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Cross-correlations between phonon modes in anharmonic oscillator chains: Role in heat transport
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We have computed current-current correlation functions in chains of anharmonic oscillators described by
various models (FPU-β, FPU-αβ, φ4), considering both the total current and the currents associated with
individual phonon modes, which are important in view of the Green-Kubo relation for heat conductivity. Our
simulations show that, contrary to the common hypothesis, there are, under some circumstances, significant
correlations between neighboring modes. These cross-mode correlations are the dominant contribution to the
conductivity in the low anharmonicity regime. The inverse of the timescale over which they are significant, 1/τc,
is related to the anharmonicity level in a way similar to the largest Lyapunov exponent, suggesting that the two
quantities are related. Cross-mode correlations exist in both anomalous and regular heat-conducting systems
although we are unable to observe a transition to the independent-mode regime in the latter case.
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I. INTRODUCTION

The problem of heat transport in anharmonic chains has
received much attention in the last decade or so, largely
stimulated by its relevance to the growing nanotechnology
industry. Many studies have already been published on this
topic and there is now strong evidence that a wide variety of
anharmonic oscillator chains display so-called anomalous heat
conductivity, i.e., the heat flow does not follow Fourier’s law.

The most striking feature of anomalous conductors is the
nonintensive nature of the heat conductivity. Studies on this
topic are often based on the relaxation time approximation
and focus on the divergence of the relaxation time of long-
wavelength modes arising from the reduced phase space
available for scattering. Although this theoretical framework
agrees relatively well with computations for some systems, the
overall portrait is still somewhat unsatisfying. For instance,
the exact conditions that yield anomalous conductivity are
not yet known, and predicting in a quantitative way the heat
transport properties associated with a given model is still
out of reach. Conservation of momentum is thought to be
an important condition for anomalous conduction, but recent
studies [1,2] have sparked a new debate on the matter [2–6].
It has also been argued that, in anomalous systems, the heat
conductivity κ ∝ Nα , where N is the number of oscillators
in the chain and 0 < α < 1; there are reasons to believe that
this exponent could be universal, with the most frequently
cited values being 1/3 and 2/5, although others have been
either predicted or observed [7–14]. Here, also, the situation
has become less clear-cut recently, as some models seem to
allow tuning α through the interaction parameters [15] or
even going from anomalous to normal conduction by changing
the anharmonicity [16]. More information on anomalous heat
transport can be found in the reviews by Lepri et al. [17] and
Dhar [18].

Despite the obvious connection provided by linear re-
sponse theory, the relation between heat transport and the
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celebrated Fermi-Pasta-Ulam (FPU) problem [19] has not been
much explored. Discovered in 1955, the “problem” refers
to the very slow relaxation of one-dimensional anharmonic
oscillator chains and other quasi-integrable classical systems.
As discussed in Sec. III, the FPU Hamiltonian is a one-
dimensional oscillator chain which may contain order 3 terms
(FPU-α), or order 4 terms (FPU-β), or both (FPU-αβ), in
addition to the harmonic terms. From its study, two important
concepts, possibly having an impact on heat conduction,
have emerged: first, Zabusky and Kruskal [20] showed that
many nonlinear and dispersive systems display soliton or
quasi-soliton solutions; and second, Izrailev and Chirikov [21]
introduced the idea of resonance overlap as an explanation for
the transition between slow and fast relaxation with increasing
anharmonicity. Demonstrating that these concepts are also
important for heat transport is one of the objectives of the
present study.

While it is known that the FPU chain and many other
models possess solutions in the form of localized disturbances,
whether or not they form spontaneously and have long enough
lifetimes to contribute to heat conduction is still a matter of
debate. For example, Zhang et al. [22,23] studying the FPU-β
model, found clear evidence that, in some circumstances, a
soliton is formed, which absorbs most of the other excitations
of the system, then goes on traveling indefinitely (under
periodic boundary conditions). However, these simulations
employed the Evans algorithm, in which a fictitious field
imposes a heat flow, and it was found that the phenomenon only
appears in the (probably unphysical) strong-field regime. On
the other hand, Li et al. [24] and Likhachev et al. [25] computed
the velocity of a traveling disturbance in the same model over a
broad temperature range and found very good agreement with
the theoretical speed of sound of renormalized phonons and
less good with the velocity of Korteweg–De Vries solitons.
Nonetheless, Likhachev et al. [25] were able to isolate three
types of solitary-wave solutions from a thermalized sample
by connecting it to a cold sample. Xiong et al. [15] found
that introducing interactions with second neighbors leads to
the formation of discrete breathers and it was conjectured that
their interaction with phonons leads to nonuniversal behavior
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in anomalous conductivity. Given the contradictory evidence,
it is certainly fair to say that, although phonons seem to be the
main carriers, localized modes are quite likely to play a role
in heat conduction.

A powerful way to probe the existence of localized modes,
and possibly other effects, going beyond the traditional Debye-
Peierls phonon gas model, is to compute phonon cross-
correlations (correlations between different phonon modes).
To our knowledge, there are only two such studies: first,
Frizzera et al. [26] looked at correlations between normal
modes in harmonic and anharmonic (FPU-αβ) chains with
thermostats at both ends, presenting results mainly for
momentum-momentum correlation functions 〈Pk(t)Pk′(t)〉.
They showed that the differences in temperature profiles
between harmonic and anharmonic chains arise from different
cross-correlations, the diagonal correlation function (k = k′)
leading only to a flat temperature profile. On the other
hand—contrary to the methodology used in the present study
and presented in the next section—these authors did not
consider current-current correlations 〈Jk(t)Jk′(t ′)〉 and focused
on nonequilibrium simulations only. Second, Henry and Chen
[27] examined current-current correlations at equilibrium in
a realistic model of a polyethylene chain. Thus, although
the model is linear, it is not purely one-dimensional. Their
results indicate that some initial conditions lead to the slow
(anomalous) decay of correlations, which they ascribed to
cross-correlations between midfrequency longitudinal acous-
tic modes. While this point of view is innovative, their use
of a sophisticated model makes it hard to understand if this
behavior follows from the linear nature of the model or from
other features. Also, owing to the complexity of the model,
the chains they consider are somewhat short (40 unit cells),
and it is not clear if the statistical averaging was sufficient in
view of the extremely slow convergence of such systems. Our
objective here is to use a similar approach but, using a simpler
model, try to investigate the matter in more depth and see how
it relates to anomalous thermal conductivity.

The outline of this paper is the following: in Sec. II we de-
scribe the theoretical framework used to extract the correlation
functions and thermal conductivities from molecular dynamics
simulations. In Sec. III we present the technical details behind
our numerical simulations, while our results are presented in
Sec. IV. We conclude in Sec. V by summing up our results and
giving some insight into how they could relate to other salient
topics in heat transport theory.

II. THEORY

We study heat conductivity through equilibrium molecular
dynamics simulations. This is done by computing the time-
delayed correlations of the current fluctuations in a periodic
system and employing the appropriate Green-Kubo relation,
which in one dimension can be formulated as

κ = 1

kBT 2L

∫ ∞

0
〈J (0)J (t)〉dt, (1)

where κ is the heat conductivity, L is the length of the
conductor, kB is Boltzmann’s constant, T is the temperature,
J (t) is the total heat flux, and 〈 〉 denotes statistical averaging.
Derivation of this formula can be found in advanced statistical

mechanics textbooks, and general information on its use
in molecular dynamics textbooks. When mass diffusion is
negligible, the total flux in the chain [17] can be obtained
using

J = a

2m

N∑
l=1

(pl+1 + pl)Fl+1,l , (2)

where a is the lattice parameter, m is the mass of the particle,
N is the number of particles, pl is the momentum of the lth
particle, and Fl+1,l is the force on the (l + 1)-th particle coming
from the lth particle.

If the chain is harmonic or weakly anharmonic, it can be
described using its normal-mode representation. We use the
transformation

Qk = 1√
N

N∑
l=1

qle
i(2πk/N)l , (3)

Pk = 1√
N

N∑
l=1

ple
i(2πk/N)l , (4)

where ql is the displacement of the lth particle from its
equilibrium position. There are N such modes, each denoted by
a given k value; we use k = −N

2 − 1 , . . . ,N
2 . For a harmonic

force Fl+1,l = K(ql − ql+1), and this yields the Hamiltonian

H = 1

2

∑
k

(
PkP

∗
k

m
+ mω2

kQkQ
∗
k

)
. (5)

Each mode can thus be associated with a totally independent
phonon state of eigenfrequency

ωk = 2

√
K

m

∣∣∣∣ sin

(
πk

N

)∣∣∣∣. (6)

Anharmonicity will modify this Hamiltonian, lead to energy
exchange between the modes, and, as shown below, result in
cross-mode correlations.

As ql and pl are real functions, Q∗
k = Q−k and P ∗

k = P−k ,
which enables expressing Eq. (2) as

J = ia
∑

k

PkQ
∗
kvkωk =

∑
k

J ′
k, (7)

where vk = ∂ωk

∂k
is the phonon group velocity. This last

equation shows that the total harmonic flux can be written
as a sum of currents associated with individual phonon modes.
However, in this case J ′

k is a complex number which is
inconvenient to handle numerically. We thus use the fact that
J ′

−k = (J ′
k)∗ to make the transformation

J = 1

2

∑
k

(J ′
k + J ′

−k) =
∑

k

Re(J ′
k) =

∑
k

Jk, (8)

which implies the definition

Jk ≡ iavkωk

2
(PkQ

∗
k − P ∗

k Qk). (9)

We calculate these mode currents by fast Fourier transforming
the particle positions and velocities and using Eq. (6). We
also computed velocity autocorrelation functions in some
systems and obtained well-defined phonon modes in all cases.
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Renormalized phonon frequencies were not used, as they
would not modify our (mainly qualitative) interpretation.
Inserting Eq. (9) into Eq. (1) yields

κ = 1

kBT 2L

∑
k

∑
p

∫ ∞

0
〈Jk(0)Jp(t)〉dt, (10)

showing clearly that conductivity results from phonon self-
mode correlations but also from cross-mode correlations.

A very interesting point made by Henry and Chen [27]
is that using the hypothesis 〈Jk(0)Jp(t)〉 = 0 for k 
= p (i.e.,
neglecting cross-correlations) leads to the well-known result

κ = 1

L

∑
k

Ckv
2
k τk, (11)

where Ck is the heat capacity associated with mode k and τk

is its relaxation time. This hypothesis corresponds precisely to
the stosszahlansatz, the view that there are no significant cross-
correlations, which is central to the Debye-Peierls model. As
we see in the following sections, it is clearly violated in many
anharmonic chain models.

We define the diagonal contribution to the current-current
correlation function

Cd (t) =
∑

k

〈Jk(0)Jk(t)〉, (12)

as well as the off-diagonal contribution

Cod (t) =
∑

k

∑
p 
=k

〈Jk(0)Jp(t)〉, (13)

which, in practice, we compute by subtracting Cd (t) from the
total current-current correlation function

C(t) = 〈J (0)J (t)〉 = Cd (t) + Cod (t). (14)

To assess the relative importance of the cross-mode correla-
tions we introduce the “correlation ratio,” viz., the ratio of
the total current-current correlation function to the diagonal
contribution,

R(t) = Cod (t)

Cd (t)
= C(t)

Cd (t)
− 1, (15)

which will equal 0 if the stosszahlansatz is satisfied and be
positive if off-diagonal terms have a positive contribution to
the conductivity.

It should be noted that, although our analysis is only
concerned with the harmonic current, that is, the current
coming from harmonic forces, in some of our simulations
the anharmonic current is large. For example, it is about
five times larger than the harmonic current when β = 1 and
T = 1. Nonetheless, it has been shown before [7] that the
anharmonic current in the FPU-β model is, at least in a
statistical sense, proportional to the harmonic current. Also, in
all our simulations, we compared the total current computed
with the full anharmonic interaction using Eq. (2), and also
using

∑
k Jk , and observed that the proportionality relation

J (t) = C
∑

k Jk(t), where C is a constant, is nearly exact in all
cases and at all times. Our (qualitative) conclusions about the
total harmonic current therefore also apply to the anharmonic
current. While this does not directly inform us on the nature
of the anharmonic currents stemming from single modes, it

is highly plausible that the same ratio applies. Indeed, if we
denote the total (harmonic plus anharmonic) current associated
with mode k as J T

k (t), in any case we must have∑
k

J T
k (t) = C

∑
k

Jk(t) =
∑

k

fk(t)Jk(t), (16)

where fk(t) are unknown functions. Because the problem is
nonlinear, these functions can take any value, but the most
likely scenario is certainly fk(t) ≈ C for all k’s. Furthermore,
even if this postulate were flawed, it would not change our
general conclusions concerning the existence of off-diagonal
correlations.

III. NUMERICAL DETAILS

We simulate periodically replicated chains of particles
interacting with their nearest neighbors through anharmonic
interactions in the NVE ensemble, integrating the equations of
motion using a standard molecular dynamics algorithm. The
motion of the particles is purely one-dimensional. Most of our
simulations were carried out using the FPU model:

H =
N∑

l=1

p2
l

2m
+ K

2

N∑
l=1

(ql+1 − ql)
2

+ α

3

N∑
l=1

(ql+1 − ql)
3 + β

4

N∑
l=1

(ql+1 − ql)
4. (17)

This Hamiltonian has four parameters: m, the particle mass,
and three interaction parameters, K , α, and β (where β is
not the inverse temperature). As we are simulating a fictitious
model, we set m = K = 1. The other interaction parameters,
α and β, are used to obtain the desired level of anharmonicity.
The lattice parameter has no effect on the dynamics except
as a trivial multiplier in expressions for the heat current. For
this reason we set it at a sufficiently high value to make it
impossible for particles to cross, but we set it to 1 when
reporting current values.

We also considered the φ4 model,

H =
N∑

l=1

p2
l

2m
+ K

2

N∑
l=1

(ql+1 − ql)
2 + λ

4

N∑
l=1

q4
l , (18)

where λ is another interaction parameter. Here also we set
m = K = 1 and use λ to tune the anharmonicity. The two
models are fundamentally different in that the FPU model is
both energy and momentum conserving, while the φ4 model
is only energy conserving. Also, the fact that heat conduction
is anomalous in the FPU model (at least for FPU-β) [7,9–14]
while it is normal in the φ4 model [28–30] is well documented.

In both cases, the parameters of the simulations include T ,
the average temperature of the system, which is set to 1. Scaling
relations exist between α,β and T or between λ and T , but
our tests indicate that keeping the interaction parameters fixed
and changing the temperature does not fundamentally modify
the results. The last parameter that defines the simulations
is the number of particles in the chain, N . As the system is
periodic, an increasing N leads to a larger number of vibration
modes available to the system. In turn, as the number of modes
increases, their frequencies get closer, leading to stronger
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interactions between them. In general, we are interested in
the thermodynamic limit (N → ∞) and it is therefore better
to use as large an N value as practical, although comparisons
between different lengths can be instructive as shown below.
Unless otherwise specified, N = 2048 was used.

To integrate the equations of motion we use the sixth-
order symplectic integrator presented in Appendix A of
Lee-Dadswell et al. [13], with a time step of 0.3 reduced
time unit (t.u.) for the cases β,α,λ < 0.4 and a shorter
time step for simulations with a higher anharmonicity, so
as to ensure energy fluctuations of order 10−5 or better. The
simulations proceed by first setting equilibrium positions and
random velocities. Then a Langevin thermostat is applied for
3 × 106 t.u., followed by relaxation for another 3 × 106 t.u.
using the symplectic integrator without the thermostat. After
this, the actual production run begins and statistics are
recorded. Statistical averages were carried out by averaging
over the whole simulation time (>3.5 × 108 t.u.) over 40–400
simulations with different initial random velocities. The mode
currents Jk and their correlation functions are computed a
posteriori.

IV. RESULTS

A. Off-diagonal correlations in the FPU-β model

We first examine the current-current correlation functions
for the FPU-β model (α = 0). Figure 1(a) shows the total
correlation function C(t) as well as the diagonal Cd (t) and
off-diagonal Cod (t) contributions for β = 0.01, i.e., weak
anharmonicity. As expected, Cod (0) = 0, reflecting the orthog-
onal nature of the modes. However, this quantity increases
quickly and reaches a maximum after which it decays back
to 0. All terms display a behavior which is consistent with
a power law, with an exponent between 0 and 1. This is
confirmed in Fig. 1(b), where all curves, plotted in a log-log
way, are fairly linear for a moderately long time. Power-law
fits were attempted on the three curves, and although the expo-
nents depend quite sensitively on the time range considered,
reasonably good fits were obtained for log10 t ∈ [4,5.5] with
C(t) ∼ t−0.65, Cd (t) ∼ t−0.77, and Cod (t) ∼ t−0.58. Of course,
if this corresponds to the asymptotic behavior of the diagonal
and off-diagonal correlations, the former will decrease more
rapidly than the latter, so that eventually C(t) ≈ Cod (t) ∼
t−0.58. It is seen that the diagonal correlations are significant
only for very short times in this case.

The early-time behavior is dominated by more complex
relaxation processes, while the very-long-time behavior is
related to a lower signal-to-noise ratio (and is therefore noisy)
and the finite length of the chain. Thus, the downturn in all
three curves for log10 t > 5.5 corresponds to the exponential
relaxation of the lowest frequency mode and the fluctuations
result from the significant uncertainties associated with the
data points. They can therefore be seen as artifacts coming
from the finite size of the system and finite averaging time.
Finally, Fig. 1(c) reveals that the current correlation ratio R(t)
rises rapidly to a value of about 3 (i.e., the off-diagonal term
is three times more important than the diagonal one), then
continues to rise, albeit at a slower rate. The variations at long
times is again associated with noise.
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FIG. 1. (Color online) (a) Current-current correlation functions
C(t), Cd (t), and Cod (t) for the FPU-β model with β = 0.01.
(b) Same data as (a) but in log-log form. (c) Correlation ratio R(t) for
the same system.

Turning now to a system with higher anharmonicity, β =
0.1, Fig. 2(a) is qualitatively similar to Fig. 1(a), though,
of course, the correlations dissipate more rapidly (note the
different time scale). Here, again, C(t) and Cd (t) reach their
maximum for t = 0 and then decrease, while Cod (t) starts from
0, quickly peaks, and then decreases. Examining Fig. 2(b),
however, important differences are now visible. This time,
only Cd (t) seems to display a true power-law behavior, with
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FIG. 2. (Color online) (a) Current-current correlation functions
C(t), Cd (t), and Cod (t) for the FPU-β model with β = 0.1. (b) Same
data as (a) but in log-log form. (c) Correlation ratio R(t) for the same
system.

exponent −0.66. The off-diagonal term Cod (t) is clearly
decaying more rapidly than a power law but, nevertheless,
more slowly than an exponential. The behavior for log10 t >

4.5 is once more due to the low signal-to-noise ratio. Being
the sum of the two previous terms, C(t) goes from a behavior
similar to that of Cod (t) for short times to being roughly equal
to Cd (t) for long times. This can also be seen in Fig. 2(c),
where it is clear that the off-diagonal terms are important only
for short times and then return to 0.
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FIG. 3. (Color online) (a) Current-current correlation functions
C(t), Cd (t), and Cod (t) for the FPU-β model with β = 1. (b) Same
data as (a) but in log-log form. Cod (t) is shown up to log10 t = 4 only
(when noise starts to dominate), to avoid obscuring the other curves.
(c) Correlation ratio R(t) for the same system.

Finally, we examine a highly anharmonic system, β = 1.
The results, shown in Figs. 3(a)–3(c), are similar to those
for β = 0.1 except that the off-diagonal correlations are at
all times less important than the diagonal correlations and
decay very rapidly. For this case, the asymptotic form of the
current-current correlation functions C(t) ≈ Cd (t) ∝ t−0.62.

Therefore, the overall picture that emerges is this: for low
anharmonicity, the relative magnitude of off-diagonal terms
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increases continuously with time, as illustrated in Fig. 1(c). The
rate of this increase grows with anharmonicity from (exactly)
0 for the harmonic system to a maximum for β ∼ 0.01, owing
to the fact that more scattering between phonon modes leads to
more correlations. (We have done calculations for many values
of β.) In this regime, Cod (t) > Cd (t), except for very short
times, in clear violation of the stosszahlansatz. This is the case
shown in Fig. 1. Increase in the anharmonicity level eventually
leads to a point (the correlation threshold) where scattering
starts to destroy cross-mode correlations more rapidly than
they are created. In this regime Cod (t) is significant only for
a short period at early times and Cd (t) rapidly becomes the
dominant term, in agreement with the stosszahlansatz. Further
increase in anharmonicity only brings about fewer cross-mode
correlations and their more rapid decay. Whether there really
is a transition as a function of anharmonicity is an important
(and difficult) question, to which we return in Sec. IV D. For
now, suffice to say that β = 0.02 is the lowest anharmoncity
level at which we are able to observe Cod (t) to decay more
rapidly than Cd (t). However, it cannot be excluded that Cod (t)
would decay on much longer time scales for lower β values.

As for the exponents associated with the decay of the
correlation functions, they play an important role in the
theory of anomalous heat conduction because κ ∝ Nα implies,
through Eq. (10), that the t → ∞ limit in the total current
correlation function is 〈J (0)J (t)〉 ∼ tα−1. In this regard, the
results are peculiar, as they imply that, whether the system is in
the regime where off-diagonal correlations are dominant or in
the regime where they are negligible, the N dependence of the
conductivity is similar. However, the exponents are notoriously
hard to obtain precisely, and, the chains used in this study being
only moderately long, it is possible that a different behavior
could be seen in longer chains and/or on longer time scales.
Therefore, it is impossible to confirm whether they are in fact
identical or whether they coincidentally display very close
values. In any case, this demonstrates that theories making
use of the (incorrect) stosszahlansatz can yield fairly good
results (but for the wrong reasons). Also, conductivity is often
computed for a fairly high anharmonicity, as convergence is
easier to obtain in this case.

B. Dependence on the number of oscillators

As indicated in Sec. III, the equilibrium method for com-
puting the heat conductivity is used to characterize the system
in the thermodynamic limit N → ∞. However, simulations
can only be undertaken with a finite number of particles
and this is why periodic boundary conditions are employed,
enabling current fluctuations in the system and making the
method usable. On the other hand, in the thermodynamic
limit, the allowed wave vectors are continuous while they
are discrete (and equally spaced) in a periodic system, the
obvious assumption being that if they become close enough,
the dynamics should be similar. One can nonetheless wonder
whether this has an impact when considering interactions
between modes. Thus, it is instructive to examine the influence
of the number of particles on the correlation functions.

The correlation functions for the FPU-β model with β =
0.01 and N = 256, 2048, and 16 384 are shown in Fig. 4(a).
As implied by Eq. (10), current fluctuations are expected to
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FIG. 4. (Color online) Current-current correlation functions C(t)
and Cd (t) scaled by 1/N for the FPU-β model with N = 256, 2048,
and 16 384 and (a) β = 0.01 and (b) β = 0.1.

grow linearly with N ; thus, to ease comparison, the correlation
functions were scaled by a factor 1

N
. The results reveal

two seemingly opposite trends. First, the total correlation
function C(t) seems to scale with N almost exactly, which
was expected. On the other hand, the diagonal term in the
correlation Cd (t), and consequently Cod (t) as well, decays at
a different rate. This implies that, although the off-diagonal
correlations are much more significant in long chains, the
diagonal correlations exactly counteract this, leading to zero
net effect. However, for β = 0.1, Fig. 4(b) indicates that above
the correlation threshold the three chains exhibit nearly the
same behavior except for the fact that, as expected, finite-size
effects are present at shorter time scales for the shortest chain.
Our hypothesis, which is motivated below, is that correlations
span a finite width in frequency space and that the sparser
frequency spectrum associated with short chains leads to less
off-diagonal correlations.

C. Structure of the off-diagonal correlations

The hypothesis put forward in the previous section, viz., that
correlations span mostly neighboring modes, can be tested
by examining how any specific mode becomes correlated
with others. To do this we again consider the FPU-β chains
with N = 256 and N = 2048 oscillators. We introduce the

042114-6



CROSS-CORRELATIONS BETWEEN PHONON MODES IN . . . PHYSICAL REVIEW E 89, 042114 (2014)

−5

0

5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0  0.5 1  1.5 2  2.5 3  3.5

C
(t

)

106 t

(a)
C24,24,2048

C3,3,256
C24,+,2048

C3,+,256

−5

0

5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 3 4 5 6

C
(t

)

104 t

(b)
C24,24,2048(t)

C3,3,256(t)
C24,+,2048(t)

C3,+,256(t)

FIG. 5. (Color online) Current-current correlation functions
C24,24,2048(t), C3,3,256(t), C24,+,2048(t), and C3,+,256(t) for the FPU-β
model with (a) β = 0.01 and (b) β = 0.1. In the first case the
Ck,k,N (t) curves are found to be different, while the Ck,+,N (t) curves
are similar; in the second case all curves are relatively similar.

shorthand notation J+(t) ≡ ∑
k>0 Jk(t) and

Ck,p,N (t) = 〈Jk(0)Jp(t)〉N, (19)

the subscript N indicating that the average is taken for a system
of N oscillators. Figure 5 shows the correlation functions for
modes of the same frequency in the two chains under (β =
0.01) [Fig. 5(a)] and over (β = 0.1) [Fig. 5(b)], the correlation
threshold. In every case, the autocorrelation function Ck,k,N (0)
is equal to Ck,+,N (0) [our definition for Jk implies Jk = J−k ,
and thus taking 〈Jk(0)J+(t)〉 instead of 〈Jk(0)J (t)〉 avoids
double-counting], meaning that off-diagonal correlations are
on average 0. Comparing the autocorrelations C24,24,2048(t)
and C3,3,256(t) in Fig. 5(a), a much faster decay for the longest
chain is found. On the other hand, the correlations with all
the modes C24,+,2048(t) and C3,+,256(t) are much more similar.
This observation supports the idea that the initial excitation of
mode k quickly spreads to neighboring modes over a given
energy range, then slowly decays. For the shortest chain, as
mode frequencies are farther apart, a larger fraction of the
excitation stays associated with mode k. Figure 5(b), for
β = 0.1 (above the threshold), confirms that, in this case,
off-diagonal correlations have much less impact. In both cases,
the relaxation of the short chain is slightly slower.
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FIG. 6. (Color online) Current-current correlation functions
C8,p,2048(t) for the FPU-β model with β = 0.01 and various values
of p. Higher values of p lead to an earlier peak, and values closest to
8 lead to a higher maximum.

We can also look at exactly which modes get correlated
with a specific mode. In Fig. 6, correlation functions of type
Ck,p,2048(t) are shown for k = 8, β = 0.01, and various values
of p. Other choices of k produce similar results, although
correlations decay more rapidly or more slowly when k is
lower or higher, as expected. It can be seen that correlations
are maximum for p values closest to k and that the peak cor-
relations monotonously decrease when the difference between
k and p increases. Nonetheless, the integrated correlations are
often more important for lower p modes because, although the
corresponding correlation functions tend to peak later and at
lower values, they also decay slower.

The same kind of behavior is also exhibited in simulations in
which energy relaxation from the first few modes (the original
FPU problem) is studied (see, e.g., [31]). Indeed, energy
quickly spreads to all modes up to a given frequency, which
depends on the energy density but not on N , after which relax-
ation to higher frequency modes occurs, but on much longer
time scales. Thus, for longer chains more individual modes are
involved in this initial packet, just as our results indicate.

D. Relation to the FPU problem

We now put our findings in the broader perspective of
the relaxation properties of the FPU model. Specifically, it
is known that the FPU-β model displays a transition from
weak to strong stochasticity (see, for example, Ref. [32]),
although it is conjectured that equilibrium is always reached if
the system is allowed to evolve for a sufficiently long time. It
thus seems natural to link the crossover we observe in the level
of off-diagonal correlations to the transition in the stochasticity
level. In particular, one could imagine that these correlations
inhibit the full expression of randomness in the evolution of the
system and are associated with the weak-stochasticity regime.

To test this idea, we measure the stochasticity level by
computing the largest Lyapunov exponent of the system, using
standard procedures [33], as a function of β. The data are
reported in Fig. 7 and generally agree with established results
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FIG. 7. (Color online) Lyapunov exponent λ and inverse correla-
tion time 1/τc as a function of β for the FPU-β model with T = 1
and N = 2048. Straight lines correspond to fits to the low- and
high-anharmonicity data points. The transition is at β = 0.099 for
λ and at β = 0.73 for 1/τc. Arrows indicate that the associated data
are upper bounds on 1/τc, as transitions were not observed for these
simulations.

[32]. Indeed, we observe two distinct power laws, with expo-
nent 2.19 in the low-anharmonicity limit (the reported values
are generally ∼2) and exponent 0.26 in the high-anharmonicity
limit (1/4 was expected). The observed transition, defined as
the point at which the two fits to the data cross, is located at
β = 0.099. In the same figure, we also report the inverse of the
correlation time, τc, defined as the time (after the initial tran-
sient) for which Cod (t) has decreased to 0.9C(t). As explained
previously, for β < 0.02 the transition times were never
reached in our simulations, and therefore we can only plot
upper bounds on 1/τc (cf. arrows pointing downward). The two
curves show strong similarities. First, the inverse correlation
time also displays a transition between two power-law regimes
which, in the high-anharmonicity limit, has nearly the same
exponent as the largest Lyapunov exponent (0.27 vs 0.26). The
low-anharmonicity regime has a slightly sharper slope (2.49 vs
2.19) and the transition is observed at a higher anharmonicity
(β = 0.73 vs 0.099). The difference between the values at
which the two regimes cross is real but much of the ranges over
which the two transitions take place overlap. Also, a change in
the somewhat arbitrary definition of τc could shift the transition
in either direction. In any case, we observe that the existence
of long-lasting off-diagonal correlations is associated with
significant inhibition of the expression of chaos in the system.
Although we cannot establish an obvious causal relationship
between them, the similarities are nevertheless strong enough
that, we conjecture, the two properties are related. In this case,
the presence of localized modes is a likely explanation for both
the correlations between modes and the reduced stochasticity
level. And consequently, there exists a connection between the
two most important aspects of the FPU problem: the existence
of localized modes and the stochasticity threshold.

E. Cross-correlations in the FPU-αβ and φ4 models

We now examine two models in order to assess how
some of the conclusions in the previous sections apply to
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FIG. 8. (Color online) Current-current correlation functions
C(t), Cd (t), and Cod (t) for the FPU-αβ model with (a) α = β = 0.01
and (b) α = β = 0.1.

one-dimensional systems in general. To this effect, we consider
one anomalous asymmetric model and one regular symmetric
model. For the former we chose the FPU-αβ model with
α = β, obviously similar to the FPU-β model, although it
is asymmetric. There have been recent claims that it is in fact
a normal heat conductor [2,6] or, at least, that its asymptotic
anomalous behavior can only be seen on much longer time
scales [3–5]. Our results seem to agree with the latter view and
might explain why it is so. Figure 8 shows, once more, the main
correlation functions C(t), Cd (t), and Cod (t) for α = β = 0.01
and α = β = 0.1. These are similar to what we observed
for the FPU-β model in that, below a given anharmonicity
threshold, the off-diagonal term Cod (t) is the most important,
while above the threshold, the off-diagonal terms decay more
rapidly than the diagonal ones, and for this reason, the latter
dominate at longer times. In fact, cross-mode correlations,
which tend to contribute non-power-law terms to C(t), seem
to be significantly more important for this anharmonic model.
Preliminary tests on the Lennard-Jones model either with first-
neighbor interactions only or with first- and second-neighbor
interactions (also asymmetric anomalous models) lead to even
more cross-mode correlations. Regarding whether or not the
FPU-αβ is anomalous, our data confirm that C(t) follows a
power law for a sufficiently long time, indicating anomalous
behavior. The fast relaxation of Cod (t) in Fig. 8(b) could,
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(b) λ = 0.1. Note that only the y axis is in log form in both cases.

however, lead one to believe that, if one looks only at data for
log10 t < 5, the integral of C(t) is finite. Thus, the plateau ob-
served in plots of JN vs N (for example, see Fig. 2 in Ref. [2])
or the changes of slope in plots of κ vs N in Ref. [14] could
in fact be a signature of significant off-diagonal correlations.

This naturally leads to questions relating these correlations
to anomalous conductivity. To address this point, we computed
cross-mode correlations in a second model, the φ4 model,
which is symmetric and widely known to be regular. The
correlation functions for λ = 0.01 and λ = 0.1 are shown
in Fig. 9; as relaxation is now expected to be exponential,
the data are presented in a log-linear scale. Indeed, C(t) is
fairly linear for both values of the anharmonicity parameter.
In both cases, Cd (t) decreases to negligible values in a very
short time and quite generally C(t) ≈ Cod (t). We were not
able to observe a threshold at which the relative contribution
of Cod (t) drops for this model, likely because, in contrast to
the anomalous models, all correlations are now short-term
(exponential decay) so that the diagonal correlations cannot
“outlive” the off-diagonal terms. In any case, it is clear that
the existence of cross-mode correlations is not a condition for
it to display anomalous conductivity.

Another interesting point here concerns the nature of the
relaxation of Cd (t), which happens in an initial very fast step,

followed by a slower one, with a relaxation time similar to that
of C(t) or Cod (t). Again, this might be explained by the fact
that current fluctuations in a given mode quickly spread out
to modes of similar frequencies, after which this “semilocal”
excitation is attenuated.

V. CONCLUSION

By computing the correlations between different phonon
modes in anharmonic oscillator chains, we have shown that
the stosszahlansatz—the hypothesis according to which the
phonon modes are independent—is incorrect in the low-
anharmonicity regime and in general for short-term correla-
tions. Considering principally the FPU-β model, but also the
FPU-αβ model, we found that, below a certain anharmonicity
threshold, phonon modes can become correlated and remain
so for long times. While modes are, on average, independent,
(〈Jk(0)Jp 
=k(0)〉 = 0), a fluctuation of the current associated
with a given mode quickly spreads to the neighboring ones, and
the mode packet thus created then decays in a manner similar
to that of the original individual phonon mode. This explains
the success, at least on a qualitative level, of theoretical
explanations of the phenomenon based on the relaxation-time
approximation, even though it is fundamentally incorrect.
Although the diagonal and off-diagonal contributions of the
total current-current correlation function generally follow
different trends, their sum typically corresponds to a power
law (C(t) ∼ t−γ ) for long times but the computed exponents,
γ ∼ 0.58–0.66, cannot lend unambiguous support to either the
κ ∝ N2/5 or the κ ∝ N1/3 hypothesis.

We have also shown that the inverse of the off-diagonal
correlation time 1/τc behaves like the largest Lyapunov
exponent of the system, as both quantities exhibit two scaling
regimes as a function of β, with similar exponents and
transition points within an order of magnitude of each other.

However, it must be noted that the phenomenon described
here does not explain or cause anomalous conductivity. Indeed,
we found that the spreading of the current across neighboring
modes also happens in the φ4 chain, a model known to display
regular heat conductivity. From this point of view, our results
are in contradiction with the conclusions of Henry and Chen
[27], although their model is in some ways fundamentally
different from the Hamiltonians we studied: even though
correlations between modes are significant in oscillator chains,
we have found no evidence that they are either sufficient or
necessary for a system to exhibit anomalous heat conduction.
This does not mean that they are meaningless, however, as
the study of asymmetric models illustrates how they can help
shape the relationship between the length and the conductance
of a device. A better understanding of these correlations could
thus help tailor the heat transport properties of nanostructures.

A technical sidenote is in order here: in all cases the
fluctuations associated with Cd (t), the diagonal correlation
function, are much less than that associated with C(t), the
total current-current correlation function. Much focus has
been put on the asymptotic form of C(t), which, at least in
the high-anharmonicity regime, seems to equal that of Cd (t).
Even though substantial computing costs are associated with
the calculation of the individual Jk(t) for every mode, it might
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still be possible, using appropriate sampling, to probe long time
scales more efficiently by studying Cd (t) rather than C(t).

Finally, some questions remain unanswered. First, it would
be interesting to examine how our findings apply to nonequi-
librium conditions. The equilibrium method for computing
thermal conductivity is associated with linear response theory
and the existence of a local thermodynamic equilibrium.
Knowing that the models studied can display nonperturbative
localized solutions, its applicability is still not fully estab-
lished. Nonetheless, the aforementioned comparisons of our
results for the FPU-αβ model with those from nonequilibrium
simulations, as well as similar comparisons in previous studies,
are encouraging. It would, however, be interesting to examine
nonequilibrium systems to try to find similar effects. As
they stand, the existence of these cross-correlations and their

form might imply that they are associated with localized
disturbances. It is therefore possible that these off-diagonal
correlations are a signature of soliton waves or breathers, an
hypothesis that seems to be supported by a recent study [34]
indicating that the lifetime of solitons in FPU-β lattices is
maximum for a moderate anharmonicity level. These points
will be assessed in future work.
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