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Casimir force in the O(n → ∞) model with free boundary conditions
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We present results for the temperature behavior of the Casimir force for a system with a film geometry with
thickness L subject to free boundary conditions and described by the n → ∞ limit of the O(n) model. These
results extend over all temperatures, including the critical regime near the bulk critical temperature Tc, where
the critical fluctuations determine the behavior of the force, and temperatures well below it, where its behavior
is dictated by the Goldstone mode contributions. The temperature behavior when the absolute temperature, T ,
is a finite distance below Tc, up to a logarithmic-in-L proximity of the bulk critical temperature, is obtained
both analytically and numerically; the critical behavior follows from numerics. The results resemble—but do not
duplicate—the experimental curve behavior for the force obtained for 4He films.
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I. INTRODUCTION

The Casimir effect remains an object of intense study,
both in its original formulation due to Casimir [1] (see
the reviews [2,3]), and especially in its thermodynamic
manifestation [4]—see, e.g, the general reviews [5,6] and
the reviews devoted to some specific aspects of the critical
Casimir force [7–9]. The critical Casimir effect has been
directly observed, utilizing light-scattering measurements, in
the interaction of a colloid spherical particle with a plate [10],
both of which are immersed in a binary liquid mixture. In
the context of forces that determine the properties of a film
of a material in the vicinity of its bulk critical point, the
effect has also been studied in 4He [11,12], as well as in
3He-4He mixtures [13]. Measurements of the Casimir force
in thin wetting films of a binary liquid mixture have been
performed in Refs. [14,15].

Theoretically, the effect has been studied via exact cal-
culations in the two-dimensional Ising model [16–23], the
three-dimensional spherical model [24–28], with the use of
conformal-theoretical methods [29–33], via mean-field-type
calculations on Ising-type [34–39] and XY models [40],
through renormalization-group studies via ε-expansion of
O(n) models [41–48], and via Monte Carlo calculations
[49–60]. In the models envisaged above, nonzero critical
temperature exists and the thermal fluctuations play the
essential role. There are, however, systems in which the critical
point has a quantum origin [61–64], and instead of temperature
certain quantum parameters govern the quantum fluctuations
in the system. In that case, one speaks of a quantum critical
Casimir effect [5,65,66].

Given the variety of systems that can exhibit a thermody-
namic Casimir effect, the number of measurement techniques
that can be applied to its experimental determination, and the
range of potential applications, it is likely that this state of
affairs of large activity in the field of the thermodynamic
Casimir effect will persist for some time.
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A recent paper by Diehl et al. [67] reports on a numerical
study of the scaling properties of the thermodynamic Casimir
force in thin films (i.e., dimensions ∞2 × L) of a Ginzburg-
Landau-Wilson (GLW) version of the O(n) model in the limit
n → ∞, the system being subject to free boundary conditions
in the finite direction, focusing particularly on the critical
regime immediately below the bulk transition temperature,
but also including lower temperatures outside that region.
In the current article, we extend this study. Our numerical
results span the entire range of temperatures, starting from
temperatures well below the bulk critical temperature Tc,
where the Goldstone mode contributions dominate, ranging
through the critical regime, where the contributions due to
the critical fluctuations of the order parameter dominate,
and ending with temperatures far above Tc. We confirm the
findings of the authors of Ref. [67] for the critical regime. In
addition, we derive analytical results for temperatures below
Tc. By doing so, we are able to illuminate the crossover
between thermodynamic Casimir forces arising from long-
range fluctuations due to Goldstone modes and those arising
from critical fluctuations, along the lines of the recent study
of Dohm [48]. We note that both types of excitations exist
in the low-temperature phase of an O(n)-symmetric system
when n > 1. This phenomenon is thus specific to models
with continuous symmetry and does not pertain to Ising-
type models in which a discrete symmetry is broken in the
ordered state. It is the main reason why the value to which
the scaling function of the Casimir force in such models
asymptotes below Tc is not zero, as in Ising-type models,
but is rather a nonzero constant [11–13,24,25,48,51,57,67,68].
We perform our calculations on a microscopic model—the
so-called spherical model [69]—that represents the n → ∞
limit of the O(n) models. In contrast with [67], we do not
use the mapping of this model on the GLW model. Thus the
agreement we obtain with [67] for the critical properties of
the model represents a strong manifestation of the validity
of the universality hypothesis. The microscopic formulation
of the model is, unlike the GLW approach [70], suitable for
investigation of the properties of the system at all temperatures,
particularly at temperatures considerably below that of the bulk
transition and thus well outside of the critical regime.
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Because of the continuous symmetry of the model, which
is broken at low temperature when L → ∞, as well as the
fact that the boundary conditions correspond to those that
are appropriate in the case of 4He films, the results of the
calculations in Ref. [67], as well as ours, are qualitatively
relevant to the Casimir force measurements on such films
described in Refs. [11,12]. The superfluid transition in 4He
is, of course, correctly modeled in terms of the XY , or
O(2), model, and the results in Refs. [11,12] have been quite
successfully reproduced by Monte Carlo simulations of this
model in Refs. [51,58]. Nevertheless, the O(n → ∞) model
merits consideration as a depiction of systems with broken
continuous symmetry in the bulk insofar as this model is
susceptible to a combination of analytical and numerical
approaches, yielding both quantitative and qualitative insights
into the behavior of those systems.

We recall that the infinite translation-invariant standard
spherical model is equivalent to the n → ∞ limit of the corre-
sponding system of n-component vectors [5,71–75]. However,
for the spherical model with surfaces or, more generally,
without translation-invariant symmetry, this equivalence is
preserved only if one imposes spherical constraints in a way
that ensures that the mean-square value of each spin of the
system is the same [76]—that is, one averages thermally,
but not spatially. Generally such a model is considered
analytically intractable. However, as we demonstrate here, this
model can be analytically reduced via exact calculations to a
one-dimensional model, the properties of which can then be
either studied numerically near the critical region, or in an
exact analytical manner in the low-temperature regime. The
Casimir force within the model when translational invariance
is preserved was already studied in Refs. [24,25] under periodic
and in Ref. [26] for antiperiodic boundary conditions. There,
exact analytical results are derived for the scaling function
and the Casimir amplitude for the (d = 3)-dimensional film
system.

Results for the quantum version of the spherical model
subject to periodic boundary conditions are also available [65].
Different quantizations of the classical model are possi-
ble [5,77–81]. Among them are versions of Bose gas [80,82–
84]. Let us also mention the large-n limit of the so-called
2+1 Gross-Neveu model [85], representative of a broader
class of four fermionic models, which lead to mathematics
very similar to that of the three dimensional spherical model
and to a Casimir amplitude that is exactly equal and opposite
to the Casimir amplitude of the three-dimensional spherical
model subject to antiperiodic boundary conditions [26]. The
methods utilized here for the treatment of the spherical model
with free boundary conditions may well point the way to
progress in the investigation of some of the above-mentioned
quantum systems subject to similar boundary conditions; in
the references above, these models are usually studied in
their thermodynamic limit or subject to periodic boundary
conditions.

II. DEFINITION OF THE MODEL

For an O(n), n � 1 model of a d-dimensional system at a
temperature T and geometry ∞d−1 × L, the thermodynamic
Casimir force per unit area, i.e., the Casimir pressure, is defined

by [5,86]

F
(τ )
Cas/A = F

(τ )
Casimir(T ,L) = −∂f (τ )

ex (T ,L)

∂L
, (2.1)

where f (τ )
ex (T ,L) is the excess free energy per unit area

f (τ )
ex (T ,L) = f (τ )(T ,L) − Lfb(T ), (2.2)

and the superscript τ denotes the boundary conditions. Here
f (τ )(T ,L) is the full free energy per unit area of such a system
subjected to the boundary conditions τ , and fb is the bulk
free-energy density.

Consider a d-dimensional cubic lattice, each lattice site
occupied by an n-component classical vector spin having
ferromagnetic interactions with its nearest neighbors. We
single out one dimension, z, to be L lattice spacings long.
At each of the L sites along the finite dimension, there is
a (d − 1)-dimensional transverse layer containing a total of
A spins, where A is large and will later be taken to infinity.
Periodic boundary conditions hold within the layers of the
system while free boundary conditions are imposed in the z

direction by placing a layer of zero length spins on the top and
the bottom of the film (i.e., at z = 0 and z = L + 1). Since we
will consider only such boundary conditions from here on, the
superscript (τ ) will no longer be utilized in the remainder of
this article.

The model as described is not especially amenable to
analysis. However, in the n → ∞ limit it is equivalent [71,76]
to a form of the spherical model, wherein the vector spins
are replaced by real-valued scalar spins and each (d − 1)-
dimensional layer satisfies an individual spherical constraint∑

s2 = A, where the summation runs over the spins s

belonging to a given layer. We simplify matters further by
utilizing the mean spherical model, in which 〈∑ s2〉 = A, and
which yields the same results as the spherical model in the
thermodynamic limit, A → ∞.

Our Hamiltonian is therefore

H = −J
∑
〈s,s ′〉

ss ′ + J
∑

i

�i

⎛
⎝∑

j

s2
i,j − A

⎞
⎠ , (2.3)

where the first summation is taken over nearest-neighbor spins
s and s ′, which lie either in the same layer or in adjacent
layers. The parameter J > 0 is the ferromagnetic coupling
and �i is the “spherical field” for layer i, i.e., the Lagrange
multiplier, which will adjust so as to enforce the mean spherical
constraints 〈∑j s2

i,j 〉 = A, where the average is taken with
respect to the Hamiltonian (2.3). The notation si,j refers to
spin j in layer i, with i = 1, . . . ,L and j = 1, . . . ,A.

Fourier transforming spins along the layers, periodic bound-
ary conditions being applied, we find

H = −JA
∑

i

�i + J

2

∑
q

s(q)†H(q)s(q), (2.4)

where the sum over q extends over the first Brillouin zone of
layer i, and

[H(q)]ij = Mij − 2δij

d−1∑
k=1

cos qk (2.5)
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FIG. 1. (Color online) The scaled Casimir force (symbols) as
compared to the closed-form low-temperature asymptotic results
(solid curves) developed in Sec. III B for L = 50,100,200, and 500.
The asymptotic results turn out to be accurate for moderately low
absolute temperatures, corresponding to T � 0.8 Tc. Note that the
larger L is, the better is the approximation given by the asymptotic
curves, as should be expected, since 4π (R − Rc)L � ln L is the
variable that governs the behavior observed. As indicated in the inset,
which tracks the scaled Casimir force down to absolute zero, the
asymptotic forms, given by Eqs. (3.23) and (3.24), are quite accurate
at lower temperatures for any L � 1.

with

Mij = 2�i δi,j − δ|i−j |,1. (2.6)

After computing the partition function in the standard way,
we find the free energy per transverse unit area, in units of
kBT , to be

βF
A

= −R
∑

i

�i + 1

2
L ln

(
R

2π

)
+ 1

2A

∑
q

ln[det (H(q))],

(2.7)

where R = βJ . The spherical constraint is enforced in the
mean via the Lagrange multipliers �i . In particular, we must
have

0 = β

A

∂F
∂�i

= −R + 1

A

∑
q

[H(q)]−1
ii (2.8)

for each i = 1, . . . ,L.

III. RESULTS ON THE MODEL IN d = 3

We now focus on the case of three dimensions. As a
prelude to this discussion, we display in Fig. 1 our results
for the Casimir force for an extended temperature range, from
well below the bulk transition temperature, Tc, to just above
it. The horizontal axis is T/Tc, and the vertical axis is the
scaled Casimir force per unit area, L3βFCas/A. We choose
the scale factor L3 because in systems with broken continuous
symmetry, the Casimir force scales as L−3 both below and
in the vicinity of Tc and decays exponentially above that
temperature [87]. The behavior of the force near Tc is presented
in Fig. 2. We observe that the results plotted in Figs. 1–3 agree
with the expected behavior of the Casimir force in systems
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FIG. 2. (Color online) The scaled Casimir force L3βFCas/A as
a function of scaling variable x = (L/ξ+

0 )t , with reduced temperature
t = (T − Tc)/Tc and bulk correlation length amplitude ξ+

0 , for L =
10 (top, solid blue), L = 30 (second from top, dashed purple), L =
200 (second from bottom, dot-dashed red), and L = 500 (bottom,
solid black). The zero-temperature value of −ζ (3)/8π is indicated
as a horizontal dashed line. The L = 200 and 500 curves lie on top
of each other in the critical region x = O(1), and both are close
approximations to the scaling function ϑ(x).

with broken continuous symmetry [5,6]. Specifically, in this
system we find that the Casimir force scales as L−3 both well
below and near Tc; the scaling function of the force tends to a
nonzero constant for x → −∞; and the force is negative, i.e.,
a force of attraction for all temperatures, as one expects when
the boundary conditions are the same at both bounding layers.

The calculations leading to the results displayed in the
two figures are as follows. We start with the one-dimensional
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FIG. 3. (Color online) The scaled Casimir force L3βFCas/A as
a function of scaling variable x = (L/ξ+

0 )t in the temperature region
close to and well below the critical temperature Tc allowing for
only linear-in-L corrections to scaling (see the discussion in the last
two paragraphs of Sec. III A). Data for L = 100, 150, 200, and 300
are presented. The notations are the same as in Fig. 2. The lower
inset shows a blowup of the region close to Tc and demonstrates
the excellent scaling there that can be achieved in this way, in that
all curves are indistinguishable. The upper inset shows a blowup
of the region x ∈ (−300, −100) and depicts the spreading of the
scaling curves in the regime well below Tc due to the existence of
a logarithmic-in-L term there; see Eq. (3.24). The zero-temperature
value of −ζ (3)/8π is indicated as a horizontal dashed line.
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operator

H(q)−1 =
L∑

l=1

|ψ (l)〉〈ψ (l)|
al − 2 cos qx − 2 cos qy

, (3.1)

where {al,|ψ (l)〉} are the eigenvalues and normalized eigenvec-
tors, respectively, of the matrix M defined in Eq. (2.6). Note
that both {al} and {|ψ (l)〉} depend on the spherical fields �i ,
i = 1, . . . ,L. The general properties of {al} and {|ψ (l)〉}, with
l = 1, . . . ,L, are given in Appendix A. Here we note that all
eigenvalues al are real, nondegenerate, and, if a1 is the single
ground-state value, one has a1 > 0 and the corresponding
eigenvector can be chosen to have positive components, i.e.,
ψ

(1)
i > 0 for all i = 1, . . . ,L.
Given {al} and |ψ (l)〉, l = 1, . . . ,L with Eq. (2.8) satisfied,

we are in a position to determine all the thermodynamic
properties of this system. In the transverse thermodynamic
limit, A → ∞, the sum over the Brillouin zone is reproduced
by an integral, and Eqs. (2.8) and (3.1) lead to the so-called
spherical constraints

βJ ≡ R =
L∑

l=1

[
ψ

(l)
i

]2
g(al) (3.2)

for each i = 1, . . . ,L, where ψ
(l)
i is the ith component of the

eigenvector |ψ (l)〉,

g(x) = 1

2π

4

x
K

(
4

x

)
, (3.3)

and K(k) is the complete elliptic integral of the first kind
with modulus k. Using the completeness of the eigenvectors
|ψ (l)〉, l = 1, . . . ,L, and performing the sum of Eqs. (3.2) with
respect to i, we arrive at

R = 1

L

L∑
l=1

g(al). (3.4)

The free energy can then be written in closed form as

βF
A

= 1

2
L ln

(
R

2π

)
+ 1

2

L∑
l=1

[
ln al − 2R�l

− 2

a2
l

4F3

(
1,1,

3

2
,
3

2
; 2,2,2;

16

a2
l

) ]
, (3.5)

where 4F3 is a generalized hypergeometric function [88]. The
bulk free energy per length, fb, is straightforwardly calculated
using known methods—see Appendix C.

Then, as in Ref. [67], we construct the Casimir pressure

βFCas
A

= − ∂

∂L

(
βF
A

− Lβfb

)

≈ βfb − 1

2

[
βF(L + 1)

A
− βF(L − 1)

A

]
, (3.6)

where fb is the bulk free-energy density—see Eq. (C1). Imple-
menting the analysis described above, with the eigenvalues {al}
and the eigenvectors |ψ (l)〉, l = 1, . . . ,L determined from the
matrix M, where �i , i = 1, . . . ,L are determined to satisfy
Eq. (2.8) with the use of the numerical methods described in

Appendix B, we find the Casimir force curves shown in Figs. 1
and 2.

A. Behavior of the critical Casimir force

Figures 2 and 3 displays the scaled critical Casimir force.
The scaling variable is x = (L/ξ+

0 )t , where t = (T − Tc)/Tc is
the reduced temperature and ξb(t → 0+) = ξ+

0 t−ν is the bulk
correlation length. Here, ν = 1 is the corresponding critical
exponent in the bulk spherical model in d = 3, and ξ+

0 =
(4πRc)−1 is the nonuniversal amplitude as determined from
earlier results [24]. Here Rc is the bulk critical coupling,

Rc = 1

2

1

(2π )3

∫ π

−π

d3q

3 − cos qx − cos qy − cos qz

. (3.7)

In Ref. [89] it has been shown that

Rc = (
√

3 − 1)�(1/24)2�(11/24)2

192π3
� 0.252 731. (3.8)

According to [90], the above is also equivalent to

Rc = 4

π2
(18 + 12

√
2 − 10

√
3 − 7

√
6)

× K[(2 −
√

3)(
√

3 −
√

2)]2. (3.9)

As L → ∞, corrections to scaling become negligible
and we are left with the Casimir scaling function ϑ(x) =
L3βFCas(x)/A for this system under free boundary conditions.
The curves for L = 200 and 500 are substantially the same;
the solid black L = 500 curve is, in fact, an excellent
approximation to ϑ(x).

From our numerical results for a set of L values, L ∈
{10, 20, 30, 40, 50, 60, 70, 80,90,100,150,200,250,300,400,

500,750,1000,1250,1500,1750,2000,3000}, we find a
Casimir amplitude of

� = 1
2ϑ(0) ≈ −0.010 773(7). (3.10)

The reported value represents a conservative estimate of the
constant, arrived at by fitting the data with corrections to
scaling that are either logarithmic in L, or purely linear in
L. To be specific, we fitted the data with corrections to the
leading behavior of the form

∑nmax
i (ci + di ln L)L−i , where we

have taken nmax = 5, and the coefficients di have been either
determined by a least-squares procedure or set equal to zero.
The values for the Casimir amplitude by the two approaches are
in close agreement, and the value reported above is consistent
with what we find by either of the two approaches. When the
coefficients di are allowed to adjust, the leading coefficient,
d1, turns out to be quite small. Based on this, we feel that
we can neither confirm nor refute the existence of logarithmic
corrections in the behavior of �.

The extremum of the scaling function and its
position is determined for a set of values L ∈
{10, 20, 30, 40, 50, 60, 70, 80,90,100,150,200,250,300,400,

500}. We follow the same procedure as was utilized to
determine the Casimir amplitude �. The result we obtain for
the minimum value of the force is

ϑmin ≈ −0.1270(2). (3.11)

The amplitude � was first evaluated in Ref. [91] where
the value � = −0.012(3) was reported. The location of the
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Casimir force extremum is at x = xmin = −4.53 for L = 500.
The conservative estimate obtained from the set of all L values
is xmin = −4.54(1).

The quantities �,ϑmin, and xmin are expected to be universal
and, indeed, they agree to great precision with the values
given by Diehl et al. [67] for their closely related model.
The accuracy of our results is limited by our approximation
of the derivative in Eq. (2.1) by a difference [see Eq. (3.6)].
Agreement with the measurements in Refs. [11,12] for 4He
films is less satisfactory, as it should be, given the widely
acknowledged difference between the O(2) and O(∞) models;
experimental results on 4He films are consistent with xmin =
−5.7(5) and ϑmin = −1.30(3) [12].

Figure 3 depicts the scaled Casimir force L3βFCas/A as a
function of scaling variable x = (L/ξ+

0 )t in the temperature
region close to and well below the critical temperature Tc

allowing for only linear-in-L corrections to scaling. These
corrections amount to replacing the film thickness L by an
effective thickness Leff = L + δL, where δL does not depend
on L and T . Since ν = 1 for the three-dimensional (bulk)
spherical model, the last replacement of L with Leff means
taking into account the linear in L corrections to scaling. This
procedure is consistent with the essential ambiguity in the
lateral size of a lattice system with free boundary conditions
in that it is not clear what portion of the space outside the
boundary layers of the system ought to be attributed to the
system itself. It is reasonable to expect the uncertainty to be
of the order of a lattice spacing, which here is equal to 1. In
Fig. 3, data for L = 100, 150, 200 and 300 are presented. It
turns out that δL = 0.45 leads to a near perfect overlap of the
curves near Tc.

The notations in the figure are the same as in Fig. 2. The
lower inset is a blowup of the region close to Tc and demon-
strates the agreement with scaling that has been achieved with
the use of Leff , in that all curves are indistinguishable. The
upper inset shows a blowup of the region x ∈ (−300,−100)
and depicts the spreading of the scaling curves in the regime
well below Tc due to a departure from finite-size scaling.
This violation of the scaling hypothesis can be traced to
the existence of a logarithmic-in-L term there. Why there
is such spreading, why logarithmic-in-L corrections exist,
and what are their amplitudes will be derived in Sec. III B.
The zero-temperature value of −ζ (3)/8π is indicated as a
horizontal dashed line. This asymptotic value and the leading
L-dependent corrections to it are also derived in the next
section.

B. The Casimir force in the Goldstone-mode-dominated regime

In the regime in which Goldstone modes dominate, i.e.,
for T � Tc (or, equivalently, R � Rc), the system explored
here can be studied in closed form. In that regime, the
left-hand side of Eq. (3.2) becomes large, forcing the lowest
eigenvalue, a1, to approach 4 and dominate the right-hand
side, since then K(x) grows logarithmically according to [88]:
K(x)  ln [4/

√
1 − x2]. This causes the summation over l to

be dominated by the l = 1 contribution and, as the right-hand
side of (3.2) must be independent of the site index, we have

ψ
(1)
i

2
equal to a constant, independent of i. Numerically, one

can check that ψ (1) approaches a constant vector. From the fact

that ψ (1) is the eigenvector of M with eigenvalue 4, we find

� = �∗ = (5,6,6, . . . ,6,6,5)/2. (3.12)

Since the matrix M∗ ≡ M(�∗) can be directly expressed
in terms of the discrete Laplacian under Neumann-Neumann
boundary conditions for the eigenvalues λl and normalized
eigenvectors φ(l) of M∗, one immediately has (see, e.g.,
Ref. [5])

λl = 4 + 4 sin2[π (l − 1)/2L] (3.13)

and

φ
(l)
i =

{
1/

√
L, i = 1,

cos[π (l − 1)(i − 1/2)/L]/
√

L/2, i = 2, . . . ,L,

(3.14)

where φ(l) are orthonormal and form a complete system. We
then expand about � = �∗ applying perturbation theoretical
methods in the small variable 1/L(R − Rc). Using the con-
straints Eqs. (3.2) and (3.4), we find

a1  4 + 32e−4πL(R−Rc) (3.15)

nonperturbatively, i.e., inexpressible as a power series in
1/L(R − Rc), and

al = λl + 1

2πL(R − Rc)
(λ2l−1 − 4)

×
[
K(4/λl)

λl

− K(4/λL+2−l)

λL+2−l

]
+ O{[(R − Rc)L]−2}

(3.16)

perturbatively, for l � 2, keeping only the first-order correc-
tion with respect to the variable 1/L(R − Rc). The details
of the derivation of Eqs. (3.15) and (3.16) are presented in
Appendix D. Note that Eq. (3.15) demonstrates that a1 → 4
when 4πL(R − Rc) � 1. This also determines the range of
the validity of Eq. (3.16). The results presented in Eqs. (3.15)
and (3.16) can be further refined as shown in Appendix D—see
Eq. (D7)—by replacing Rc in them with ρL, where

ρL = Rc − 1

4πL

(
K(1/2) + 7 ln 2

2
+ ln L

)
+ O

(
1

L2

)
.

(3.17)

The expressions (3.15) and (3.16) for a1 and al , l = 2, . . . ,L,

then become

a1 = 4 + 1

L
2
√

2e−K(1/2)/2e−4π(R−Rc)L (3.18)

and

al = λl + sin2[π (l − 1)/L]

L(R − ρL)
[g(λl) − g(L + 2 − l)]. (3.19)

As shown in Appendix D, the above equations are valid for

4π (R − Rc) � ln L/L. (3.20)

This means that our “low-temperature” calculations are ac-
curate to a distance below the critical point going as ln L/L,
which is well outside the region in which critical point scaling
holds [(R − Rc) ∼ 1/L], but nevertheless quite close on an
absolute temperature scale. In this latter regime, a1 approaches
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4 as a function of L faster than L−2. Obviously, if T is at a fixed,
L-independent distance below Tc, then a1 → 4+ exponentially
rapidly in L.

To compute the Casimir force, we must determine the
effects of the perturbed eigenvalues on the free energy,
Eq. (3.5). Given the above discussion, when 4πL(R − Rc) →
∞, our system will behave like the corresponding Gaussian
model under Neumann-Neumann boundary conditions at its
critical point. This leads to the well-known result (see, e.g.,
Ref. [41]) βFCas = −ζ (3)/(8π )L−3. It is interesting to note
that one has the same result also for the Gaussian model under
Dirichlet-Dirichlet boundary conditions [41]. The analysis of
the case in which 4πL(R − Rc) is large but finite is much
more involved. The details are contained in Appendix D. The
result is that the force βFCas can be represented as a sum
of a leading-order, temperature-independent term βF

(0)
Cas(L),

plus a term that reflects the leading temperature-dependent
contributions βF

(1)
Cas(T ,L). One can derive an exact expression

for βF
(0)
Cas(L). The result is

βF
(0)
Cas(L) = − 1

(2π )2

∫ π

−π

∫ π

−π

dqxdqy

v(qx,qy)

exp[2Lv(qx,qy)] − 1
,

(3.21)

where

v(qx,qy) = cosh−1[3 − cos qx − cos qy]. (3.22)

Obviously, βF
(0)
Cas(L) < 0. Expanding βF

(0)
Cas(L) in powers of

1/L, we find

βF
(0)
Cas(L)

A
= − 1

8πL3

[
ζ (3) + 7

8
ζ (5)L−2 + O(L−4)

]
,

(3.23)

while for βF
(1)
Cas(T ,L) one has

βF
(1)
Cas(T ,L)

A
= − 1

4(R − Rc)L4
[a + b ln L + O(L−2)],

(3.24)

with

a = ζ ′(−2)

4

[
2 + 3K

(
1

2

)
− 21 ln 2 + 6 ln(2π )

]

− 3ζ ′′(−2)

4
 0.022 463 9 (3.25)

and

b = −3ζ ′(−2)

2
 0.045 672 7, (3.26)

where ζ is the Riemann ζ function. Note that 1/(R − Rc) ∼ T

for T ≈ 0 and, thus, Eq. (3.24) can be safely used even at very
low temperatures. In addition, Eqs. (3.24)–(3.26) imply that
βF

(1)
Cas(T ,L) < 0.
The fact that the quantity βFCas/A is negative at T = 0 and

that it decreases with increasing T , eventually approaching
zero at temperatures just above the bulk critical temperature,
tells us that there must be at least one minimum in that quantity
in the temperature range 0 < T < Tc. We find precisely one
such minimum. The above implies that the Casimir force in

the model considered here is nonmonotonic as a function
of T , as opposed to its behavior under periodic boundary
conditions [24,25]—in which case the Casimir force has been
analytically proven to be monotonically increasing; in the
case of antiperiodic boundary conditions [26], the force is a
monotonically decreasing function of T . We can thus associate
the nonmonotonicity with the existence of physical bounding
surfaces in the system subject to free boundary conditions. This
property is also observed in the XY model [51,57] subject to
Dirichlet boundary conditions and may well persist in any
O(n), n � 2 model under boundary conditions enforcing the
existence of surfaces in the geometry of the system.

The comparison between numerical and asymptotic results
is shown in Fig. 1. We observe good agreement between them
for T � 0.8Tc for the L values considered there—the larger
L is, the better is the agreement, as should be expected, since
(R − Rc)L is the variable that governs the behavior observed
for large values of that variable.

Interestingly, we find that our analytical and numerical
results at low temperature are inconsistent with those reported
in Ref. [67]. In particular, our expressions (3.23)–(3.26) are
inconsistent with the low-temperature behavior plotted in
their Fig. 1, especially in the sense that our results do not
collapse into a scaling form expressible entirely in terms
of the combination x = (L/ξ+

0 )t . Furthermore, we find that
the expression utilized by them (see the caption of their
Fig. 1) does not reproduce our low-temperature results. This
discrepancy may arise from inconsistencies between their low-
temperature approach and ours. Of course, low-temperature
behavior may well be model-dependent. Nevertheless, this
regime deserves further exploration.

Finally, our results delineate the regions in which critical
fluctuations and Goldstone modes dominate the behavior of
the Casimir force: Eq. (3.20), which can also be rewritten
as −xR/Rc � ln L, yields the condition on T and L in
which the Goldstone contributions dominate, while x = O(1)
is the finite-size scaling critical region in which the critical
fluctuations dominate. Of course, when ln L � −xR/Rc � 1,
which defines a region near Tc, both the critical fluctuations
and Goldstone-type excitations mix so that neither of them
dominate. The validity of these results beyond the specific
model investigated here remains to be determined.

IV. CONCLUSIONS AND DISCUSSION

We have found that the venerable spherical model [69,92],
which has proven so useful in the reproduction and elucidation
of thermodynamic behavior in a number of interesting systems
(for a review, see Refs. [5,74,93,94]), provides insight into the
critical Casimir force in a system having a broken continuous
symmetry in its ordered state. Most of the studies of this model
have been performed for systems in which translation-invariant
symmetry is present, in which case the model is equivalent
to the n → ∞ limit of the corresponding n-component
vector models [71,72]. However, for the spherical model with
surfaces, this equivalence is preserved only if one imposes
spherical constraints in a way that ensures that the mean-square
value of each spin of the system is the same [76], a version
of the model that was viewed for some time as analytically
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intractable [95,96]. In the current study, we were able to
implement the properly formulated spherical model to extract
analytical results at temperatures below the critical region, see
Eq. (3.20), and in addition to provide indications that it may
be possible to derive exact results at the critical point. Thus,
our approach, which confirms the results reported by Diehl
et al. [67] near Tc and extends and partially corrects them in
the region below Tc (see Sec. III B), provides insight into the
connection between a Casimir force in a film when it is driven
by critical fluctuations in the immediate vicinity of the bulk
phase transition, and a Casimir force that reflects the influence
of Goldstone modes at lower temperatures.

While the Casimir forces obtained with the use of this
model, as displayed in Figs. 1–3, differ in detail from the
data for 4He obtained in Refs. [11,12], the overall features—
particularly the pronounced minimum in the Casimir force
below the critical point and the approach to a nonzero
limiting value at low temperatures—are strikingly similar. As
noted above, the low-temperature behavior—see Eqs. (3.23)
and (3.24)—reflects the Goldstone-mode contributions to the
Casimir force, the leading behavior of which is given by
−ζ (3)/(8π ) [68]. We note that the formulation of the model
explored here fails to capture hydrodynamic surface wave
fluctuations, which play a role in the low-temperature Casimir
force of a film of superfluid liquid [97].

Equations (3.17)–(3.19) suggest the existence of an additive
logarithmic shift to the scaling variable in the region near
Tc, for which ln L � −xR/Rc � 1, where both the critical
fluctuations and Goldstone-type excitations mix so that neither
of them dominate—see Eq. (3.20). In that regime, one is
outside the finite-size critical regime, since |x| � 1, but still
not in the Goldstone-dominated regime. We do not have
analytical results to support—or to refute—the proposition
that this behavior persists into the critical regime or at Tc.
Extending the method in Appendix D, one can contemplate
developing a perturbation theory in which a1 → 4+, but the
constraint g(a1) � g(λ2) is abandoned. Numerical results
indicate that at T = Tc one has a1 − 4 ∝ L−2 [98]. Finally,
we have shown that when ln L � −xR/Rc [see Eq. (3.20)],
there are ln L corrections to the behavior of the Casimir force
[see Eq. (3.24)]; that is, the leading temperature dependence
cannot be expressed entirely in terms of the scaling variable
x. It should be possible to utilize Monte Carlo simulations
to determine whether this behavior is characteristic of O(n),
n � 2 models, taking into account the fact that the coefficient
in front of the ln L term is quite small in the spherical
model—see Eq. (3.26).

The qualitative agreement between our study and the
experiments on 4He encourages us to anticipate that the model
we investigated can prove to be a very useful adjunct to general,
and perhaps specific, studies of Casimir forces in systems
with a continuous symmetry of the type that is broken in the
superfluid transition. Note that in Ref. [11], some spreading
is reported in the scaled plots of the measured Casimir force
acting on helium films of different thickness formed on Cu
plates. Later in Ref. [12], where 4He films formed on a silicon
surface have been studied, this spreading is greatly reduced,
and the previously observed effect on Cu has been attributed
solely to the roughness of the Cu surfaces used in Ref. [11].
One might speculate that an additional reason for the spreading

is the existence of ln L corrections to the scaling behavior of
the force.

We have shown that when T → 0, the scaling function of
the Casimir force tends to a universal constant; see Eqs. (3.21)
and (3.23). This implies that the Casimir force tends to zero
in that limit, as the force is linear in T . Of course, our purely
classical approach has ignored quantum fluctuations. Given the
existence of zero-point motion, a properly quantized system
with gapless modes should manifest a nonzero Casimir force
at T = 0. One promising candidate for the investigation of the
Casimir force at low temperatures when the governing fluctua-
tions are of quantum rather than thermal origin is the different
versions of the quantum spherical model [65,77–79,81]. The
finite-size behavior of one version of this model has been
studied under periodic boundary conditions [65]. We hope
that our analytical results will make it possible to study this
model, and related models, such as the quantum anharmonic
crystal [79], subject to Dirichlet boundary conditions.

APPENDIX A: ON THE PROPERTIES OF MATRIX M

First, since the elements of this matrix are real and
Mij = Mji , one knows that the eigenvalues, al , are real,
the eigenvectors are orthonormal, 〈ψ (l)|ψ (m)〉 = δl,m, and that
those eigenvectors form a complete system, i.e.,

L∑
l=1

[|ψ (l)〉〈ψ (l)|]ij =
L∑

l=1

ψ
(l)
i ψ

(l)
j = δij . (A1)

Next, according to Eq. (2.6), one has

Mij = 2�i δi,j − δ|i−j |,1 = 2�max δi,j − M̃ij , (A2)

where �max = maxi �i and

M̃ij = [2(�max − �i)δi,j + δ|i−j |,1] � 0. (A3)

We now make use of the Perron-Frobenius theorem [99–
101] concerning the eigenvalues and eigenvectors of an
indecomposable matrix A of non-negative elements ai,j �
0. We express this property by writing A � 0. A matrix
A = {ai,j } is called connected or indecomposable if for any
two indices i and j there is a sequence rk , 1 � k � s, such
that the product ai,r1ar1,r2ar2,r3 · · · ars ,j �= 0. If A � 0 is a real
connected matrix, it has a largest simple positive eigenvalue,
r(A) = r , and an associated column vector x > 0, such that
Ax = rx, where r > 0; any other eigenvalue λ of A has an
absolute value less than or equal to r . Further, if B � 0
is another real matrix of the same dimension, such that
A − B � 0, then r(B) � r(A), the equality holding only if
B = A. Applying the above theorem to the matrix M̃, we find
that the matrix M has a nondegenerate smallest eigenvalue
a1, the corresponding eigenvector having components that
are all positive, i.e., ψ

(1)
i > 0, i = 1, . . . ,L. Furthermore,

the following theorem [102,103] holds: If A = ai,j is a real
tridiagonal matrix of order L satisfying ak,k+1ak+1,k > 0 for
k = 1, . . . ,L − 1, then A has L real simple eigenvalues.
Taking into account that for the elements of the matrix
M one has mk,k+1 = mk+1,k = −1 for k = 1, . . . ,L − 1,
and, therefore mk,k+1mk+1,k = 1 > 0, we conclude that all
eigenvalues al, l = 1, . . . ,L of M are real and nondegenerate.
From the general theory of tridiagonal matrices, one can also
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gain some knowledge about the behavior of the eigenvectors
associated with the corresponding eigenvalues. The following
theorem [102] is valid: Under the conditions of the previous
theorem, if λ1 > λ2 · · · > λL are the eigenvalues of A, which
exist by virtue of the previous theorem, then every (real)
eigenvector z = (z1,z2, . . . ,zL)T of the matrix A has the
following properties: (i) z1 �= 0,zL �= 0; (ii) if zk = 0, then
ak−1,kak,k+1zk−1zk+1 < 0; (iii) if we delete zeros from the
sequence

z1,a1,2z2,a1,2a2,3z3, . . . ,a1,2a2,3 · · · an−1,nzn

and if the vector z belongs to λr , then there are exactly r − 1
changes of sign in the sequence. Applying this theorem to the
matrix M, taking into account that mk,k+1 = mk+1,k = −1 for
k = 1, . . . ,L − 1, we obtain, again, that the smallest eigen-
value a1 is characterized by eigenvector �(1) with components
ψ

(1)
i > 0, i = 1, . . . ,L, i.e., it has no zero elements. The

next to the smallest a2 eigenvalue corresponds to eigenvector
�(2), the components of which change sign once. Due to
symmetry this occurs in the middle of the system. So, if
we take a system with an odd number of component L, the
component with coordinate i = (L + 1)/2 will be zero, i.e.,
ψ

(2)
(L+1)/2 = 0, while, say, ψ

(2)
i > 0 for i = 1, . . . ,(L − 1)/2

and ψ
(2)
i < 0 for i = (L + 3)/2, . . . ,L. In the general case,

the eigenvector �(r) has r − 1 changes of the sign of its
subsequent components. As a result of the symmetry of the
problem, it is clear that the eigenvectors are either symmetric or
antisymmetric up until about the middle of the system, i.e., that
ψ

(l)
i = (−1)l+1ψ

(l)
L+1−i . Thus, if Eq. (3.2) is fulfilled for some

i = k, then it is automatically fulfilled also for i ′ = L + 1 − k.
In the limit L → ∞, the system will be described by a

matrix Mb with �i independent of the layer number i, i.e.,
with �i = �. The L × L matrix ML with diagonal elements
�i = �, as is well known (see, e.g., [103]), is characterized
by eigenvalues âl = � − 2 cos[lπ/(L + 1)] and eigenvectors
ψ̂

(l)
i = √

2/(L + 1) sin[i lπ/(L + 1)], i,l = 1, . . . ,L.

APPENDIX B: NUMERICAL DETERMINATION
OF LAGRANGE MULTIPLIERS �l , l = 1, . . . ,L

We aim to determine the Lagrange multipliers �l , l =
1, . . . ,L, such that the eigenvalues al , and eigenvectors |ψ (l)〉,
l = 1, . . . ,L, of the matrix M defined in Eq. (2.6) satisfy
Eqs. (3.2). Our approach is numerical. The solutions will,
obviously, depend both on the temperature and the size
of the system, i.e., al = al(T ,L) and |ψ (l)〉 = |ψ (l)(T ,L)〉,
l = 1, . . . ,L. To solve Eqs. (3.2) near and above the critical
temperature Tc of the system, we use the multidimensional
Newton-Raphson method. For temperatures x = (L/ξ+

0 )t �
−1, we apply a modification of this method taking into account
that the lowest eigenvalue of the system a1 approaches its
limiting minimal allowed value of 4 exponentially rapidly in
L [see Eq. (3.15)].

1. Multidimensional Newton-Raphson method

We have to solve the equations

f(�) = 0, (B1)

where f = {f1,f2, . . . ,fL} with

fi(�) = −R + 2

π

L∑
l=1

[
ψ

(l)
i

]2 1

al

K

(
4

al

)
(B2)

for each i = 1, . . . ,L. According to the Newton-Raphson
method, one starts with a suitable chosen set of �l , l =
1, . . . ,L, �old, and iteratively generates new values �new,
where

�new = �old − D−1 · f(�old), (B3)

with D = {Di,j }, i,j = 1, . . . ,L, where

Di,j = ∂fi/∂�j . (B4)

To implement the method, we must first compute derivatives
of the constraint equations with respect to the spherical
fields {�l}. To accomplish that requires the derivatives of
al and |ψ (l)〉 on �. The exact results, familiar from first-
order perturbation theory—see, e.g., [104]—or the operator
expansion—see, e.g., [105]—are

∂al

∂�j

= 2
[
ψ

(l)
j

]2 � 0, (B5)

which tells us that al , l = 1, . . . ,L, are nondecreasing func-
tions of {�l}, and

∂ψ
(l)
i

∂�j

= 2
∑
m�=l

ψ
(m)
j ψ

(l)
j

al − am

ψ
(m)
i . (B6)

With the help of the above results, one can compute the
Jacobian determinant D for Newton’s method to be

Di,j = 4

π

L∑
l=1

L∑
m=1

ψ
(l)
i ψ

(m)
i ψ

(l)
j ψ

(m)
j dl,m, (B7)

i.e., Di,j = Dj,i , and

dl,m = E(4/al)

16 − a2
l

δm,l + 2K(4/al)

al(al − am)
(1 − δm,l), (B8)

with E(k) being the complete elliptic integral of the second
kind with modulus k. Due to the properties of eigenvalues al ,
l = 1, . . . ,L of matrix M presented in Appendix A, one has
al �= am if l �= m and, therefore, dl,m are finite and well defined
when a1 > 4 with a1 = minl{al}, l = 1, . . . ,L. The condition
al > 4 is physically necessary, because H(q) must be positive
definite, see Eq. (3.1), for the free energy, Eq. (3.5), to exist.

Newton’s method works very well at high temperatures,
where the eigenvalues al are comfortably larger than 4. We see
empirically that the smallest eigenvalue, a1, gets arbitrarily
close to 4 as we approach low temperatures. While it is not a
priori obvious that the system will be driven to a1 � 4, this
behavior can be anticipated from the known behavior of the
corresponding bulk system at its critical point. Mathematically,
it is straightforward to understand why this occurs. When
T becomes small so that R becomes large, the constraint
equations, Eq. (3.2), begin to rely on the divergence of K(x),
forcing an eigenvalue to approach 4 from above. In fact, as is
shown in Appendix D, a1 gets exponentially close to 4—again,
see Eq. (3.15). Newton’s method is, unsurprisingly, unstable
in this region because iterations of the procedure often send
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the system into the unphysical regions with an eigenvalue
below 4.

2. Modified Newton-Raphson method

Once a1 is close enough to 4 that Newton’s method exhibits
numerical instability, the problem can be solved to an excellent
approximation by implementing the following changes:

(i) Replace K(a1/4) in the constraint equation with a new
free coefficient, C.

(ii) Enforce the condition that a1 = 4.
Specifically, the new constraints are [106]

0 = fi(�,C) = −R + C ψ
(1)
i

2 + 2

π

L∑
l=2

ψ
(l)
i

2 1

al

K

(
4

al

)

(B9)

for i = 1, . . . ,L, and an additional constraint

0 = g(�,C) = a1 − 4. (B10)

These (L + 1) equations are to be solved for the (L + 1) vari-
ables {�l} and C. The (L + 1)(L + 1) Jacobian is computed
in the same way as before, but with the (L + 1)st column given
by ∂fi/∂C and the (L + 1)st row given by ∂g/∂�j .

Once we have the means to compute the {�l} for a given
system size and temperature, we would like to construct the
Casimir force making use of (3.6). This involves taking a
(discrete) derivative of free energy with respect to system
size, and subtracting off the corresponding bulk free energy in
order to capture the purely finite-size contribution. The details
needed for the bulk model are given in Appendix C.

APPENDIX C: SOME PROPERTIES OF THE
BULK MODEL

The properties of the bulk spherical model are investigated
in detail in Refs. [5,93]. Here we summarize the results needed
for the current study. We start with the expression for the bulk
free-energy density fb, which reads

βfb =
{−R�b + [ln (R/π )]/2 + I (�b) , R � Rc,

−3R + [ln (R/π )]/2 + I (3) , R � Rc,

(C1)

where

I = 1

16π3

∫ π

−π

dqx dqydqz ln(� − cos qx − cos qy − cos qz),

(C2)

and for R < Rc the parameter �b is to be determined from the
bulk spherical field equation,

R = W (�b) ≡ 1

16π3

∫ π

−π

dqx dqy dqz

�b − cos qx − cos qy − cos qz

= 1

2

∫ ∞

0
dw e−w�bI 3

0 (w)

= 1

2π2

∫ π

0

4

2�b − 2 cos(q)
K

(
4

2�b − 2 cos(q)

)
dq.

(C3)

Here Rc ≡ W (3) is given in Eq. (3.7) and I0(w) is the modified
Bessel function of the first kind. The last line in Eq. (C3)
provides a representation that alludes to the analogy with the
finite-dimensional system.

The behavior of the integral I for � = 3 was studied by
Joyce and Zucker [89], and they succeeded in computing it to
51 digits,

I3 ≡ I (� = 3) ≈ 0.490 121 061 205 1 . . . . (C4)

We note that
dI

d�
= W (�) (C5)

is the well-studied “generalized Watson integral.” Fisher and
Barber developed a series expansion of this integral [107] for
� ≈ 3, showing that

W (�) = Rc − 1

4π

√
2(� − 3) + O(� − 3). (C6)

Integrating with respect to �, we find the series expansion for
I (�),

I (�) = I3 + Rc(� − 3) −
√

2

6π
(� − 3)3/2 + O[(� − 3)2],

(C7)

valid when � � 3. This series can be used in the region in
which numerical evaluation of the integral I (�) is slow and
inaccurate.

APPENDIX D: ON THE DERIVATION OF THE CASIMIR
FORCE IN THE NEAR UNDERCRITICAL AND IN THE

GOLDSTONE-MODE-DOMINATED REGIME

We aim to solve Eqs. (3.2) in the regime 4π (R − Rc) �
ln L/L. This relationship holds when the absolute temperature,
T , is a fixed distance below Tc and L is sufficiently large. In
addition, it holds when R − Rc vanishes as L → ∞ as long
as the difference is asymptotically large compared to L−1,
the extent of the finite scaling regime, in that it is sizable
compared to the width of the scaling regime multiplied by
ln L. Our goal is to determine the behavior of the Casimir
force in this “low-temperature” regime corresponding to a
range of temperatures in which the Goldstone modes provide
the leading contributions to the force [48,108]. As we will see,
these contributions again lead to L−3 scaling of the Casimir
force. In contrast, when Goldstone modes are absent and
when the boundary conditions do not give rise to an interface
within the system, the Casimir force well below Tc decays
exponentially in L, as in case of the Ising model.

Using the completeness of the eigenvectors |ψ (l)〉, l =
1, . . . ,L and performing the sum of Eqs. (3.2) with respect
to i, we arrive at

R = 1

2π

1

L

L∑
l=1

4

al

K

(
4

al

)
. (D1)

Comparison with Eq. (C3) yields the result that, when L → ∞,
one has

1

L

L∑
l=1

→ 1

π

∫ π

0
dq and al → 2�b − 2 cos(q). (D2)
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In the bulk limit, the critical coupling Rc is determined by
setting the spherical field to its lowest allowed value, at which
it remains for all R � Rc. We note that (4/a)K(4/a) is a
monotonically decreasing function of the parameter a that
tends to +∞ when a → 4+. This tells us that, as L increases,
the lowest eigenvalue a1 will approach the value 4 from above
as R increases above Rc.

Let us assume that a1 → 4 and determine, by self-
consistency, the region in which that happens. As already
noted in the main text, in this regime M → M∗, which is
constructed according to (2.6), with the �i’s replaced by the
�∗

i ’s in Eq. (3.12), the eigenvalues of M∗ being given by
Eq. (3.13), and the eigenvectors by Eq. (3.14). We now turn to
the behavior of M when its diagonal elements are close to �∗.
We consider perturbation of �∗ of the form �∗ −→ �∗ + �ε/2,
where �ε = {ε1,ε2, . . . ,εL}. Then it is straightforward to show
that

al = λl +
L∑

i=1

εi

[
φ

(l)
i

]2 +
L∑

i=1

L∑
j=1

εiεj

∑
k �=l

φ
(l)
i φ

(l)
j φ

(k)
i φ

(k)
j

λl − λk

,

+O(ε2) (D3)

and

|ψ (l)〉 = |φ(l)〉 +
∑
m�=l

∑L
j=1 εjφ

(m)
j φ

(l)
j

λl − λm

|φ(m)〉 + O(ε2). (D4)

where λl and φ(l) are defined in Eqs. (3.13) and (3.14).

1. Derivation of the behavior of a1

Let us start by determining the behavior of a1, which
we will accomplish without relying on perturbation theory.
It is necessary to proceed in this way because the function
g(x) which enters the equations is singular when a1 → 4+,
i.e., it does not possess a Taylor-type expansion around the
corresponding nonperturbative value of 4. To determine a1,
we study the behavior of Eq. (3.4) under the assumption that
a1 → 4+ and that g(a1) � g(λ2). Then, taking into account
the fact that the term with a1 provides the leading contribution
to the sum, we have

R = 1

2πL
K

(
4

a1

)
+ ρL, (D5)

where

ρL ≡ 1

L

L∑
l=2

g (λl)

= 1

2πL

L∑
l=2

1

1 + sin2
(

π(l−1)
2L

)K

(
1

1 + sin2
(

π(l−1)
2L

)
)

→ 1

2π

∫ 1

0

dx

1 + sin2
(

πx
2

)K

(
1

1 + sin2
(

πx
2

)
)

= Rc,

(D6)

i.e., ρL → Rc when L → ∞. Inserting this result for ρL in
Eq. (D5) and expanding K for a1 → 4+, one obtains the
result reported in Eq. (3.15) in the main text. Equation (3.15)
also exhibits the fact that a1 → 4 when 4πL(R − Rc) � 1.

The result for ρL can be further improved. Applying the
improved Euler-Maclaurin formula [109–111] for functions
with a logarithmic singularity at one end of the interval to the
sum in Eq. (D6) (see especially Theorem 5 in Ref. [109]), one
can show that

ρL = Rc − 1

4πL

(
K(1/2) + 7 ln 2

2
+ ln L

)
+ O

(
1

L2

)
.

(D7)

The condition g(a1) � g(λ2), which we have imposed in the
derivation of the behavior of a1 leads, in turn, to the constraint

4π (R − Rc)L � ln L. (D8)

Since from Eq. (3.20) a1 → 4+ is also satisfied, Eq. (D8)
represents the main constraint for the validity of Eq. (3.18).

2. Derivation of the behavior of al , l = 2, . . . ,L

We now turn to the task of obtaining the behavior of
the eigenvalues al for l = 2, . . . ,L. Toward that end, we
will use Eqs. (3.2). Supposing again g(a1) � g(λ2), g(λ2) =
maxl g(λl) for l = 2, . . . ,L [here we use the fact that g(x) is a
monotonically decreasing function of x], one obtains

R = [
ψ

(1)
i

]2
g(a1) + Ci, (D9)

where

Ci =
L∑

l=2

φ
(l) 2
i g(λl). (D10)

Obviously Ci , i = 2, . . . ,L, are easily computed functions of
only L. Our tactical goal is, using the orthonormality and
the completeness of the eigenvectors |φ(l)〉, l = 1, . . . ,L, to
determine εi , i = 1, . . . ,L, after inserting (D4) in Eq. (D9) and
keeping in the resulting equation only up to linear terms in εi ,
i = 1, . . . ,L. Since this is a standard operation in perturbation
theory, we simply report the final result:

εm = 2

L(R − ρL)

L∑
l=2

g(λl)

× sin2

[
π (l − 1)

L

]
cos

[
π (l − 1)(2m − 1)

L

]
. (D11)

Using then Eq. (D3), for l = 2, . . . ,L, up to first order in εi ,
i = 1, . . . ,L, one derives the expression given in Eq. (3.19)
for the eigenvalues al . It is easy to check that

L∑
m=1

εm = 0. (D12)

This, together with Eq. (D3), demonstrates that, formally,
within perturbation theory, one would simply have a1 =
λ1, while the nonperturbative solution yields a1 given by
Eq. (3.18).

3. Derivation of the behavior of the Casimir force

To derive an analytical expression for the Casimir force, we
will use Eq. (3.5) reported in the main text. We will take there

al = λl + �l and 2�l = 2 − δ1,l − δL,l + εl, (D13)
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where, according to Eqs. (3.18) and (3.19),

�1 = 32 exp[−4π (R − ρL)], (D14)

�l = sin2[π (l − 1)/L]

L(R − ρL)
[g(λl) − g(L + 2 − l)] (D15)

for l = 2, . . . ,L and εl , l = 1, . . . ,L, are given by Eq. (D11).
Since we have derived �1 with precision of the order of [L(R −
ρL)]−1, it is this precision with which we are going to determine
the Casimir force. Let us first deal with the sum

S = 1

2

L∑
l=1

[
ln al − 2

a2
l

4F3

(
1,1,

3

2
,
3

2
; 2,2,2;

16

a2
l

) ]

(D16)

in Eq. (3.5). We start by noting two integral identities that
will turn out to be helpful. First, it is easy to check that
the generalized hypergeometric function 4F3 in Eqs. (3.5)
and (D16) is related to the following [88] logarithmic integral
via

1

(2π )2

∫ π

−π

dx

∫ π

−π

dy ln (s − 2 cos x − 2 cos y)

= ln s − 2

s2 4F3

(
1,1,

3

2
,
3

2
; 2,2,2;

16

s2

)
. (D17)

Performing the derivative with respect to s from both sides
of the above equation, or doing the calculations directly, one
also obtains the following result for the Watson-type two-
dimensional integral [89,107]:

1

(2π )2

∫ π

−π

dx

∫ π

−π

dy
1

(s − 2 cos x − 2 cos y)
= g(x),

(D18)

where g(x) is given by Eq. (3.3). Then we find that S can be
approximated as

S = S0 + S1 + S1,1, (D19)

where

S0 =
L∑

l=1

1

2(2π )2

∫ π

−π

dx

∫ π

−π

dy ln(λl − 2 cos x − 2 cos y)

(D20)

will be responsible for the zero-temperature L behavior of the
force, while

S1 =
L∑

l=2

1

2(2π )2

∫ π

−π

dx

∫ π

−π

dy
�l

λl − 2 cos x − 2 cos y

(D21)

and

S1,1 = 1

2

1

(2π )2

∫ π

−π

dx

∫ π

−π

dy ln

(
a1 − 2 cos x − 2 cos y

λ1 − 2 cos x − 2 cos y

)
will yield portions of its T dependence. One can immediately
deal with S1,1. One finds that

S1,1 = 1

2

∫ a1

λ1

g(x)dx. (D22)

Taking into account that g(s) is, in fact, the two-
dimensional Watson-type integral W2(s − 4) and using its
property [89,107] for (s − 4) → 0+ that W2(s − 4)  ln(s −
4)/(4π ) + 5 ln 2/(4π ) + O(s), from Eqs. (D14) and (D22) it
immediately follows that

S1,1  16L(R − ρl) exp[−4πL(R − ρL)]. (D23)

We are not going to determine the Casimir force with such an
exponential precision, so we will neglect the contribution to it
stemming from S1,1.

a. Derivation of the size dependence of S0

The L dependence of S0 can be determined exactly. Toward
that end, we make use of the identity, see Eq. 1.396.1 in
Ref. [112],

n−1∏
k=1

(
x2 − 2x cos

πk

n
+ 1

)
= x2n − 1

x2 − 1
, (D24)

which, with the substitution x = exp(v), can be written in the
form

2n

n−1∏
k=0

(
cosh(v) − cos

πk

n

)
= 2 sinh(nv) tanh

(
v

2

)
. (D25)

Taking into account the explicit form of λl , l = 1, . . . ,L, given
by Eqs. (3.13) and identifying v from Eq. (3.22), we derive
from Eq. (D20)

S0 = 1

2(2π )2

∫ π

−π

dx

∫ π

−π

dy ln

[
2 tanh

(
v

2

)
sinh(Lv)

]
.

(D26)

Thus, for the total pressure between the surfaces of the system
due to the S0 contribution into the free energy, one has

βF
(0)
tot (L) = −∂S0

∂L
= − 1

2(2π )2

∫ π

−π

dx

∫ π

−π

dy v coth(Lv).

(D27)

From Eq. (D27) one derives the corresponding result for the
part of the Casimir force reported in Eq. (3.21).

b. Derivation of the size dependence of S1

The sum S1 can be written in the form

S1 = 1

(R − ρL)

1

L

L−1∑
m=1

G

(
m

L

)
, (D28)

where

G(x) = 1

8π2

sin2(πx)

1 + sin2(πx/2)
K

(
1

1 + sin2(πx/2)

)

×
[

1

1 + sin2(πx/2)
K

(
1

1 + sin2(πx/2)

)

− 1

1 + cos2(πx/2)
K

(
1

1 + cos2(πx/2)

)]
.

(D29)

It is easy to check that G(x) has logarithmic-type singularities
both near x = 0 as well as near x = 1. Therefore, in order to
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find the L dependence of the sum S1, one needs a modification
of the standard Euler-Maclaurin summation formula, valid
when the function of interest has logarithmic singularities at
its end points. Such a generalization of the Euler-Maclaurin
summation formula has been recently proposed in Refs. [109–
111] (see, e.g., theorem 2.1. in Ref. [111]). Applying the
corresponding theorem, one directly obtains

S1 = 1

(R − ρL)

{∫ 1

0
G(x)dx + 1

8L3

[
ζ ′′(−2)

+
[

2 ln L − K

(
1

2

)
+ 7 ln 2 − 2 ln(2π )

]
ζ ′(−2)

]

+ π2

192L5

[
−14ζ ′′(−4) +

[
5 − 4E

(
1

2

)
+ 11K

(
1

2

)

− 98 ln 2 + 28 ln(2π ) − 28 ln L

]
ζ ′(−4)

]
+ O(L−7)

}
.

(D30)

Then for the corresponding contribution of S1 toward the
Casimir force in which we will retain only terms of the order
of (R − ρl)−1, one obtains two times the result reported in
Eq. (3.24). As we will see, half of the L dependence of S1 is
also contained in the R-proportional term in the free energy

given by Eq. (3.5). Let us now deal with this term. One has

L∑
l=1

�l = 2L − 2 +
L∑

l=1

εl, (D31)

where we have used Eq. (D13). According to Eq. (D12), the
last sum over ε’s is zero and thus it looks like this term does
not contribute to the Casimir force up to the order of [L(R −
ρL)]−1, which we have retained in our previous calculations.
However, the sum over ε’s is multiplied by R and we require an
expression for

∑L
l=1 εl up to the order [L(R − ρL)]−2 in order

to determine whether this sum contributes to the behavior of
the Casimir force calculated up to the order of [L(R − ρL)]−1.
We now briefly describe how one can derive the perturbation
result needed. One starts again from Eqs. (D9) and (D10)
but uses there the corresponding perturbation expansion for
|ψ (l)〉 up to second order in ε’s. Then one considers a small
perturbation ηl to any εl , as given by Eqs. (D11). Next, one uses
the standard procedures within perturbation theory, and after
some tedious, cumbersome, but otherwise straightforward
calculations, obtains that the L-dependent part of the sum∑L

l=1 ηl is half of that of S1. The overall conclusion then is
that up to the order of [L(R − ρL)]−1, the Casimir force is as
reported in Eq. (3.24).
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