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Stochastic model of Zipf’s law and the universality of the power-law exponent
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We propose a stochastic model of Zipf’s law, namely a power-law relation between rank and size, and clarify
as to why a specific value of its power-law exponent is quite universal. We focus on the successive total of a
multiplicative stochastic process. By employing properties of a well-known stochastic process, we concisely
show that the successive total follows a stationary power-law distribution, which is directly related to Zipf’s law.
The formula of the power-law exponent is also derived. Finally, we conclude that the universality of the rank-size
exponent is brought about by symmetry between an increase and a decrease in the random growth rate.
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Power-law distributions are common in almost all fields
of physics and other natural and social sciences [1,2]. Their
origins, universality, and applications are addressed in statis-
tical physics in terms of critical phenomena [3], chaos and
fractals [4], and self-organized criticality [5]. The emergence
of a power-law distribution implies that the average value
does not represent typical behavior of the system, and very
large events occur more frequently than they do in “classical”
distributions such as Gaussian and exponential distributions.
Because a power-law distribution is an outstanding feature,
special nomenclature is often used in individual fields: Zipf’s
law in linguistics [6] (this is the main topic of this paper),
Pareto’s law in economics [7], the Gutenberg-Richter law in
seismology [8], and the scale-free property in complex network
analysis [9].

Zipf’s law is originally a statistical relation in linguis-
tics [6]. In many types of text, the number of times the rth
most frequent word appears is inversely proportional to its
rank r . A similar power-law relation s ∝ r−α between the
size s and its rank r has been also observed very commonly in
systems other than linguistic ones [10–12], and the rank-size
rule is generally called Zipf’s law. A remarkable point is
that the power-law exponent α approaches almost unity in
many systems: α = 1.08 in word frequency of Shakespeare’s
plays [13], α = 0.83 in populations of cities in Japan [14], and
α = 0.96 in popularity of opening moves in chess [15].

From a theoretical viewpoint, the emergence of power-law
behavior of rank-size distribution has been explained by
several mechanisms, such as positive feedback [16], random
typewriting [17], coherent noise [18], intermittency [19],
asymmetric mobility [20], and algorithmic entropy [21].
However, it remains unclear as to why the exponent α = 1
is so universal in Zipf’s law. Very few works have considered
the particularity of the exponent α = 1 [19–21].

The main purpose of this paper is to explain why α = 1 is
a special value in Zipf’s rank-size distribution. We focus on a
quantity given by a successive total of the value at each time.
For instance, the total number of citations of a scientific paper
is given by the sum of citations at each time, and the total
number of occurrences of a word is the sum of the occurrence
number over a number of chapters in the text. We give a simple
stochastic process which models a successive-total quantity
and prove that it produces a power-law distribution, for which
the exponent is also analytically derived. We show that Zipf’s

law of α = 1 occurs naturally from the model when it possesses
a type of symmetry.

The model we study is given by the following discrete-time
stochastic process for two variables xt and St :

xt+1 = μtxt , (1a)

St+1 = St + xt , (1b)

with the initial conditions x0 = 1 and S0 = 0. μt is a positive
random variable that represents the growth rate of xt , and
we assume for simplicity that μ0,μ1, . . . are distributed
independently and identically. The variable xt represents the
value at time t , and St is the sum of xt ’s up to time t − 1.
Indeed, we can apply the second equation iteratively to obtain
St = x0 + x1 + · · · + xt−1. We will show Zipf’s law for St .
Figure 1 illustrates the model; xt varies with t according to
Eq. (1a), and St is approximately given by the area between
the xt curve and the t axis up to t − 1.

We can regard the model (1) as simplified dynamics of
word frequency. Let us focus on a certain word, and count its
frequency in each chapter in a book. We assume that xt denotes
the number of times the target word appears in the t th chapter.
In the simplest description, the positive feedback, the effect
that the use of a word in a chapter increases its use in the next
chapter, gives a proportional relation between xt and xt+1 as
in Eq. (1a). Then, the total count of the word over a number of
chapters is expressed by St appearing in Eq. (1b).

Zipf’s law is a statistical relation for the set of observed
values, while our model (1) contains one key variable St . We
compare Eq. (1) to Zipf’s rank-size distribution as follows.
We arrange a large number of statistical copies, each of
which evolves independently according to Eq. (1). At a certain
time t , we record the value of St of each sample, and make
the rank-size distribution of them; the rank can be defined
within the collection of St values. We can also make the
cumulative distribution P (St > s) from these samples. The
cumulative distribution is the inverse function of the rank-size
distribution [2], so the power-law form of the rank-size distri-
bution s ∝ r−α implies the power-law cumulative distribution
P (St > s) ∝ s−β whose exponent satisfies β = 1/α. Note that
α = 1 is clearly equivalent to β = 1.

Our model (1) is a type of a multiplicative stochastic
process, which means that the evolution of xt is given by a
multiplication of the random growth rate μt . In particular,
Eq. (1a) is called the Gibrat process [22], and it is well
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FIG. 1. (Color online) Illustration of our model. The xt curve is
given by the Gibrat process (1a), and the sum St is the area between
the xt curve and the t axis.

known that xt follows a log-normal distribution for sufficiently
large t [23]. A log-normal distribution is replaced by a
power-law distribution when some additional conditions are
considered along with the Gibrat process. For example, the
introduction of additive noise [24], a reset event [25], and
random stopping [26] have been reported to produce power-
law distributions. We show below that the successive total (1b)
is another mechanism with which a power-law distribution can
be derived from the Gibrat process.

We present a numerical result first. In the calculation, we set
μt as a uniform random variable on the interval [0.5,1.5] and
computed cumulative distributions of St at t = 103 and 104

from 105 independent samples for each. As shown in Fig. 2,
each of the two cumulative distributions has a clear power-law
tail with an exponent β = 1: P (St > s) ∼ s−1 in large s. The
two distributions almost perfectly overlap each other, and thus
we expect that St reaches a stationary distribution after a long
time. The existence of a stationary distribution and calculation
of the power-law exponent are discussed later. According to
the discussion below, the evaluation of the exponent β = 1 is
justified by the fact E(μt ) = 1.

For the sake of the analysis of the model (1), we employ
the stochastic process Zt given by

Z0 = 0, Zt+1 = μ̃tZt + 1, (2)

where μ̃0,μ̃1, . . . are independently and identically dis-
tributed. In general, a multiplicative stochastic process with
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FIG. 2. (Color online) Cumulative distributions of St at t = 103

(circles) and 104 (squares), which are calculated from 105 independent
numerical samples. The growth rate μt is a uniform random variable
between 0.5 and 1.5. Circles and squares are alternately aligned in
order to avoid overlapping. The straight line indicates a power law
with exponent −1.

a random additive term is known as the Kesten process [27];
Eq. (2), which has a constant additive term, is a special
case of it. We review some useful properties of the Kesten
process as follows [24]. Zt has a stationary power-law tail
P (Zt > z) ∼ z−β in large t whose exponent β is characterized
by

E
(
μ̃

β
t

) = 1. (3)

Here E(·) denotes the average. The trivial solution β = 0
always exists, and a unique positive solution β > 0 exists if
E(ln μ̃t ) < 0 and limβ ′→∞ E(μ̃β ′

t ) = ∞.
Now, we derive the distribution of St in Eq. (1) by making

a comparison with the above Zt . Equation (1) is written by the
matrix form as (

xt+1

St+1

)
=

(
μt 0
1 1

)(
xt

St

)
. (4)

That is, the matrix

Mt :=
(

μt 0
1 1

)
, (5)

which involves a random variable μt , acts as the time-evolution
operator. By using the initial conditions x0 = 0 and S0 = 1, xt

and St are formally given by(
xt

St

)
= Mt−1Mt−2 · · · M0

(
1
0

)
. (6)

Multiplying the vector (0 1) from the left, one obtains

St = (0 1)Mt−1Mt−2 · · · M0

(
1
0

)
. (7)

At the same time, we find that the Kesten process (2) is
expressed using Mt as

(Zt+1 1) = (Zt 1)

(
μ̃t 0
1 1

)
= (Zt 1)M̃t . (8)

The second component of the vector gives the trivial relation
“1 = 1.” As with Eq. (7), Zt is written as

Zt = (0 1)M̃0M̃1 · · · M̃t−1

(
1
0

)
. (9)

For a given t , we consider a time-reversal transforma-
tion μτ �→ μ̃t−1−τ (τ = 0,1, . . . ,t − 1), which causes M0 �→
M̃t−1, M1 �→ M̃t−2, and so on. Because of the independence
of μ0, . . . ,μt−1, St is properly mapped to Zt . Note that the
independence is an essential factor in this argument. In fact,
if μτ ’s are not independent of each other, e.g, μ0 affects μ1,
μ1 affects μ2, and so on, then μ̃0 is affected by μ̃1, μ̃1 is
affected by μ̃2, and so on; time reversal gives rise to “breaking
of causality” between St in Eq. (7) and Zt in (8) in this case.
Therefore, St is statistically equivalent to Zt for any t , if μt ’s
and μ̃t ’s are distributed independently and identically. Useful
properties of the Kesten process Zt are directly transferred to
our St .

In conclusion, St in Eq. (1b) has a stationary power-law tail
P (St > s) ∼ s−β , with an exponent β that is a unique positive
solution of

E
(
μ

β
t

) = 1. (10)

042115-2



STOCHASTIC MODEL OF ZIPF’S LAW AND THE . . . PHYSICAL REVIEW E 89, 042115 (2014)

0 0.2 0.4 0.6 0.8
a

1.2

1.4

1.6

1.8

2(a) (b)

b

0

5

10

15β
=

0.5

β
=

1
β =

2

β = 4

β = 8

0 0.2 0.4 0.6 0.8
a

1.2

1.4

1.6

1.8

2

b

0

1

2

3

4

β
=

0.5β
=

1

β = 2

β = 3

FIG. 3. (Color online) Numerical calculations of the exponent
β, expressed by gradation of shading. (a) μt is a uniform random
variable on the interval [a,b] such that the probability density is
f (ξ ) = 1/(b − a) for a � ξ � b. The contours of β = 0.5, 1, 2, 4,
and 8 are shown. (b) μt can take either a or b with probability 1/2,
such that f (ξ ) = [δ(ξ − a) + δ(ξ − b)]/2. The contours of β = 0.5,
1, 2, and 3 are shown. White areas in both panels indicate that the
distribution of St has no stationary power-law tail.

If the random variable μt has a probability density function f ,
this equation can be rewritten as∫ ∞

0
ξβf (ξ )dξ = 1. (11)

A positive solution β uniquely exists if E(ln μt ) < 0 and
limβ ′→∞ E(μβ ′

t ) = ∞.
In order to grasp behavior of the exponent β against the

growth rate μt (or its probability density f ), we take two
types of simple f , which has two parameters a and b. The
numerical results are shown in Fig. 3. The first case (a) is
f (ξ ) = 1/(b − a) in a � ξ � b and f (ξ ) = 0 otherwise; that
is, μt is a uniform random variable on the interval [a,b].
The value of β is shown to be a function of a and b. The
second case (b) is f (ξ ) = [δ(ξ − a) + δ(ξ − b)]/2, where δ(·)
is the Dirac δ function; that is, either μt = a or μt = b occurs
with probability 1/2 each. The two f give the same average
E(μt ) = (a + b)/2, but values of β in Figs. 3(a) and 3(b)
greatly differ from each other. Qualitatively, we find that β

tends to become large if a and b are small in both cases. We
also observe that St has no stationary power-law tail if a and b

are large, corresponding to β = 0 in the figure. Large a and b

increase St rapidly, so the stationary distribution of St vanishes.
From these observations, β tends to become large when E(μt )
is small, and the power law vanishes when E(μt ) is large.

We explain that our model leads Zipf’s law of α = β = 1
for a very wide class of μt . The only additional assumption is
E(μt ) = 1, which means the symmetry between an increase
and a decrease in xt . In fact, xt , on average, does not increase
or decrease when E(μt ) = 1:

E(xt+1) = E(μtxt ) = E(μt )E(xt ) = E(xt ). (12)

With this condition, we immediately find that β = 1 is the
positive solution of E(μβ

t ) = 1. Therefore, Zipf’s law of
α = β = 1 is immediately obtained. This result provides a
piece of theoretical evidence for why the exponent β = 1
(or equivalently α = 1) is special and universal. That is, the
successive total St of the random variable xt , whose dynamics
are described by the Gibrat process, gives Zipf’s law of
α = 1, if the growth rate μt exhibits the symmetry between
an increase and a decrease as described above. We note again

that the exponent α = 1 is obtained irrespective of a choice of
probability distribution of μt , provided that E(μt ) = 1 holds.

We have derived β = 1 from the assumption E(μt ) = 1,
and the converse is also true; that is, β = 1 immediately
implies E(μt ) = 1, via Eq. (10). Hence the symmetry E(μt ) =
1 is equivalent to Zipf’s law of α = 1.

We can estimate the exponent β even when the symmetry
E(μt ) = 1 breaks slightly. We consider the case E(μt ) =
1 − ε, where ε is a small parameter that can be positive or
negative. It is reasonable to assume β = 1 + η, where η is a
small correction term. Expanding Eq. (10) with respect to η as

1 = E
(
μ

1+η
t

) = E[μt + ημt ln μt + O(η2)]

= 1 − ε + ηE(μt ln μt ) + O(η2), (13)

and neglecting O(η2) terms, we obtain

η = ε

E(μt ln μt )
. (14)

This is the correction formula of the exponent β = 1 + η. Thus
β ≈ 1 if ε is sufficiently small.

We comment on the importance of the multiplicative nature
in Eq. (1a). For comparison, we look into the following
“additive” model, similar to the multiplicative model (1):

xt+1 = xt + μt, St+1 = St + xt . (15)

This model is related to self-organized criticality [28], where
St represents the size of an avalanche. If μt is symmetric about
zero and has a finite variance, the variable xt is essentially the
same as a one-dimensional random walk, and St is the area
under the walk. The cumulative distribution of St in this case
also has a power-law tail, but the exponent is known to be
β = 1/3 [29], which implies α = 3. Thus Zipf’s law of α = 1
cannot be obtained from this additive model.

Our model (1) mathematically resembles the Kesten pro-
cess (2). However, we stress here that their realizations in
physics are different; Eq. (1) models a successive-total quantity
to produce Zipf’s law, but Eq. (2) cannot be directly connected
with a successive total. Our focus in this paper is Zipf’s law of
successive-total variable; at the same time, we do not think that
the mechanism in this paper provides a complete answer for
the universality of Zipf’s law. It is clear that not all quantities
showing Zipf’s law can be expressed as a successive total. We
hope that this paper stimulates theoretical studies of Zipf’s law
on the basis of more general framework.

Let us give insight to the meaning of E(μt ) = 1 in the
case of word frequency. As described above, xt in Eq. (1) can
be regarded as the number of appearance of a certain word
in the t th chapter. If the size of each chapter is approximately
constant, the increase in use of some words causes the decrease
of some other words. Due to this constraint, the average
growth rate is expected to become around unity. Therefore, we
consider that the word count statistics can be approximately
treated by the model proposed in this study.

Lastly, we discuss application of our model to real phe-
nomena. A possible example is Twitter. It was reported that
user influence based on the number of retweets follows Zipf’s
law [30], whose β is slightly less than unity. Meanwhile,
modeling of information diffusion on Twitter has been pro-
posed [31]. Information flow on the Twitter network forms
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nested shells according to the network distance from the source
user. The total retweets nRT is given by

nRT =
∞∑

g=1

ng, (16)

where ng is the number of retweets by users in gth shell. In
turn, ng approximately grows by the Gibrat process

ng 	 bgk̄g−1ng−1, (17)

where k̄g−1 is the average number of followers of the retweeters
in the (g − 1)st shell, and bg is a random number called the

retweet rate. These equations for nRT and ng are strikingly
similar to our model (1); nRT is the successive total of
ng’s. Although bg’s are not distributed independently and
identically to be exact, our result probably contributes to
the study of Twitter. We expect that our model connects
Zipf’s law of Twitter and statistical properties of bg and
k̄g .
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