profile of H_2 molecules at the P(C) sites. We note that the same icosahedral structure consisting of 32 H_2 molecules, a pentakis dodecahedron, was recently observed through high-resolution mass spectroscopic measurements for H_2 clusters doped by a single C_{60}^+ cation [21]. However, unlike the $(H_2)_{32}$ -C⁺₆₀ complex where each of 32 adsorption sites on the C₆₀ molecular surface, 12 pentagon centers and 20 hexagon centers, accommodates a single H₂ molecule, all 32 lattice sites on the surface of C₂₀ are not the adsorption sites predetermined by the substrate potential. This tells us that the

FIG. 1. (Color online) (a) Angular and (b) radial density distributions of 32 H₂ molecules adsorbed on C₂₀. The vertical axis and the horizontal axis in panel (a) correspond to the cosine of the polar angle θ and the azimuthal angle ϕ while the characters *C* and *P* represent the angular positions of the carbon atoms and those of the pentagon centers, respectively. The solid line in panel (b) represents the total density distribution and the dotted (dot-dashed) line corresponds to the density distribution of 12 (20) H₂ molecules located at the *P* sites (*C* sites).

 H_2 - H_2 interaction as well as the H_2 -substrate interaction plays a crucial role in realizing this crystalline structure, shown in Fig. 1(a).

We now study the adsorption of ⁴He atoms on C₂₀ plated with 32 H₂ molecules. The radial density profiles of H₂ molecules (dotted line) and ⁴He atoms (solid and dashed lines) with respect to the C₂₀ molecular center are shown in Fig. 2(a) for different numbers of ⁴He adatoms *N*. The ⁴He density peaks are found to be located at a distance of $R \sim 8.2$ Å from the C₂₀ molecular center or ~2.8 Å from the peak position of the H₂ density distribution. We note that the H₂ layer is well separated from the outer ⁴He layers with little overlap between them. This indicates that even with quantum fluctuations of both ⁴He and H₂ being fully incorporated in the PIMC calculations, ⁴He atoms cannot penetrate into the H₂ layer nor replace H₂ molecules from the immediate vicinity of C₂₀.

Figure 2(b) shows the energy per ⁴He atom of the first ⁴He layer adsorbed on the H₂-plated C₂₀ as a function of *N*, which was estimated by subtracting the energy of the $(H_2)_{32}$ -C₂₀ complex from the total energy of the entire $({}^{4}\text{He})_{N}$ - $(H_2)_{32}$ -C₂₀ system. The binding energy of a single ⁴He atom to the $(H_2)_{32}$ -C₂₀ complex is estimated to be -16.1(6) K, which is close to the experimentally measured ⁴He binding energy

FIG. 2. (Color online) (a) Radial density distributions of 32 H₂ molecules (dotted line) and N ⁴He atoms (solid and dashed lines) in the (⁴He)_N-(H₂)₃₂-C₂₀ complex as a function of the distance from the center of C₂₀ and (b) the total energy per ⁴He atom of the ⁴He layer adsorbed on the H₂-plated C₂₀ surface in units of kelvin. The PIMC calculations were done at T = 0.6 K and the dotted line in panel (b) is just a guide to the eye.

 $(16 \pm 2 \text{ K})$ to liquid molecular hydrogen [35] as well as to a theoretical binding energy of 15.5 K [36] for a single ⁴He adatom on bulk solid H_2 . As shown in Fig. 2(b), the energy per ⁴He atom decreases monotonically as the number of ⁴He atoms increases from N = 1 to N = 30 while it keeps increasing with the increase of the number of ⁴He atoms beyond N = 30. The lowest-energy configuration of the ⁴He layer, the most energetically stable state, occurs at N = 30. The decrease of the energy per particle with the increase of Nfor N < 30 suggests that ⁴He atoms are congregated together to form clusters at low helium coverages, rather than fluids dispersed evenly over the near-spherical H₂-plated C₂₀ surface, because the ⁴He-substrate interaction is not strong enough to spread the ⁴He atoms throughout the surface. At high enough helium coverages beyond N = 30, these clusters are connected with each other to become homogeneous ⁴He films, which is reflected by the increase in the energy per particle for N > 30.

The structural properties of the ⁴He layer adsorbed on a H₂-preplated C₂₀ are now investigated by analyzing its angular density distributions, which are shown in Fig. 3 for different numbers of ⁴He adatoms N. For N = 10, the ⁴He angular density distribution shows that 10 ⁴He adatoms are not spread out over the whole spherical surface but are congregated in a limited region, confirming the cluster formation conjectured in the energetic analysis. One can see that the density peaks

FIG. 3. (Color online) Contour plots of angular density distributions of N ⁴He atoms adsorbed on the surface of an (H₂)₃₂-C₂₀ complex for (a) N = 10, (b) N = 30, (c) N = 60, and (d) N = 80. The horizontal axis corresponds to the azimuthal angle ϕ and the vertical one to the cosine of the polar angle θ . The white dots represent the peak positions of the underlying H₂ layer and the characters *C* and *P* correspond to the angular positions of the carbon atoms and those of the pentagon centers of C₂₀, respectively. The PIMC calculations were performed at T = 0.6 K and all contour plots are in the same color scale denoted by the color table in the upper right-hand corner.

of 32 H_2 molecules are no longer located at the C and P sites [see the white dots in Fig. 3(a)], indicating that the uneven distribution of ⁴He atoms changes the structure of the underlying H₂ layer. Despite stronger binding of H₂ to C₂₀ than ⁴He, the underlying H₂ layer does not remain rigid during the ⁴He adsorption process, which reflects that some of the original lattice sites, i.e., C sites, for 32 H₂ molecules are not potential minima of the H_2 - C_{20} interaction. For N = 30where the helium adlayer has the lowest energy per ⁴He atom, one can observe 30 well-distinct density peaks constituting the vertices of 20 triangles on the spherical surface, each of which is centered at one of the underlying H₂ density peaks [see Fig. 3(b)]. The angular positions of the density peaks for N = 30 correspond to the vertices of an icosidodecahedron, an Archimedean solid whose surface consists of 12 pentagons and 20 corner-sharing triangles as shown in Fig. 4(a). As noted by Rousochatzakis et al. [37], this icosidodecahedron structure is a finite-size zero-dimensional realization of a planar Kagomé lattice on the spherical surface. A striking anomaly in the differential susceptibility observed recently in the giant Keplerate magnetic molecule of Mo₇₂Fe₃₀, which features 30 Fe³⁺ ions on the vertices of an icosidodecahedron, was interpreted as a manifestation of frustrated antiferromagnetism due to the topological property of a polytope assembled with corner-sharing triangles [38]. From this we propose that a geometrically frustrated antiferromagnetism could be realized in the fermionic counterpart of this ⁴He layer, i.e., a ³He layer adsorbed on the $(H_2)_{32}$ -C₂₀ complex.

As the number of ⁴He atoms increases beyond N = 30, the helium layer is found to go through fluid states consisting of delocalized ⁴He adatoms until another highly symmetric structure is observed at N = 60. Despite significant density overlap which is due to quantum fluctuations of ⁴He atoms including particle exchanges, one can clearly see 60 density peaks in the angular density distribution for N = 60 [see Fig. 3(c)]. The angular positions of these density peaks correspond to the vertices of a truncated icosahedron of Fig. 4(b) on the spherical surface, the same structure as a buckminsterfullerene of C₆₀. Each of 60 ⁴He density peaks is located at the center of a triangle consisting of three H₂ molecules, leading us to call this truncated icosahedron a

FIG. 4. (Color online) Three-dimensional plots of buckyball structures of N ⁴He atoms [red (gray) solid dots] in the (⁴He)_N-(H₂)₃₂-C₂₀ complexes for (a) N = 30 (icosidodecahedron), (b) N = 60 (truncated icosahedron), and (c) N = 80 (hexakis truncated icosahedron). The blue open dots and the gray-colored inner structure represent 32 H₂ molecules and a C₂₀ molecule, respectively.

FIG. 5. (Color online) Superfluid fractions of the ⁴He layer on the surface of the $(H_2)_{32}$ -C₂₀ complex as a function of the number of ⁴He atoms *N* at *T* = 0.6 and 1.2 K. The dotted lines are just a guide to the eye.

 1×1 commensurate structure with respect to the underlying hydrogen layer. Noting that the same buckyball structure was not observed in the second ⁴He adlayer on top of the first ⁴He layer on C_{20} [39], we conclude that the H_2 -⁴He interaction, which is stronger than the ⁴He-⁴He interaction, plays a crucial role in realizing this icosahedral structure. In Fig. 3(d) for N = 80, one can find the additional density peaks located at the 20 hexagon centers of the truncated icosahedron structure. We call this structure, whose three-dimensional plot is shown in Fig. 4(c), a hexakis truncated icosahedron. Unlike the cases for $N \leq 30$, the underlying hydrogen layer for N = 60 and 80 preserves the pentakis dodecahedron structure commensurate with the C_{20} molecular surface [see the white dots in Figs. 3(c) and 3(d)]. This tells us that as the ⁴He layer is filled with more ⁴He atoms, the density distribution of the outer ⁴He layer becomes more symmetric and does not disturb the structure of the inner H₂ layer. It is also found that the truncated icosahedron structures of Figs. 3(c) and 3(d) for N = 60 and 80⁴He atoms are more robust than the N = 30 icosidodecahedron structure of Fig. 3(b) against some defects in the underlying H₂ layer, i.e., when one H₂ molecule in the H₂ layer is replaced with a ⁴He atom.

We now analyze the relation between different structures of the ⁴He monolayer on the H₂-plated C₂₀ surface and its superfluid response. Figure 5 shows the superfluid fraction of the helium layer as a function of the number of ⁴He adatoms N, which were computed using the area estimator of Eq. (1). For $N \leq 40$, the superfluid fractions are negligible at both T = 0.6 and 1.2 K, suggesting that with a small number of ⁴He atoms, exchange coupling among ⁴He atoms takes place only locally and macroscopic exchanges spanning the whole spherical surface rarely, if ever, occur. This is consistent with the observation that the ⁴He atoms form clusters, rather than a homogeneous fluid, at low helium coverages. In addition, we note that for N = 30, where the helium atoms form an icosidodecahedron structure, the superfluid response is negligible. As the number of ⁴He adatoms increases beyond N = 40, one can observe a rapid increase of the superfluid fraction, reaching near the unit value for N = 50, at a temperature of T = 0.6 K while it remains negligible at T = 1.2 K. Though the superfluid fraction remains significant at T = 0.6 K with further increase of the number of ⁴He atoms beyond N = 50, one can see its noticeable suppression at N = 60 and 80. This suggests that the exchange couplings among ⁴He atoms are hindered in the compact icosahedron structures of Figs. 4(b) and 4(c) because of the decreased ⁴He mobilities.

IV. CONCLUSIONS

From the PIMC calculations for the $({}^{4}\text{He})_{N}$ - $(\text{H}_{2})_{32}$ - C_{20} complexes, we have found that the ⁴He monolayer adsorbed on the H₂-plated C₂₀ molecular surface exhibits various quantum states as the number of ⁴He atoms N changes. In particular, the structural analysis along with the energetic analysis showed that three different buckyball structures with the icosahedral symmetry could be realized in the ⁴He layer at low temperatures; the smallest buckyball structure of an icosidodecahedron, formed by 30 ⁴He atoms located at the vertices of 20 corner-sharing triangles, was found to be the lowest-energy state for the ⁴He layer while more dense helium buckyballs of truncated icosahedra were observed at N = 60 and 80. The icosidodecahedron structure, each of whose lattice points is shared by two neighboring triangles, is a zero-dimensional realization of a planar Kagomé lattice on the spherical surface. The angular density distributions whose peaks are well connected through the density overlap, especially for N = 60 and 80, reflect that these helium buckyballs are bound through weak van der Waals interaction and are not as rigid as a fullerene molecule consisting of covalent-bonded carbon atoms. Significant superfluid fractions observed at T = 0.6 K for N = 60 and 80, albeit being suppressed noticeably from the unit value, indicate prevalent exchange couplings among ⁴He atoms constituting these buckyballs. These lead us to conclude that the polyhedron structures exhibited by $N = 30, 60, \text{ and } 80^{4}\text{He}$ adatoms on a H₂-plated C₂₀ are quantum buckyballs. Finally we conjecture that a geometrically frustrated antiferromagnetism could be realized in the icosidodecahedron structure consisting of 30 fermionic ³He atoms adsorbed on a H_2 -plated C_{20} .

ACKNOWLEDGMENTS

This work was supported by the Basic Science Research Program (Grant No. 2012R1A1A2006887) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

- D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727 (1978).
- [3] A. Del Maestro, M. Boninsegni, and I. Affleck, Phys. Rev. Lett. 106, 105303 (2011).
- [2] G. Agnolet, D. F. McQueeney, and J. D. Reppy, Phys. Rev. B 39, 8934 (1989).
- [4] G. Zimmerli, G. Mistura, and M. H. W. Chan, Phys. Rev. Lett. 68, 60 (1992).

SUNGJIN PARK AND YONGKYUNG KWON

- [5] M. C. Gordillo, Phys. Rev. Lett. 101, 046102 (2008).
- [6] M. C. Gordillo and J. Boronat, Phys. Rev. Lett. 102, 085303 (2009).
- [7] Y. Kwon and D. M. Ceperley, Phys. Rev. B 85, 224501 (2012).
- [8] M. C. Gordillo and J. Boronat, Phys. Rev. B 85, 195457 (2012).
 [9] J. Happacher, P. Corboz, M. Boninsegni, and L. Pollet, Phys.
- Rev. B **87**, 094514 (2013).
- [10] E. S. Hernandez, M. W. Cole, and M. Boninsegni, Phys. Rev. B 68, 125418 (2003).
- [11] L. Szybisz and I. Urrutia, J. Low Temp. Phys. 134, 1079 (2004).
- [12] Y. Kwon and H. Shin, Phys. Rev. B 82, 172506 (2010).
- [13] B. Kim and Y. Kwon, J. Low Temp. Phys. 171, 599 (2013).
- [14] H. Shin and Y. Kwon, J. Chem. Phys. 136, 064514 (2012).
- [15] F. Calvo, Phys. Rev. B 85, 060502(R) (2012).
- [16] C. Leidlmair, Y. Wang, P. Bartl, H. Schöbel, S. Denifl, M. Probst, M. Alcamí, F. Martín, H. Zettergren, K. Hansen, O. Echt, and P. Scheier, Phys. Rev. Lett. **108**, 076101 (2012).
- [17] P. Sindzingre, D. M. Ceperley, and M. L. Klein, Phys. Rev. Lett. 67, 1871 (1991).
- [18] S. Grebenev, B. Sartakov, J. P. Toennies, and A. F. Vilesov, Science 289, 1532 (2000).
- [19] Y. Kwon and K. B. Whaley, Phys. Rev. Lett. 89, 273401 (2002).
- [20] J. D. Turnbull and M. Boninsegni, Phys. Rev. B 71, 205421 (2005).
- [21] A. Kaiser, C. Leidlmair, P. Bartl, S. Zöttl, S. Denifl, A. Mauracher, M. Probst, P. Scheier, and O. Echt, J. Chem. Phys. 138, 074311 (2013).
- [22] P. S. Ebey and O. E. Vilches, J. Low Temp. Phys. 101, 469 (1995).

- [23] J. Nyéki, R. Ray, G. Sheshin, V. Maidanov, V. Mikheev, B. Cowan, and J. Saunders, Low Temp. Phys. 23, 379 (1997).
- [24] J. Nyéki, R. Ray, B. Cowan, and J. Saunders, Phys. Rev. Lett. 81, 152 (1998).
- [25] D. Tulimieri, N. Mulders, and M. H. W. Chan, J. Low Temp. Phys. **110**, 609 (1998).
- [26] G. A. Csáthy and M. H. W. Chan, J. Low Temp. Phys. 121, 451 (2000).
- [27] W. E. Carlos and M. W. Cole, Surf. Sci. 91, 339 (1980).
- [28] M. W. Cole and J. R. Klein, Surf. Sci. 124, 547 (1983).
- [29] D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, J. Phys.: Condens. Matter 14, 9285 (2002).
- [30] L. C. van den Bergh and J. A. Schouten, J. Chem. Phys. 89, 2336 (1988).
- [31] R. A. Aziz, M. J. Slaman, A. Koide, A. R. Allnatt, and W. J. Meath, Mol. Phys. 77, 321 (1992).
- [32] I. F. Silvera and V. V. Goldman, J. Chem. Phys. 69, 4209 (1978).
- [33] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
- [34] R. E. Zillich, F. Paesani, Y. Kwon, and K. B. Whaley, J. Chem. Phys. **123**, 114301 (2005).
- [35] C. G. Paine and G. M. Seidel, Phys. Rev. B 46, 1043 (1992).
- [36] L. Pierre, H. Guignes, and C. Lhuillier, J. Chem. Phys. 82, 496 (1985).
- [37] I. Rousochatzakis, A. M. Läuchli, and F. Mila, Phys. Rev. B 77, 094420 (2008).
- [38] C. Schröder, H. Nojiri, J. Schnack, P. Hage, M. Luban, and P. Kögerler, Phys. Rev. Lett. 94, 017205 (2005).
- [39] H. Shin and Y. Kwon, J. Korean Phys. Soc. 60, 14 (2012).