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We consider sequences of measurements implemented by positive operator valued measures (POVMs). Starting
from the assumption that these sequences may be described as consistent and Markovian, even and especially for
closed quantum systems, we identify properties of the equilibrium state that coincide with the properties of typical
pure quantum states. We define a physical entropy that converges against the standard entropies in the approach
to equilibrium. Furthermore, strict limits to its possible decrease are derived on the basis of Renyi entropies. It
is demonstrated that Landauer’s principle follows directly from these limits. Since the above assumptions are
rather strong, we exemplify the fact that they may nevertheless apply by checking them numerically for some
transition paths in a concrete model.
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I. INTRODUCTION

Roughly 100 years after the beginning of its systematic
microscopic interpretation, the origin of thermodynamics is
still under dispute (see, e.g., Refs. [1–3], and references
therein). It is, however, an empirical fact that macroscopic
systems behave according to the laws of thermodynamics,
and they are routinely viewed as large quantum systems.
Accordingly, already in early works on quantum mechanics
[4–8] the question about the relationship between quantum me-
chanics and thermodynamics arose. Meanwhile many concepts
have been discussed such as “typicality” [2,5,9–12], “pure
state quantum statistical mechanics” [13–15], “eigenstate
thermalization hypothesis” [5,16–19], “thermal environment
coupling” [20–22], and many more.

In most of the more recent approaches entropy as a concept
does not play a crucial role. In the context of typicality it
has been shown that pure states yielding high von Neumann
entropies for a small subsystem are in some sense by far
the most frequent ones (see, e.g., Refs. [11,23]) but such a
statement in itself bares no rigorous consequences on entropy
dynamics. In other typicality approaches that do not focus on
subsystems entropy is not even mentioned [12].

In some of the “pure state quantum statistical mechanics”
approaches it is shown that (under some conditions on the
model and the initial pure state) the reduced state of some
small system is, at most points in time during an interval
of unspecified but possibly very large length, close to a
maximum-entropy state (see, e.g., Ref. [14]). While this has
some implications on entropy dynamics, it does not exclude
large entropy oscillations during a long period of time as
long as they eventually die out and disappear for the largest
part of the above interval. In nature, however, it appears that
entropy decreases are, if they appear visibly at all, seriously
limited by fluctuation theorems (see, e.g., Ref. [24]). Or, in
plain language, entropy always and time-locally increases
predominantly. Such findings cannot be inferred from “pure
state quantum statistical mechanics.”
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Another recent approach to the reconciliation of entropy
increase and microscopic dynamics is the concept of “stochas-
tic thermodynamics.” The basis of this approach is usually
Markovian master or Langevin equations along with the
stochastic trajectories corresponding to them [25]. Entropy
productions along those trajectories are defined involving the
concrete transition rates. General statements on positivity
of entropy production [25] and fluctuation theorems [26]
result. However, this concept is centered very much on
entropy production rather than entropy itself. Since temporal
integration of the entropy production involves the details of
the stochastic dynamics, it is apparently rather challenging to
tell whether the actual entropy will converge against standard
equilibrium entropies in standard scenarios in the long-time
limit. Investigations along these lines of two macroscopic
objects exchanging heat with each other exist [27] but resort
to the assumption of local Gibbs states. Furthermore (other
than in Ref. [27]) stochastic thermodynamics usually rely
on a system-environment partition concept, which makes the
application to closed quantum systems challenging. Another
question is if and in which sense quantum dynamics may
be mapped onto master equations. In standard cases of open
quantum systems this is well known [28], but in general it is
more complicated. Investigations in this direction, however,
exist [29–31].

It is the purpose of the paper at hand to progress in
the direction of a (quantum) entropy that is defined in
equilibrium and nonequilibrium and can be shown to increase
predominantly. To this end we adopt and develop an approach
by Penrose [32], while combining it with the concept of
consistent histories. Within this approach the entropy has the
following general features: (1) The entropy is always defined
as a function of the actual state ρ̂(t) of a system, a prechosen set
of measurement outcomes or “properties” as termed by Joos
[33] (represented by positive operators such as Â

†
n Ân) and

possibly the Hamiltonian Ĥ but not on transition rates, etc. No
notion of a subsystem or any kind of environment is invoked.
(2) Rigorous limits on possible decreases of the entropy may
be formulated. (3) If the entropy reaches a maximum in the
long-time limit, this maximum coincides with the standard
Boltzmann entropy in equilibrium. Thus, in those cases
extensitivity of entropy etc. follows in the long-time limit.
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The above claimed features of the entropy are rather strong.
In order to demonstrate them, we resort to some rather strong
assumptions as well: (1) We require probabilities of measure-
ment sequences of the above properties to form “consistent
histories,” i.e., fulfill the third Kolmogorov axiom. (2) We
assume that the probability to obtain a certain measurement
outcome or property in the future only depends on a finite set
of measurement outcomes from the finite past. We call this
“K-step Markovianity.” While it is close to impossible that
those assumptions apply exactly to a closed, finite quantum
system, they may apply in an approximate sense, and this is
what we focus on.

The consistency assumption essentially establishes that the
visible dynamics (measurement outcomes corresponding to
the Â

†
n Ân) of a system do not depend on whether or not one

actually watches it. While this seems natural in the context of
everyday experience, it is clearly violated for certain quantum
experiments such as the double slit etc. Thus, the consistency
assumption implies a certain degree of “classicality.” Also the
Markovianity claim seems natural from everyday experience.
It is, however, anything but obvious why it should apply to
any generic class of quantum systems at all. Thus, as already
mentioned, both assumptions are rather strong, and justifying
them in any generality is beyond the scope of this paper. In
order to demonstrate, however, that both may apply at all,
we present concrete numerical examples based on a class of
Hamiltonians with a finite number of (≈1000) eigenstates to
which both assumptions already apply to good approximation.
Furthermore, the consistency and Markovianity appear to
increase with growing system sizes.

In the following we explain the organization of this paper,
thereby highlighting in which sense it goes beyond existing
literature. While Penrose requires quantum observables to
commute with each other at any time, i.e., [P̂n(t),P̂m(t ′)] = 0,
we do not assume this commutativity, not even approximately.
Instead of this we resort to the concept of consistent histories.
This is along the lines of Refs. [34] or [35]. The latter
work makes some contact with relaxation issues since it
applies the formalism to, e.g., the Caldeira-Legett model.
While we will refer to the concept of consistent histories
quite frequently, it is important to notice that for no part of
the work at hand is the interpretation of quantum mechanics
of any relevance. We use the consistent-history formalism
simply as a “in some sense more elaborate version of the
Copenhagen interpretation” [36]. Consistent histories are
routinely introduced on the basis of projective measurements.
However, since projective measurements of, e.g., positions
are in quantum mechanics in conflict with finite energies
(nevertheless projective measurements form the basis of the
considerations in Ref. [32]), we present a generalization
of consistent histories to POVMs in Sec. II that appears,
according to, e.g., Ref. [37], not to be present in the literature.
We consider this generalization conceptually relevant, even
though it is not explicitly used in the remainder of this paper.
While the considerations in Ref. [32] are restricted to situations
where probabilities for future measurement outcomes may be
determined from the last, most recent measurement only, we
generalize to scenarios in which the last K measurements
are relevant. Thus, Sec. III is essentially dedicated to the
introduction of our notion of K-step Markovianity and the

concrete translation of K-step Markovian, consistent quantum
dynamics into stochastic processes. We identify fixed points
as well as limits on transition rates in Sec. III. Based on Renyi
divergences, irreversibility and a concrete notion of entropy
are introduced in Sec. V. In Sec. VI we go beyond Ref. [32]
by demonstrating that the fixed point found in Sec. III just
from consistency and Markovianity is actually in accord with
the recently much discussed concept of quantum typicality.
While the nondecrease of entropy in Ref. [32] is essentially
based on considerations of Kullback-Leibler divergences, we
demonstrate that this does not suffice to obtain Landauer’s
principle in Sec. V. To this end the previously introduced
Renyi divergences are necessary. Section VIII is somewhat
detached from the previous sections. It consists only of a
simple numerical example for the emergence of consistency
and Markovianity within closed, finite quantum systems.

II. CONSISTENT HISTORIES AND POVM
MEASUREMENTS

The concept of consistent histories is needed in the context
of this approach in order to map the dynamics of measurement
outcomes onto stochastic processes; cf. Sec. III. The concept
of POVMs [38], which generalizes projective von Neumann
measurements to nonprojective measurements, will not appear
explicitly in any calculation after this section. It is, however,
important for the applicability of the approach at hand in
general. This is due to the same reason which motivated the
introduction of POVMs to quantum mechanics in the first
place: There are scenarios for which projective measurements
are simply unphysical. For example, a projective position
measurement of any particle would, strictly speaking, send
its mean energy to infinity, regardless of the mass of the
particle and the length of the measured interval. While in
practice probably most macroscopic measurements are close
to projective measurements, the impact of small deviations
from “clean projectiveness” should be considered. To those
ends, we aim at formally combining the concepts of POVM
measurements with the concept of consistent histories. While
this formal combination requires only a modification of the
“decoherence functional” [39], it does not appear to be present
in the literature [37]. (In Ref. [35] it is explicitly mentioned
that it would be convenient to be able to go beyond projective
measurements in consistent histories; however, the approach
is not worked out in detail.)

In POVM measurements a measurement outcome or prop-
erty n is routinely associated with a (positive) operator Â

†
n Ân.

Since some outcome has to result, one requires (completeness)
N∑

n=1

Â†
n Ân = 1̂. (1)

The probability of getting the outcome n is given by P (n) =
Tr{Â†

n Ân ρ̂}, where ρ̂ is the density operator of the full system.
For brevity, we introduce two “superoperations”: the analog
of measurement projection,

Anm ρ̂ := Ân ρ̂ Â†
m (2)

(note that Ann always maps a positive operator onto a positive
operator), and the time evolution,

U ρ̂ := Û (τ ) ρ̂ Û †(τ ), (3)
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where Û (τ ) is a unitary operation that propagates for time τ .
Note that Û (τ ) is not required to conserve energy. Given those
definitions, the probability P (ijk,ρ̂) to measure, e.g., first i,
then j , then k with time steps τ in between, and starting from
an initial state ρ̂, may be denoted as

P (ijk,ρ̂) := Tr{Akk U Ajj UAii ρ̂}. (4)

(This is sometimes referred to as “Wigner’s formula” [40].)
It is an acceptable definition insofar as 0 � P (ijk,ρ̂) � 1
and

∑
ijk P (ijk,ρ̂) = 1. For simplicity, we consider possible

measurements only at times t that are multiple integers of
τ . While this restriction is not crucial, it turns out to be
convenient. In order to apply now the concept of consistent
histories to the probabilities for sequences of measurement
outcomes, we define another operator Â0:

Â0 := 1̂ −
N∑

n=1

Ân. (5)

For purely projective measurements this definition is unnec-
essary since, if all Ân are projectors, clearly Â0 = 0. As an
obvious consequence of this definition, we get

N∑
n=0

Ân = 1̂. (6)

Now the equivalence to the consistency condition in the
consistent-history approach may be formulated based on the
following equality. Since this will be the main subject below,
we only consider the situation where there is no information
at all prior to the first measurement, i.e., ρ̂ = 1̂/d, where d is
the (relevant) dimension of the system,

P (i#k,1̂/d) =
N∑

j=1

P (ijk,1̂/d) (7)

+
N∑

j,l=0;j �=l

Tr{Akk U Aj l U Aii 1̂/d} (8)

+ Tr{Akk U A00 U Aii 1̂/d}, (9)

where the # character is meant to indicate that no measurement
is performed at the corresponding point in time. If the sum
in Eq. (8) and the term in Eq. (9) were zero, i.e., if the
equation consisted only of Eq. (7), then the probabilities as
defined in Eq. (4) would obey the third Kolmogorov axiom
on the additivity of probabilities of disjoint events. Or, in
plain language, if a property can be reached from another
property via different paths, the probabilities of those paths
simply add up. Below we are going to assume that this indeed
either holds exactly or, more realistically, at least to a degree
at which deviations are negligible. However, whether or not
contributions from Eqs. (8) and (9) vanish or not ultimately
depends on the measurement operators Ân and, through U ,
on the Hamiltonian. Thus, in Sec. VIII we provide numerical
evidence that for a concretely given Hamiltonian, represented
by a finite-dimensional matrix, and concretely given Ân the
sum in Eq. (8) appears to go to zero as the Hilbert-space
dimension d goes to infinity. The sum in Eq. (8) is equivalent
to what is called the “decoherence functional” in the context

of consistent histories. The term in Eq. (9) is not present in
standard discussions of consistent histories. Whether or not it
is small in principal has to be checked for any given model and
given properties Ân. It is, however, plausible that this term is
small as long as the Ân are reasonably close to projectors.

III. TRANSITION PROBABILITIES, MARKOVIANITY,
AND STOCHASTIC PROCESSES

Given the “consistency condition” derived in the previous
section, we now aim at mapping the quantum dynamics
onto stochastic processes in this section. To those ends, we
introduce the definition of another quantity � which will turn
out to be closely connected to the below introduced entropy:

�(ijk) := Tr{Akk U Ajj U Aii 1̂}. (10)

(Note that those � are all non-negative.) This may be viewed as
being proportional to the probability to measure (ijk) without
any prior knowledge, i.e., �(ijk) = dP (ijk,1̂/d). For later
reference, we note here that “summing over an index shortens
the history”; i.e., by virtue of Eq. (1) we get, e.g.,

N∑
i=1

�(ijk) = �(jk). (11)

The conditional probability to get some outcome l in an
upcoming measurement, given that one has observed a certain
sequence of outcomes in previous measurements of, e.g., three
measurements (ijk) but without any knowledge whatsoever
prior to the first measurement, is now obtained within the
above framework of POVMs and consistent histories from
Eqs. (4) and (10) as

w(l|ijk) = �(ijkl)

�(ijk)
. (12)

Obviously the conditional probabilities are always fractions
of � in which the sequence in the argument of the � in the
numerator is one element longer than the sequence in the
argument of the � in the denominator. Evidence from physical
experience suggests that the probability of measuring some
outcome l may be independent of measurement outcomes
obtained in a distant past. Thus, those conditional probabilities
may become at some point independent of the lengths
of the sequences. This allows for a definition of K-step
Markovianity: If there is one-step Markovianity, which is often
simply called “Markovianity” only, the last past measurement
outcome should be relevant for the conditional probability:

�(. . . ijkl)

�(. . . ijk)
= �(kl)

�(k)
= w(l|k). (13)

In the case of two-step Markovianity we require, respectively,

�(. . . ijkl)

�(. . . ijk)
= �(jkl)

�(jk)
= w(l|jk), (14)

and so on. For the remainder of this paper we are going to
assume that K-step Markovianity holds with K arbitrarily
large but finite. This means that is unnecessary to keep an
infinite record from the past in order to come up with the best
possible prediction on the future. While such a statement may
appear very natural, it is a challenging task to explain why
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this should hold for a great variety of systems and properties.
In this paper we are not going to address this question in
any generality. However, in Sec. VIII we provide numerical
evidence that for a concretely given Hamiltonian, represented
by a finite-dimensional matrix, and concretely given Ân the
deviation from one-step Markovianity appears to go to zero
as the Hilbert-space dimension goes to infinity. Thus, the set
of finite-dimensional closed quantum systems that are in the
above sense Markovian can, at least, be shown to be not empty.
(Note that the term “Markovian” is not unambiguously defined
in the literature. For another definition of Markovianity see,
e.g., Ref. [41], and references therein.)

Thus, for the case of one-step Markovianity and decoherent
dynamics as described below Eq. (7) one may set up a time-
discrete stochastic process which describes the measurable
dynamics as

p(j ; t + τ ) =
∑

i

w(i|j ) p(j ; t). (15)

Given the definition (13), it is evident that 0 � w(i|j ) � 1,
and, considering Eq. (1), one also gets

∑
i w(i|j ) = 1. Hence,

Eq. (15) has the properties of a standard stochastic process.
Note that Eq. (15) does not necessarily feature detailed bal-
ance. This will only be the case if �(ji)/�(ij ) = f (i)/g(j ),
where f,g are some real, non-negative functions. However,
whether or not this applies is irrelevant for the validity of the
remainder of this paper. In the case of “more-than-one”-step
Markovianity the mapping of the measurable dynamics onto a
stochastic process is slightly more complex. For simplicity, we
only address two-step Markovianity, but K-step Markovianity
may be dealt with in the same way. We resort to the
method of going from two-step Markovianity back to one-step
Markovianity by using a new set of states. Let w(lm|jk) denote
the probability that, after jk have been measured, the next
measurement will yield m and the last measurement l. Of
course, this can only be nonzero if k = l, but, for reasons
which will become clear below, it is convenient to formally
define the two-step Markovian transition probabilities this
way. Thus, for the case of two-step Markovianity and, again,
decoherent dynamics as described below Eq. (7) one may
set up a time-discrete stochastic process which describes the
measurable dynamics as

p(lm; t + τ ) =
∑
jk

w(lm|jk) p(jk; t). (16)

From Eq. (14) follows the explicit form of w(lm|jk):

w(lm|jk) = δkl w(m|jk). (17)

Again, from Eq. (14) it is evident that 0 � w(lm|jk) � 1 and,
considering Eq. (1), one also gets

∑
lm w(lm|jk) = 1. Hence,

Eq. (16) also has the properties of a standard stochastic map.
To shorten notation, we label all possible ordered sequences

of such K results by Greek letters, i.e., (. . . ijk) := α. In the
following such sequences will be sometimes called “prop-
erties.” Many of the standard examples of nonequilibrium
thermodynamics are one-step Markovian, e.g., the decay of
the temperature difference between two macroscopic objects
in thermal contact is a one-step Markovian (macroscopically
deterministic) process. However, a damped (not overdamped)

harmonic oscillator is described by a two-step Markovian
process if one restricts oneself to position measurements
only. It may be one-step Markovian if the properties Ân

are constructed to encode positions and momenta. However,
since measurements of velocity are usually done by measuring
subsequent positions and the time elapsed in between, it
is convenient to argue within a framework which includes
experiments based on position measurements only.

IV. EQUILIBRIUM STATE AND UPPER BOUNDS
ON TRANSITION PROBABILITIES

Although the above stochastic processes do not necessarily
fulfill detailed balance, their equilibrium states may be deter-
mined. This is most conveniently demonstrated by “guessing”
the equilibrium state and plugging it into the stochastic process.
Our guess for the equilibrium state is

peq
α ∝ �(α). (18)

We check the guess by inserting it into Eqs. (15) and (16)
and demanding that it should be identically reproduced by the
transition matrix. Thus, for one-step Markovianity we get

�(j ) =
∑

i

w(j |i) �(i),

�(j ) =
∑

i

�(ij )

�(i)
�(i),

(19)
�(j ) =

∑
i

�(ij ),

�(j ) = �(j ).

The last line follows from Eq. (11). Obviously, the guess
from Eq. (18) is correct. The same consideration for two-step
Markovianity reads:

�(lm) =
∑
jk

w(lm|jk) �(jk),

�(lm) =
∑
jk

δkl

�(jkm)

�(jk)
�(jk),

�(lm) =
∑
jk

δkl �(jkm), (20)

�(lm) =
∑

j

�(j lm),

�(lm) = �(lm).

Again, the guess from Eq. (18) is obviously correct. Note that
all statements below do not depend on whether or not there
may be more invariant equilibrium states in addition to the one
given by Eq. (18).

In the case of consistent, one-step Markovian dynamics,
the equilibrium state does not even depend on U or Ĥ . It
only depends on the “measured properties” since in this case
one simply gets p

eq
n = Tr{Â†

n Ân}. This framework accounts
for the fact that in equilibrium, e.g., the probabilities for
various distributions of energy onto two subsystems in thermal
contact are entirely independent of the specific details or,
within reasonable bounds, the strength of the contact. They
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only depend on the subsystems; the interaction would only
enter through U and is thus irrelevant.

Next we establish bounds to the transition probabilities be-
tween different properties based on the properties themselves.
In the case of one-step Markovian dynamics, this means that
the bounds hold irrespective of the specific U . Let α be the
sequence of the last K measurement outcomes and β the
sequence of the last K outcomes after one more measurement
has been done. (This means that β is essentially α but only
“backshifted” by one, with the last one erased, and with a
new most recent measurement outcome.) Then the transition
probability w(β|α) to go from α to β is limited by

w(β|α) � �(β)

�(α)
. (21)

Demonstrating the validity of Eq. (21) is rather simple. Using
the property notation, the first lines of Eqs. (19) and (20) read:

�(β) =
∑

α

w(β|α) �(α) (22)

or

1 =
∑

α

w(β|α)
�(α)

�(β)
. (23)

Since the transition probabilities as well as the � are all
non-negative, Eq. (21) directly follows. This result is certainly
important for establishing irreversibility since, if, say, �(β) �
�(α), it is well possible that w(β|α) = 1. However, the
backward transition probability must be small, i.e., bound by
w(α|β) � �(α)/�(β).

Based on Eq. (21) it may appear reasonable to define
entropy simply as a mean � or a monotonous function of
it, e.g.,

S :=
∑

α

pα ln �(α). (24)

While such a function indeed plays an important role in the
approach at hand, it is by itself not strictly nondecreasing, as
will be demonstrated in the next section; cf. especially Eq. (29).

V. ENTROPY AS A NONDECREASING QUANTITY

The fact that the above scenario cannot happen, even though
it is not in conflict with Eq. (21), may be seen from another
consideration. This consideration also leads to the introduction
of an entropy and expresses the sense in which this entropy is
nondecreasing.

The following analysis involves the Renyi divergences
Da(P ||Q). The latter are defined as

Da(P ||Q) := 1

a − 1
ln

∑
α

(
pα

qα

)a

qα (25)

for a > 0. Although the Renyi divergences are no metrics,
they may to some extent be viewed as distances between two
probability distributions P := {pα},Q := {qα}. It has been
shown that in stochastic processes of the type of Eqs. (15)
and (16) the Renyi divergences between some actual state and
an equilibrium state cannot increase, which means

Da[P (t + iτ )||Q] � Da[P (t)||Q] (26)

with i being some positive integer. For a derivation of Eq. (26)
see, e.g., Ref. [32] or the Appendix. This statement holds
regardless of whether or not detailed balance holds. From
Eq. (25) it is plain to see that rescaling the {qα} by some factor
only results in an additive constant C to the Renyi divergences,
which does not alter its “nonincrease” property (26). Since,
according to Eq. (18), the equilibrium probabilities p

eq
α of the

stochastic processes considered here are, up to a factor, given
by �(α), we may rewrite Eq. (25) as

Da(P ||Q) = 1

a − 1
ln

∑
α

[
pα

�(α)

]a

�(α) + Ca. (27)

One important Renyi divergence is obtained for a → 1. It is
well known that in this limit the Renyi divergence converges
against the Kullback-Leibler divergence [42]. Hence, we get

D1(P ||Q) =
∑

α

pα [ln pα − ln �(α)] + C1. (28)

From this follows directly that a function L1 defined as

L1 :=
∑

α

−pα ln pα + pα ln �(α) (29)

is strictly nondecreasing under stochastic maps as defined by
Eqs. (15) and (16), i.e.,

L1(t + iτ ) � L1(t). (30)

This motivates the interpretation of Eq. (29) as consisting of
two additive parts: One is a “lack-of-information entropy”
SSh := −∑

α pα ln(pα), which is just the Shannon entropy
measuring the uncertainty that comes with the distribution
of probabilities onto the different possible measurement
outcomes. The other part is a “mean-property entropy” Spr :=∑

α pα ln �(α) that measures the entropy associated with the
specific property or measurement outcome. In order for the
latter to apply, we eventually define the property entropy as

Spr(α) := ln �(α). (31)

This entropy is the physical entropy associated with a
“macrostate” or property of a system, regardless of the pro-
bability with which it may possibly occur. If, e.g., the property
of the system is just expressed by the fact that the system
contains an energy from a narrow energy window, then
�(α) =Tr{P̂E}, where P̂E is a projector onto this energy win-
dow. Hence, up to factor kB , in this case Spr is just the standard
microcanonical Boltzmann entropy. Thus, Eq. (30), which is
one of the (in)equalities establishing irreversibility within this
framework, implies the following statements: A process that
reduces the lack of information, i.e., leads to a well-predictable
property if there is a lot of uncertainty about the initial pro-
perty is necessarily a process that increases the mean-
property entropy Spr. Also the reverse applies: The mean-
property entropy may be reduced in a process; however, in
this case the predictability of the final outcome is lost since the
lack-of-information entropy must increase. The mean-property
entropy Spr in itself is not strictly increasing. Thus, it may
fluctuate along a sequence of measurements, e.g., in the sense
of a fluctuation theorem.

It is worth mentioning here that Eq. (29) is only one
condition on the dynamics that follows from Eq. (27),
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namely, for a = 1. Thus, the full and concrete meaning of
“irreversibility” within this framework is not comprised in
Eq. (29) alone but in all conditions that follow from Eq. (27) for
all a. Some of them may be of importance in certain contexts,
as will be discussed below. The idea of having not only one
but many inequalities in order to establish irreversibility is
very much in line with other recent approaches such as, e.g.,
Ref. [43].

VI. CONSISTENCY, MARKOVIANITY, AND TYPICALITY

Starting from the assumption that the quantum dynamics
should be consistent and Markovian in the senses described
in Secs. II and III, the specific equilibrium probabilities
for the properties (18) have been derived. This should
be compared to results from the field of equilibration in
closed quantum systems, in which neither consistency nor
Markovianity are taken into account. One of these results
states that the overwhelming majority of states (w.r.t. the Haar
measure) in some high-dimensional Hilbert space features very
similar expectation values of operators with spectral widths
of order unity [5]. Thus, even closed quantum systems may
“apparently” equilibrate since, as long as the wave function
ventures through regions in Hilbert space that are filled with
states from the above majority, the expectation values of the
above operators hardly show any dynamics. These findings
are sometimes called typicality and have been demonstrated
in various numerical examples, e.g., in Refs. [44–46]. If
this applies, the above typical expectation values (to which
systems in this case equilibrate) are given by Tr{Ô}/d for
some observable Ô. Computing the equilibrium probabilities
within the approach at hand from Eq. (18) yields

peq
α = �(α)∑

β �(β)
. (32)

With Eqs. (10) and (1), this becomes

peq
α = �(α)

d
. (33)

The implication of this is best illustrated in the case of one-
step Markovianity, where we simply have �(α) =Tr{Â†

n Ân}.
Hence, in this case we get

peq
n = Tr{Â†

n Ân}
d

, (34)

which is just the typical expectation value of the observable
Ô = Â

†
nÂn corresponding to the property n. Due to Eq. (1),

the spectral widths of Â
†
n Ân are always of order unity since

the eigenvalues are positive but bound by one. Thus, one
may conclude the following: Whenever a closed quantum
system is consistent and Markovian in the senses described
in Secs. II and III, then, once equilibrium is reached, its wave
function has to venture through the (large) part of the Hilbert
space filled with typical quantum states. Thus, consistency and
Markovianity imply the applicability of the typicality concept
while the reverse it not necessarily true.

VII. DERIVATION OF LANDAUER’S PRINCIPLE

In this section we intend to demonstrate that Landauer’s
principle follows directly within the approach at hand without
the necessity of invoking equilibrium environments, etc.
Landauer’s principle essentially states that it is impossible to
erase or, more precisely, reset one bit of information without
generating at least �S = ln 2 of physical entropy. Usually this
is achieved by performing an amount W � T ln 2 of work
and then transferring the latter to a heat bath at temperature
T [47]. Within the approach at hand, of course, the property
entropy Spr is the physical entropy. So the question here is:
Is it possible to reset one bit without increasing Sp? The
information must be encoded in the properties. One bit requires
the system to feature at least two measurable properties, say,
α = 1, 2. Before the reset the state of the bit is unknown, i.e.,
pini

1 , pini
2 = 1/2. After the reset the state of the bit should

be unambiguously fixed, e.g., pfin
1 = 1, pfin

2 = 0. In order
to not generate any Spr, we assume that all �(α) are the
same, i.e., �(α) = const. Thus, in this reset process we would
decrease the lack-of-information entropy by �SSh = − ln 2.
Since we do not increase the mean-property entropy Spr, this
is forbidden by Eq. (30) as Landauer’s principle requires.
Only if we had �(1) � 2�(2), this was possible. Given only
Eq. (30), however, another similar process, that has been first
mentioned by R. Alicki and is now frequently addressed by
C. Bennett, is possible. Assume that we do not require the
bit to exhibit property 1 after the reset with absolute certainty
but that we allow for a small failure rate ε, i.e., we require
only pfin

1 = 1 − ε. The “excess probability” ε could then be
uniformly distributed onto X � 21/ε different other properties.
Then the process is not in conflict with Eq. (30), and it appears
as if one could do the resetting up to an arbitrary confidence
level ε → 0 without generating any physical entropy Spr. This,
however, is not the case. If one considers D∞ rather than D1

as done in Eq. (28), one finds

D∞(P ||Q) = ln

[
maxα

pα

�(α)

]
+ C∞. (35)

Since all Renyi divergences are nonincreasing under stochastic
maps, it is obvious that L∞ defined as

L∞ := maxα

pα

�(α)
(36)

cannot increase. This, however, is in conflict with the “ap-
proximate resetting” as described above. In this approximate
resetting we would have Lfin

∞ − Lini
∞ = 1/2 − ε, which is an

increase, and thus it cannot occur. So, taking all the conditions
that arise from Eq. (27) into account, Landauer’s principle is
demonstrated to follow.

VIII. NUMERICAL EXAMPLE FOR THE EMERGENCE OF
CONSISTENCY AND MARKOVIANITY IN A FINITE

CLOSED QUANTUM SYSTEM

So far, all results in the paper at hand have been derived by
starting from the assumption of consistency and Markovianity
as defined in Secs. II and III. Thus, an evident and important
question is if and under what conditions on the model and
the properties these assumptions are justified. Consistency is
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often attributed to the influence of some external systems like
explicit measurement apparatuses, baths, etc. Markovianity is
also questionable since finite, closed quantum systems always
feature finite (quasi-) recurrence times.

While we are at present unable to state the conditions under
which consistency and Markovianity emerge in general, we
will give in this section a concrete numerical example for the
occurrence of the latter for some specific transitions. These
numerical findings will not establish consistency and Marko-
vianity in general; moreover, they will not even demonstrate
the latter for all possible transitions in the model defined
below. However, the numerics will show how consistency
and Markovianity approximately emerge in the limit of a
high density of states (DOS) for some transitions. Thus, the
below numerics are intended to demonstrate that it is at least
not impossible for consistency and Markovianity to emerge
approximately in a very simple and comparatively small closed
quantum system. More far-reaching results in that direction are
considered to be important but left for further research.

Our numerics are based on a model class which is designed
to represent a very simple closed quantum system featuring
exponential relaxation of some expectation values. (This
model and its dynamics have already been analyzed, e.g.,
in Ref. [48], an almost identical version first appeared in
Ref. [49].) All operators are given on the level of discrete
finite matrices.

The eigenvalues of some “unperturbed Hamiltonian” Ĥ0

form two somehow distinguishable but spectrally identical
“bands,” both of width δε and both with equidistant level
spacing. Furthermore, there is a “perturbation” V̂ consisting of
transition operators representing transitions between the two
bands. The full Hamiltonian Ĥ = Ĥ0 + λV̂ reads

Ĥ0 =
n−1∑
i=0

i

n − 1
δε |i〉〈i| +

n−1∑
j=0

j

n − 1
δε |j 〉〈j | ,

V̂ =
n−1∑
i,j=0

vij |i〉〈j | + H.c., (37)

1

n2

n−1∑
i,j=0

|vij |2 = 1,

where the complex vij are chosen as random Gaussian
numbers, which are normalized according to the last equation
of (37). The i label states in band 1, the j in band 2. Obviously,
λ quantifies the overall perturbation strength. The observed
property is just the system’s occupation of either the first or
the second band. Thus, we only have two property operators:

Â1 :=
n−1∑
i=0

|i〉〈i|, Â2 :=
n−1∑
j=0

|j 〉〈j |. (38)

Obviously, both Â are simply projectors. Thus, according
to Eq. (5), we get Â0 = 0. We are testing for one-step
Markovianity here; hence, the probabilities for the properties
are simply labeled p1 :=Tr{Â1 ρ̂}, p2 :=Tr{Â2 ρ̂}. This system
has been shown before to exhibit dynamics that are in accord
with the dynamics as generated by Eq. (15), even in the limit
of very small τ . Thus, the dynamics may conveniently be
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FIG. 1. (Color online) Comparison of the dynamics of the oc-
cupation probabilities p1(t) and p2(t) of the first and second band,
respectively, as resulting from the Schrödinger equation with the same
dynamics as resulting from the rate equation (39). Obviously there is
a good agreement. For specific model parameters, see text.

compared to the dynamics of a master equation of the following
form:

ṗ1 = −R (p1 − p2), ṗ2 = −R (p2 − p1). (39)

Such a comparison is illustrated in Fig. 1. The initial state in
this analysis is ρ̂(0) = Â1/n. Other parameters are n = 800,
λ = 5 × 10−5, and δε = 0.05. The rate R is taken to be R :=
2πλ2n/δε = 2.5 × 10−4, which may be inferred from Fermi’s
Golden Rule; cf. Ref. [48].

Obviously, there is a good agreement. Note, however, that
this agreement does not proof consistency and Markovianity
in itself, but it makes the model (37) a promising candidate to
find the latter.

Next we check consistency directly. We choose to consider
the transition 1 → 2 during two time steps τ . From Eq. (7) we
find that, in the case of perfect consistency, one would get

1 − P (1#2,1̂/n)

P (112,1̂/n) + P (122,1̂/n)
= 0, (40)

which in terms of � reads

1 − �(1#2)

�(112) + �(122)
= 0, (41)

where the # character again indicates that no measurement is
performed at the corresponding point in time. If consistency
holds only approximately, the expression on the l.h.s. of
Eq. (41) should still be small compared to unity. Hence,
we call this expression “nonconsistency.” Of course, this
nonconsistency may depend on the specific random numbers
that were used to construct the Hamiltonian. Therefore, for
each set of parameters (λ,n,δε) that is considered below,
10 different random Hamiltonians have been constructed
and the nonconsistencies have been numerically calculated.
The results are then given in terms of the mean and the
standard deviation over these 10 realizations corresponding
to the sets of parameters; see Fig. 2. (Means are indicated
by symbols, standard deviations by the vertical bars.) These
parameters have been chosen to systematically increase the
DOS (n/δε), but keeping the relaxation rate R as well as the
band width δε fixed. The fixed values are again δε = 0.05,
R = 2.5 × 10−4. Obviously, nonconsistency is already rather
low at a moderate DOS but decreases further with growing
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FIG. 2. (Color online) Numerical results on the measure of non-
consistency in the “two-macrostate” model (37). Central symbols
indicate means, vertical bars spreadings for different random re-
alizations of the model. Obviously, nonconsistency decreases with
increasing the density of states. For specific model parameters, see
text.

DOS. Thus, Fig. 2 suggests that histories may indeed become
practically consistent in the limit of a large DOS.

Now we turn to a numerical testing of Markovianity. We
proceed in a way similar to the one employed for the analysis of
consistency above. We choose to consider the transition path
(1 → 1 → 2). In the case of perfect one-step Markovianity,
one would get from Eqs. (13) and (14)

�(112)

�(11)
= �(12)

�(1)
, (42)

which may be rearranged as

1 − �(12) �(11)

�(112) �(1)
= 0. (43)

We call the l.h.s. of Eq. (43) “non-Markovianity” and calculate
it still for 10 different realizations of the Hamiltonian for
each given set of parameters (λ,n,δε). As before, one-step
Markovianity is approximately given if the non-Markovianity
is small compared to one. The results are displayed in Fig. 3.

Obviously, non-Markovianity is already rather low at a
moderate DOS but decreases further with growing DOS. Thus,
Fig. 3 suggests that the transition path (1 → 1 → 2) may
indeed become practically Markovian in the limit of a large
DOS.

While all these numerical considerations can of course
not establish consistency and Markovianity in general, they
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FIG. 3. (Color online) Numerical results on the measure of
non-Markovianity in the “two-macrostate” model (37). Also non-
Markovianity decreases with increasing the density of states. For
specific model parameters, see text.

demonstrate exemplarily that both may emerge very well from
the coherent quantum dynamics of a closed, moderately sized
system. While the model addressed here is rather abstract,
similar results have been found for Heisenberg spin models
(comprising no random numbers) made of 16–32 spins [44,45].

IX. SUMMARY, CONCLUSION, AND OUTLOOK

In the paper at hand we addressed the question of irre-
versibility in quantum mechanics. Our approach was based
on the choice of a set of “properties” or (possibly but not
necessarily projective) measurement operators such as POVMs
and the dynamics of the system being unitary. Our point
of departure was the assumption that a sequence of chosen
measurement outcomes from the past is sufficient to predict
the probabilities of measurement outcomes in the future.
Furthermore, we assumed that the probability dynamics do
not depend on whether or not the corresponding measurements
are actually performed (Markovianity and consistency). Based
on these assumptions, a set of equilibrium probabilities was
identified, which is, in the case of simple Markovianity,
independent of the specific unitary dynamics. This equilibrium
set is compatible with the one suggested by quantum typical-
ity, which establishes a connection between these different
concepts. The actual set of probabilities can only approach
but never depart from the equilibrium state w.r.t. the Renyi
divergences. Based on this fact, a physical entropy and an
entropy quantifying the lack of knowledge about the expected
measurement outcome were formulated. The sum of both
was rigorously shown to be nondecreasing. This implies,
in plain language, that processes the results of which are
well predictable from past measurements cannot occur unless
these results represent states of equal or higher physical
entropy. Furthermore, the validity of Landauer’s principle
directly follows. In order to exemplify that consistency and
Markovianity may indeed emerge in closed quantum systems,
corresponding numerical results were presented. We intend
to do a similar but more detailed numerical investigation
on a more realistic system, i.e., the Heisenberg spin model
discussed in Ref. [45].

While the line of reasoning is to a large extend similar to
the arguments given in previous works, e.g., Ref. [32], it is
a specific feature of the work at hand that the measurement
operators do not need to commute with each other, not even
approximately. This may allow for a substantial weakening
of the consistency condition: Since any density operator may
entirely be represented by a sum of (noncommuting) positive
operators, coherences may simply be included in the above set
of properties. In this way, dynamics that appear as coherent
or “inconsistent” w.r.t. a given set of properties may appear
consistent w.r.t. an enlarged set of properties. We consider this
an interesting line of research for the near future.
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APPENDIX

The appendix is dedicated to a derivation of Eq. (26). We
give this derivation here to make the paper at hand sufficiently
self-contained. It may be found in almost the same form in
Ref. [32].

We start by considering the properties of functions H given
as

H (t) :=
∑

α

qα φ(xα), xα := pα(t)

qα

. (A1)

Here the pα(t) are the actual probabilities at time t of some
stochastic process, and the qα are its invariant (equilibrium)
probabilities. φ is any convex function. There are many
definitions of convex functions; the one convenient for our
purposes states that the graph of a convex function never lies
below any of its tangents,

φ(x) � φ(x0) + (x − x0)φ′(x0), (A2)

where φ′ denotes the first derivative of φ. Let x̃β := pβ(t +
τ )/qβ be the “time-propagated” (w.r.t. the stochastic process)
analog of xα:

x̃β =
∑

α

m(β|α) xα, m(β|α) := w(β|α)
qα

qβ

. (A3)

Since w(β|α) is a stochastic map, i.e.,
∑

β w(β|α) = 1, we get
from the above definition of m(β|α)

qα =
∑

β

qβ m(β|α). (A4)

Furthermore, since the map w(β|α) identically reproduces the
equilibrium probabilities {qα}, we find∑

α

m(β|α) = 1. (A5)

Consider now the (negative) change of the function H during
the time step τ :

H (t) − H (t + τ ) =
∑

α

qα φ(xα) −
∑

β

qβ φ(x̃β). (A6)

To make use of the convexity of φ, we transform both sums on
the r.h.s. into double sums. First, using Eq. (A4) and, second,
using Eq. (A5), we get

H (t) − H (t + τ ) =
∑
α,β

qβ m(β|α) [φ(xα) − φ(x̃β)]. (A7)

This may also be written as

H (t) − H (t + τ )

=
∑
α,β

qβ m(β|α){φ(xα) − [φ(x̃β) + (xα − x̃β )]φ′(x̃β)}.

(A8)

The part that is added compared to Eq. (A7) vanishes by virtue
of Eqs. (A4) and (A5). (For this to hold, the fact that specifically
φ′(x̃β) appears is irrelevant, any function of only β would do.)
By comparing Eq. (A8) to Eq. (A2) and identifying xα: x, x̃β :
x0, it is plain to see that

H (t) − H (t + τ ) � 0 (A9)

as long as φ is convex.
Let φ be a function of the type φ(x) = xa . Then for a > 1

and x � 0 the function φ is clearly convex. However, with this
choice, the Renyi divergence (25) may be written as

Da(P ||Q) = 1

a − 1
ln H. (A10)

Thus, with Eq. (A9), Eq. (26) follows. It may be convenient
to consider the case of a = 1 separately. In this case, as
mentioned in Sec. V, the Renyi divergence converges against
the Kullback-Leibler divergence. Hence, in this case we may
simply choose φ(x) = − ln x (which is convex) to find

D1(P ||Q) = H, (A11)

and again Eq. (26) follows.
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