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According to the eigenstate thermalization hypothesis (ETH), even isolated quantum systems can thermalize
because the eigenstate-to-eigenstate fluctuations of typical observables vanish in the limit of large systems. Of
course, isolated systems are by nature finite and the main way of computing such quantities is through numerical
evaluation for finite-size systems. Therefore, the finite-size scaling of the fluctuations of eigenstate expectation
values is a central aspect of the ETH. In this work, we present numerical evidence that for generic nonintegrable
systems these fluctuations scale with a universal power law D−1/2 with the dimension D of the Hilbert space.
We provide heuristic arguments, in the same spirit as the ETH, to explain this universal result. Our results are
based on the analysis of three families of models and several observables for each model. Each family includes
integrable members and we show how the system size where the universal power law becomes visible is affected
by the proximity to integrability.
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I. INTRODUCTION

In recent years, nonequilibrium unitary evolution of iso-
lated quantum systems has emerged as a key topic in
many-body physics. In this context, the issue of thermal-
ization in isolated quantum systems has received fresh and
growing attention. The eigenstate thermalization hypothesis
(ETH) is widely thought to encapsulate the mechanism
by which thermalization occurs in isolated nonintegrable
systems [1–3].

The basic statement of the ETH is that, for a large
isolated system, the diagonal matrix elements of typical
observables in the Hamiltonian eigenstate basis, known as the
eigenstate expectation values (EEVs), depend smoothly on
the corresponding energy eigenvalues. Despite intense recent
research [3–20], the understanding of several aspects of the
ETH remains incomplete. For example, it is not fully known
exactly which observables will or will not serve as typical
observables. Another issue is the specification of large isolated
systems: How large does the system have to be? Clearly, a
proper understanding of this question requires a finite-size
scaling study of the ETH. This is an important question
for any actual experimental study of thermalization because
any isolated system is in practice finite. Size dependence
is also vital for evaluating numerical studies, which are
performed on finite systems. This is the subject of the present
paper.

It is generally understood that the fluctuations σ�A of EEVs
should decrease exponentially with system size [1,8,10,20] so
that the EEVs become very smooth as a function of energy for
reasonably large isolated systems. For discrete systems with
a finite Hilbert space, this means a power-law dependence of
the fluctuations with the dimension D of the Hilbert space.
In this work, we identify the exponent of this power-law
behavior as − 1

2 . Examining several nonintegrable models,
we provide strong numerical evidence for ∼D−1/2 behavior
of EEV fluctuations. The D−1/2 behavior generally becomes
clear only at the largest sizes accessible through full numerical
diagonalization. Our analysis therefore uses a comparison of
several sizes, at varying distances from integrability. We use
Hamiltonians designed to be tunable between two integrable

limits and thus examine how this finite-size dependence is
affected by proximity to integrable points. As the integrable
points are approached, larger sizes are required for the D−1/2

behavior to set in and for purely integrable systems the size
dependence is no longer D−1/2.

The exponent − 1
2 suggests the central limit theorem, which

would predict power-law dependences if σ�A is the average
of O(D) random variables. We distinguish between two
plausible mechanisms and identify the correct explanation:
The exponent arises from the averaging over effectively
random coefficients of individual eigenstates and not from an
average over O(D) eigenstates in the definition of σ�A. This
explanation relies on assumptions of effective randomness,
which are difficult to prove rigorously but are in the same spirit
as the ETH itself. A particularly nontrivial aspect is that it is not
immediately obvious why this argument should break down for
integrable systems. While the concept of effective randomness
provides useful insight, the unavoidably heuristic nature of
such arguments means that our numerical analysis is essential
for determining the finite-size scaling of EEV fluctuations.

We use several observables for each model Hamiltonian
to show the validity of the D−1/2 law for a wide variety of
observables. Unlike some of the previous studies of the ETH
(e.g., [3]), we do not refer to particular quench protocols,
which corresponds loosely to focusing on particular parts of
the eigenspectrum. Instead, we examine the complete spectrum
and thus a broad class of quantum quenches. The robustness of
our results for different observables, Hamiltonians, and quench
protocols provides compelling evidence for the universality of
the D−1/2 scaling.

The structure of this article is as follows. In Sec. II we
introduce our measure for the amplitude of EEV fluctuations.
We define our models and observables in Sec. III. The D−1/2

scaling of the EEV fluctuations is presented in Sec. IV, where
we give both numerical results and a heuristic argument. The
conclusion and discussion are in Sec. V. The Appendixes
provide further details: Appendix A discusses issues related to
our definition of the EEV fluctuations, Appendix B elaborates
on the heuristic argument for D−1/2 scaling, and Appendix C
provides detail on the numerical methods.
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FIG. 1. (Color online) Eigenstate expectation values (blue dots)
and the microcanonical average (red curves) for the observable Â =
Sz

2 with (a)–(c) λ = 0 and (d)–(f) λ = 1 for three different system
sizes L. The energies on the horizontal axis are scaled by system size
for meaningful comparison. [The microcanonical average is nearly
constant in this case, which is not representative for all observables
(see e.g., Refs. [6,14]).] The inset shows the geometry of the ladder
system and site labeling. Solid and dashed lines are Hleg and Hrung

couplings, respectively.

II. FORMULATION: EEV FLUCTUATIONS

The ETH states that the diagonal matrix element of a typical
operator Â in the eigenstates |ψα〉 of the Hamiltonian, i.e., the
EEVs Aαα = 〈ψα|Â|ψα〉, vary smoothly with the correspond-
ing energy eigenvalues Eα . Thus, the EEVs may be considered
as constant within an energy window [E − �E,E + �E]. In
other words, the values of Aαα approximately coincide with the
microcanonical average 〈Â〉μ(Eα,�E), defined as the average
EEV within this window:

〈Â〉μ(E,�E) = 1

NE,�E

∑
α:Eα∈[E−�E,E+�E]

Aαα, (1)

where NE,�E is the number of states in this window. If the
initial nonequilibrium state has weights constrained to such
a microcanonical window, then the ETH guarantees that the
long-time average will be equal to the canonical expectation
value.

We wish to study how this behavior is approached with
increasing system size. Therefore, we study the fluctuations
around the microcanonical average as a function of size. For
every α we define �Aα = Aαα − 〈A〉μ(Eα,�E). We then
consider the statistical properties of �Aα over a large part
of the Hilbert space. In the following, we take averages over
all states in the central 20% of the total energy range of the
spectrum, which we denote by 〈· · · 〉c. This average typically
includes more than half of all eigenstates. The highest and
lowest ends of the spectrum are left out because the spectrum
edges are likely to show atypical behavior (see Fig. 1). The
EEV fluctuations σ�A are defined as the standard deviation
of �A,

σ 2
�A(�E) ≡ 〈[�Aα]2〉c ≡ 〈[Aαα − 〈A〉μ(Eα,�E)]2〉c. (2)

We note that σ�A cannot be interpreted as a standard deviation
of the Aαα because of the microcanonical average 〈· · · 〉μ rather
than the ordinary average 〈· · · 〉 on the right-hand side of
Eq. (2). In the definition above we have assumed that the

average of �A is negligible, i.e., that

var(�Aα) ≡ 〈
�A2

α

〉
c − 〈�Aα〉2

c ≈ 〈
�A2

α

〉
c. (3)

While the smallness of �Aα is intuitively reasonable, the
definition of �Aα in terms of the microcanonical average does
not guarantee a priori that

〈�Aα〉2
c � 〈

�A2
α

〉
c (4)

is valid. Numerical evidence for the validity of this inequality
is presented in Appendix A. Given that this condition holds, the
interpretation of σ�A defined in Eq. (2) as a standard deviation
of �A is justified.

In Fig. 1 the energies are divided by the system size L. The
reason is that the upper and lower parts of the energy spectrum
scale as L, thus the spectrum appears in the same range of
Eα/L. The microcanonical average curves for the EEVs also
look roughly similar for different sizes, when plotted against
Eα/L, as does the density of states.

The dependence of σ�A on the width �E of the mi-
crocanonical window is weak as long as the range [E −
�E,E + �E] contains sufficiently many states for good
statistics while it remains sufficiently narrow so that the
microcanonical average follows the EEVs well. As a good
tradeoff for satisfying both these conditions, we have used the
value �E = 0.025L for all following results. Justification for
this value can be found in Appendix A. As with the horizontal
axes in Fig. 1, we rescale the window width by keeping
�E/L constant. This window thus contains approximately
equal fractions of the total number of eigenstates for different
values of L.

III. MODELS AND OBSERVABLES

A. Tunable model Hamiltonians

We will present results for three families of Hamiltonians.
These are designed to be tunable toward or away from
integrable limits, to have good thermodynamic limits, and to
avoid symmetries that lead to degeneracies in the spectrum. We
use systems with a Hamiltonian of the form H = H0 + λH1

such that the model is integrable if the control parameter λ is
0 or ∞. For λ ∈ (0,∞), the system is nonintegrable.

The first two are based on the spin- 1
2 anisotropic Heisenberg

(XXZ) chain, which is integrable via the Bethe ansatz [21].
These Hamiltonians commute with the total z component of
spin, so the number N↑ of up spins is conserved. We examine
finite-size scaling by increasing (L,N↑). To suppress unwanted
symmetries, e.g., SU(2), we take the anisotropy � to be away
from 0 or 1; results are presented for � = 0.8.

The Heisenberg ladder consists of two coupled XXZ chains
(see Fig. 1, inset). The Hamiltonian for the L = (2p + 1)-site
model is given by Hladder = Hleg + λHrung, where

Hleg =
p−1∑
i=1

hi,i+1 +
2p∑

i=p+1

hi,i+1, Hrung =
p∑

i=1

hi,i+p (5)

are the intrachain and interchain (rung) couplings, respectively,
given in terms of the Heisenberg XXZ coupling

hi,j ≡ 1
2 (S+

i S−
j + S−

i S+
j ) + �Sz

i S
z
j , (6)
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where S±
i = Sx

i ± S
y

i and Sz
i are the spin operators on site i

(� ≡ 1). In order to suppress reflection symmetries, one leg
has an extra site compared to the other. We will focus on the
Sz

total sector N↑ = p.
The second Hamiltonian is the XXZ chain in a harmonic

magnetic trap Htrap = HXXZ + λHmagn, with the open-XXZ-
chain and magnetic-field terms

HXXZ =
L−1∑
i=1

hi,i+1, Hmagn ≡ −
L∑

i=1

BiS
z
i , (7)

respectively. Here λBi denotes the magnetic field at site i

where λ parametrizes the strength of the trap and Bi = [2/(L −
1)2][i − i0]2. Here the trap center is near the midpoint of the
chain i0 = 1

2 (L + 1) − �i, with a shift �i that we choose
to be irrational to avoid symmetries. The factor 2/(L − 1)2

ensures a meaningful thermodynamic limit. We use the sector
of filling factor 1

3 by defining L = 3N↑. A harmonic trap is a
particularly important manner of breaking integrability since
the classic experiment exploring the role of integrability in
time evolution [22] involved dynamics in a harmonic trap.

The third Hamiltonian is the Bose-Hubbard model on an
open chain

HBH = −
L−1∑
i=1

(b†i bi+1 + b
†
i+1bi) + λ

L∑
i=1

b
†
i b

†
i bibi, (8)

where b
†
i and bi are the bosonic creation and annihilation

operators at sites i [23]. The model is integrable when only
kinetic or only interaction terms are present, i.e., in the
λ = 0 and λ → ∞ limits. We avoid reflection symmetry by
modifying the interaction at site 1 to be 1.1λ instead of λ. We
present results for half filling, i.e., the number of bosons is
Nb = 1

2L.

B. Observables

An important issue in ETH studies is the question of
which observables the ETH applies to. To show that our main
result (σ�A ∼ D−1/2 behavior) is valid for a wide range of
observables, we use a number of different one-site and two-site
observables. For the ladder model, we use the spin z component
Sz

i at site i and sums of these quantities with i running over
multiple sites, e.g., all sites of the bottom leg Sz

bottom. We also
consider the two-site operators Cz

i,j ≡ Sz
i S

z
j and sums of such

operators over regions of the system. We similarly study a set of
one- and two-site operators and their sums over regions of the
system for the XXZ chain in a trap and for the Bose-Hubbard
model: For the XXZ chain, we consider one-site (e.g., Sz

i )
and two-site spin operators (e.g., Cz

i,j = Sz
i S

z
j and C

xy

i,j ≡
S+

i S−
j + S−

i S+
j ) and their sums over the middle one-third sites

(Sz
middle, Cz

middle, and C
xy

middle). For the Bose-Hubbard model,
we use on-site occupancies ni = b

†
i bi , occupancies summed

over the central sites [nmiddle = ∑L−i ′
i=i ′+1 ni/(L − 2i ′) with i ′ =

(L + 2)/4�], and the operators for nearest-neighbor two-point
and four-point correlators (b†i bi+1 + b

†
i+1bi and nini+1).

IV. SCALING ANALYSIS OF EEV FLUCTUATIONS

A. Dependence on size and integrability

Figures 1 and 2 provide visual displays of some of the more
dramatic aspects of the ETH. In Fig. 1 we use as observable
Sz

2, the z component of the spin at site i = 2. At the integrable
point, the width of the distribution of EEVs can be seen to
stay unchanged with system size [Figs. 1(a)–1(c)]. For the
nonintegrable model, the EEV fluctuations clearly decrease
with system size in the bulk of the spectrum. The top and
the bottom of the spectrum do not show a similarly dramatic
decrease with system size, demonstrating that the ETH should
be considered relevant primarily to the bulk of the spectrum.
The physical reason is that the edges of the spectrum tend to
show emergent integrable (e.g., Luttinger liquid) behavior.

Figure 2 shows the typical dependence of EEV fluctuations
on the parameter λ for different system sizes. This plot
corroborates the intuition that for increasing system size the
fluctuations decay faster away from the integrable limits than
close to them. For larger systems there is a pronounced
minimum of σ�A at intermediate λ, where it is farthest from
both integrable limits.

For the observable Â = Sz
bottom in the ladder system

[Fig. 2(b)], σ�A is smaller in the λ ∼ 1 regime than it is in the
integrable regions, even for the smallest system sizes. For the
observable Â = Cz

2,p+2 = Sz
2S

z
p+2 [Fig. 2(a)], some deviation

is seen for very small systems, but the characteristic behavior
sets in already at moderate sizes. This overall qualitative
behavior is very typical and is similar for all observables and
all models we have investigated. The system size at which the
crossover to large-system behavior (pronounced minimum in
the nonintegrable regime) takes place depends on the model
and on the observable.

B. Scaling with system size

In Figs. 3(a)–3(c) we show the dependence of the EEV
fluctuations on Hilbert-space size D for several values of the
rung coupling parameter λ that tunes the system away from
integrability. The data plotted in this figure involve vertical
slices of the plots in Fig. 2 (size dependence at constant
λ values). The ETH fluctuations are commonly claimed to
decrease exponentially with system size for nonintegrable
models and hence should decrease as a power law with D. We
define an exponent e as the one that is obtained in a power-law
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Â = Sz
bottom (b)

0.01 0.1 1 10

λ

FIG. 2. (Color online) Fluctuation amplitudes σ�A as a function
of the control parameter λ. The σ�A are presented for the Heisenberg
XXZ ladder system for several system sizes (L,N↑) (see legend) and
two different observables [in (a) and (b), respectively].
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FIG. 3. (Color online) (a)–(c) Dependence of σ�A on the Hilbert-
space dimension D in the Heisenberg ladder. The different operators
Â used are indicated in the legend for (d). The lines are best fits to
c0D

−e; the exponent estimator e is indicated for the operator Cz
2,p+2.

(d) The exponent estimator e is plotted against λ for the four operators.
(e) Sizes up to Lmax are used for fitting to obtain the estimator e. The
trend is that e → 1

2 for increasing Lmax.

fit ∼D−e to the data for σ�A for the available sizes. We make
no a priori claims about the dependence being actually a power
law or the obtained values of e being the actual exponent in the
large-size limit. In cases where the dependence is a power law,
as expected in nonintegrable systems, e is an estimator for the
actual exponent. The exponent estimator e goes toward zero
as one approaches the integrable points λ = 0 or λ = ∞. At
the point λ = 0 the dependence on D is presumably not even
a power law.

Values of the exponent estimator e are plotted in Figs. 3(d)
and 3(e) for the ladder system and in Fig. 4 for the XXZ-trap
system and the Bose-Hubbard system. There is a clear and
general trend for e to cluster around or approach 0.5 in all
systems, when away from integrability. Taken together, we
believe this provides compelling evidence of a σ�A ∼ D−1/2

dependence in generic nonintegrable systems for generic few-
body observables Â. Figure 3(d) displays the general behavior
for several different observables in the XXZ ladder: e ≈ 1

2
for intermediate λ and vanishing e for λ approaching 0 or
∞. Similar behavior is observed for the XXZ chain with
a trap and for the Bose-Hubbard chain [see Figs. 4(a) and
4(c), respectively]. For the three systems considered here, the
results are qualitatively similar. The general trend is that for
a fixed maximum system size Lmax, the exponent estimator e

clusters around 1
2 for intermediate values of λ and has lower

values close to the integrable limits. In Figs. 3(e), 4(b), and
4(d) we show more quantitative scaling behavior for the three
tunable Hamiltonians by plotting the exponent estimators e

derived from power-law fits to the data of system sizes up
to Lmax. We note a crossover from integrablelike to ∼D−1/2

behavior for nonintegrable systems close to integrability (e.g.,
for the XXZ ladder at λ = 0.05 [see Figs. 3(b) and 3(e)]) as
the system size is increased. The trend with increasing Lmax
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Â = Sz

2

(b)

0

0.5

e

0.01 0.1 1 10
λ

n2

nmiddle

b†2b3 + b†3b2

n2n3

(c)

Lmax = 12
0

0.5

e

0.01 0.1 1
λ

Lmax

10
12
14

Bose-Hubbard chain
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FIG. 4. (Color online) For the XXZ chain in a trap, we plot (a)
the exponent estimator e against integrability-breaking parameter λ.
The estimator e is calculated with data up to Lmax = 18. The estimator
e is calculated with data up to Lmax sites. (b) Plot of the estimator
e obtained from fits with increasing Lmax. Analogous results for the
Bose Hubbard chain are shown in (c) (with Lmax = 12) and (d).

points to the large-system behavior of σ�A being ∼D−1/2 over
the full range λ ∈ (0,∞).

C. The D−1/2 behavior from eigenstate size: A heuristic
argument

The D−1/2 dependence of σ�A can be argued heuristically
by considering projections of eigenstates onto the eigenbasis
of the Â operator and then invoking the central limit theorem.
If {aγ } and {|φγ 〉} denote the eigenvalues and eigenvectors of
Â and we expand the eigenvectors |ψα〉 of H as

|ψα〉 =
∑

γ

c(α)
γ |φγ 〉, (9)

then we can write the EEVs as

Aαα =
D∑

γ=1

∣∣c(α)
γ

∣∣2
aγ . (10)

This is an average of Xγ ≡ D|c(α)
γ |2aγ . Under the hypothesis

that the Xγ can be regarded as random variables with D-
independent variance, the central limit theorem guarantees that
the fluctuations of Aαα decrease as D−1/2. (This argument is
detailed further in Appendix B.) We are unable to prove the
idea that the Xγ or cγ act as random variables. However, one
can intuitively think of an eigenstate of a nonintegrable system
as being so complex that its projections onto the eigenbasis of
a typical observable are effectively random. This is similar in
spirit to the ETH itself (also difficult to prove rigorously), for
which the argument is that when eigenfunctions are complex
enough, EEVs of typical observables will contain no signature
of the detailed structure of the wave function.
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FIG. 5. (Color online) (a) Scaled participation ratios of all eigen-
states with respect to the computational basis for 15-site ladder, with
λ = 1. The averaging region is shown by vertical bars and the average
PR value is shown by the horizontal line. (b) Dependence of the scaled
average PR on D. (c) Dependence of σ�A on the number Dfluct of states
used as input to compute this quantity. Data are for the 17-site ladder
with Â = Cz

2,p+2 for four different values of λ [shown in the legend
in (b)].

This argument relies on the assumption that the size
(number of components) of the individual eigenfunctions is
O(D). This is justified in Figs. 5(a) and 5(b) through the
participation ratio (PR) in the computational (site) basis,
defined for each eigenstate as

Pα =
[ ∑

γ

∣∣c(α)
γ

∣∣4
]−1

. (11)

The PR measures the number of basis states contributing to
the eigenstate. (For a single state, the commonly discussed
inverse participation ratio is 1/Pα .) Figure 5(b) shows that
it is, on average, indeed proportional to D in nonintegrable
cases. The D−1/2 scaling of σ�A and the D scaling of the
average PR are, taken together, consistent with the expectation
[17] that σ 2

�A should be proportional to the average inverse
PR. The observations of Ref. [17], in terms of the average
inverse PR in the momentum Fock basis, can also be cast as
a heuristic argument for D−1/2 scaling, roughly equivalent to
the reasoning above.

We emphasize that the number Dfluct of states included in
the average 〈· · · 〉c does not account for the D−1/2 dependence.
The quantity σ�A is the standard deviation of the distribution
of the �Aα and it is independent of how many times one
probes this distribution, i.e., the number of states that is used
to compute σ�A. As shown in Fig. 5(c), the value of σ�A

is independent of Dfluct as long as states at the edges of the
spectrum are avoided. The slight dependence on Dfluct is caused
by the fact that at the edges of the spectrum, the fluctuations
of Aαα are different from those in the center of the spectrum.
The edges of the spectrum, of course, are outside the purview
of the ETH. This demonstrates that the D−1/2 behavior arises
not from the number of eigenstates averaged over, but from
the complexity of the individual eigenstates themselves.

The fluctuations decrease more slowly with system size at
the integrable points, as evidenced by the vanishing of the
exponent estimator e in the λ → 0 and ∞ limits in each of
the models. This implies a difference in the structure of the
individual eigenstates. One characterization of this difference
is visible in Fig. 5(b), where the scaled average PR for the
integrable model is seen to decrease with system size. A
detailed study of eigenstates in integrable models from this
perspective, to complement the studies of Refs. [18–20,24–
28], is interesting, but is beyond the scope of the present work.

V. SUMMARY AND DISCUSSION

For nonintegrable systems, we have presented the size
dependence of the deviation from the ETH, as measured
by the EEV fluctuations, σ�A, for lattice systems. It is well
accepted that σ�A decreases exponentially with the system size
σ�A ∼ exp[−c1L], e.g., Ref. [20] has numerical data showing
the exponential decay. In terms of the Hilbert-space size D, if
D ∼ αL (see Appendix C 2), then

σ�A ∼ D−e ∼ exp[−e(ln α)L]. (12)

Our work makes this relationship precise by determining the
exponent to be e = 1

2 or, equivalently, the coefficient to be
c1 = 1

2 ln α.
The D−1/2 behavior is difficult to convincingly show

from calculations for a fixed nonintegrable Hamiltonian. We
have therefore used a control parameter to move away from
an integrable Hamiltonian; this makes clear the trend of
e approaching 1

2 as one tunes away from integrability. In
addition, the sizes at which the D−1/2 behavior sets in are
at the limit of sizes that can be comfortably addressed by full
numerical diagonalization, which is the method used in current
numerical studies of the ETH. Our use of sparse matrices with
the shift-and-invert algorithm (see Appendix C 1) has allowed
us to reach larger sizes: We have used full diagonalization for
sizes up to D ∼ 2 × 104 and sparse-matrix methods for larger
D, the largest being above 105.

While the exponent e = 1
2 has not appeared for the EEV

fluctuations in the setting of condensed-matter Hamiltonians,
some similar or related results exist. The observations of
Ref. [17] could be combined to construct an argument for
D−1/2 scaling, as discussed in Sec. IV C. In the literature on
typicality [29–33], there is the expectation that the deviation
of random Hamiltonians from typicality (closely related to the
ETH) scales with system size such that measures of atypicality
behave as ∼D−1/2. Reference [30] shows this numerically for
random Hamiltonians but finds other exponents for spin-chain
Hamiltonians, for the sizes treated. Further work is needed for
a full understanding of the connection between these results
and ours.

Our work introduces several questions. First, the D−1/2

behavior does not set in at smaller sizes. It is obvious from
Figs. 3(d), 3(e), and 4 that larger sizes are necessary when
integrability is weakly broken since the e values calculated
from available sizes do not reach 1

2 for λ near the integrable
points. This indicates a length scale associated with the
degree of integrability breaking, a concept that might be
possible to explore quantitatively. Second, our quantitative
result σ�A ∼ D−1/2 requires a finite Hilbert-space dimension
D. It is not obvious how to generalize this law to continuum
systems. Finally, it would be interesting to ask how the
finite-size behavior of EEVs is affected by proximity to
(many-body) localization, which, like integrability, is expected
to be detrimental for thermalization.
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FIG. 6. (Color online) (a) Fluctuation amplitudes as a function of
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work. The values 0.001 and 0.25 are extreme cases. (b) Average value
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c divided by 〈�A2
α〉c as a function of Hilbert-space dimension

D for the ladder system with Â = Sz
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lines connecting the points serve as a guide to the eye.

APPENDIX A: DEFINITION ISSUES FOR EEV
FLUCTUATIONS

The width of the microcanonical window has been chosen
to satisfy �E = 0.025L, as a good compromise between the
conditions that it contain sufficiently many eigenstates for
good statistics and that the microcanonical average follows the
EEVs well. To justify the choice of this value, we have plotted
the fluctuation amplitudes σ�A as a function of system size D

for several values of �E in Fig. 6(a). Here we have chosen
the observable Â = Sz

middle for the trap system at λ = 2, which
is characterised by a strongly nonlinear dependence of the
microcanonical average 〈A〉μ(E,�E) on E. This situation is a
worst-case scenario: We expect a relatively strong dependence
of the resulting σ�A on �E because for very large values,
the microcanonical average does not follow the actual EEVs
Aαα well. This mechanism is responsible for the fact that for
very large values of �E, the fluctuations are overestimated
[see Fig. 6(a)]. In the case where 〈A〉μ(E,�E) would depend
almost linearly on �E, the dependence of σ�A on �E will
be weaker. Another feature that we find from Fig. 6(a) is that
the fluctuations are underestimated if the number of states in
the microcanonical average is very small in the case of small
�E and small system size. Finally, we may conclude from
Fig. 6(a) that σ�A is almost independent of �E for a large
range of values around �E/L = 0.025. Here we emphasize
that the values �E/L = 0.001 and 0.25 present very extreme
cases, where the microcanonical window encompasses only a
few eigenstates (for the smaller system sizes) and almost the
whole spectrum, respectively.

In order for the interpretation of σ�A, as defined by Eq. (2),
as the standard deviation of the �Aα to be valid, we must
test the condition that the average of �Aα is negligibly
small, expressed by Eq. (4). In Fig. 6(b) we plot the ratio
〈�Aα〉2

c/〈�A2
α〉c for the observable Â = Sz

2 in the ladder
system as a function of the Hilbert space D and for several
values of λ. We indeed observe that 〈�Aα〉2

c is negligibly
small compared to 〈�A2

α〉c. The approximation var(�Aα) ≡
〈�A2

α〉c − 〈�Aα〉2
c ≈ 〈�A2

α〉c generally improves for increas-
ing system size. Thus, the interpretation of σ�A as the standard
deviation of the �Aα is justified.

APPENDIX B: MECHANISM FOR D−1/2 DECAY OF EEV
FLUCTUATIONS

In this section we expand on the argument provided in
Sec. IV C for the D−1/2 decay of EEV fluctuations. The D−1/2

behavior arises from the fact that the individual eigenstates
have D components and not from the sum over O(D) different
eigenstates in the definition of σ�A.

D−1/2 from randomness of coefficients. Our argument is
based on the expansion of the energy eigenstates |ψα〉 in the
basis of eigenvectors |φγ 〉 (with eigenvalues aγ ) of the operator
Â, as given by Eq. (9). The EEVs are then realizations of a
random variable that is the average of D approximately random
variables,

Aαα =
D∑

γ=1

∣∣c(α)
γ

∣∣2
aγ = 1

D

D∑
γ=1

Xγ , (B1)

where Xγ = D|c(α)
γ |2aγ . We will now regard Xγ as random,

quasi-independent, variables. There is no rigorous justification
for this, but it can be argued in the same spirit as the
arguments in favor of the ETH itself, namely, in a large
nonintegrable system the typical eigenstate is so complicated
that its components are effectively random in any reasonable
basis. In principle, the randomness of |c(α)

γ |2 and of Xγ may
be different due to the multiplication with the eigenvalues
aγ . However, if these eigenvalues take only very few (�D)
different values, then |c(α)

γ |2 is random if and only Xγ is.
Assuming that the Xγ act as random variables, the central

limit theorem implies that the EEVs have the standard
deviation

√
var(Xγ )/D. If the variance of Xγ is approximately

D independent (as argued below), the D−1/2 dependence of
the fluctuations follows immediately.

We emphasize again that our reasoning is based on the
assumption that the |c(α)

γ |2 are random enough that the central
limit theorem can be used. The extent or exact nature of this
randomness is not understood in detail. At or near integrability,
σ�A no longer scales as D−1/2, which suggests that the
coefficients |c(α)

γ |2 lose their randomness in such situations.
Even in the nonintegrable case, the assumption is invalid

for any conserved quantity A. If Â commutes with Ĥ , one can
choose a common eigenbasis and consequently only one c(α)

γ

is nonzero.
var(Xγ ) is independent of D. We now argue that the vari-

ance of Xγ = D|c(α)
γ |2aγ is independent of D. The eigenvalues

aγ of the operator Â are typically polynomial in system size
and hence at most logarithmic in D. In addition, the average
value of |c(α)

γ |2 is 1/D by normalization. If the distribution
of |c(α)

γ |2 is not extremely pathological, this implies that the
variance of |c(α)

γ |2 scales as 1/D2. With this observation, it
follows that var(Xγ ) ∼ 1, i.e., constant in system size.

The variance of Xγ can be related to the PR through

Pα/D = [
1 + var

(
D

∣∣c(α)
γ

∣∣2)]−1 ∼ [1 + var(Xγ )]−1, (B2)

where the PR has been defined in Eq. (11). Thus, our previous
statements are confirmed if the average scaled PR is constant
as a function of system size. In addition to Fig. 5 we present
a more detailed view of the PRs in Fig. 7. The average scaled
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FIG. 7. (Color online) Scaled participation ratios Pα/D as a
function of Eα in the Heisenberg XXZ ladder system. We show the
results for system sizes L = 11,13,15 and two values of the control
parameter: (a)–(c) λ = 0 and (d)–(f) λ = 1. The horizontal red line
indicates the average scaled PR. The two vertical bars enclose the
middle 20% of the spectrum, the energy region for which the average
is taken. Here we have chosen the computational basis, which is also
an eigenbasis for most of the observables discussed in the text (e.g.,
Sz

i , Sz
i S

z
i+1).

PR decreases noticeably with size in the integrable case, while
it remains constant for nonintegrable systems.

Normal distribution of Aαα . The central limit theorem
not only gives a value for the variance, it also states that
the distribution of the Aαα variables should be a normal
distribution for large D. In support of this statement, we
present the distributions of the fluctuations �Aα in Fig. 8. The
distributions show the fluctuations within one window of the
microcanonical average centered at E/L = −0.1, 0, and 0.1.
The results closely resemble normal distributions, indicated
by the dashed curves. This provides indirect support to the
conjecture that the coefficients |c(α)

γ |2 are effectively random.

APPENDIX C: COMPUTATIONAL DETAILS OF
SPARSE-MATRIX METHODS AND HILBERT-SPACE SIZES

Hamiltonians in condensed matter physics generally lead
to sparse matrices, so it is often advantageous to use sparse-
matrix methods such as the Lanczos algorithm, which accesses
the lowest or highest parts of the eigenspectra. In studies of
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FIG. 8. (Color online) Histograms of the fluctuations �Aα in a
microcanonical window. (a) Ladder system with (L,N↑) = (19,9),
Â = Cz

2,p+2, and λ = 1. (b) Magnetic-trap system with (L,N↑) =
(21,7), Â = Sz

2, and λ = 2. (c) Bose-Hubbard system with (L,Nb) =
(14,7), Â = b

†
2b3 + b

†
3b2, and λ = 0.5. For each system we show the

distributions at the three energies defined by E/L = −0.1,0,0.1. The
dashed curves indicate normal distributions with the same variances
as those of the fluctuations �Aα .

the ETH, however, we explicitly want to access parts of the
spectrum away from the edges. In addition, we have taken
the approach of looking at the entire bulk of the spectrum.
Therefore, as conventional in computational research on the
ETH, we have used full diagonalization of the Hamiltonian
matrix in order to treat Hilbert-space dimensions up to D ≈
20 000. However, in this work, we have additionally gone
beyond this size limit by using sparse-matrix methods that
access nonextremal parts of the spectrum. This method is
described in Appendix C 1. In Appendix C 2 we connect
Hilbert-space sizes to system sizes for our three model systems.

1. Sparse-matrix methods

In order to tackle larger systems than can be comfortably
accessed with full diagonalization on present-day machines,
we have used a divide-and-conquer technique to split the
problem of diagonalization into smaller parts. We used the
so-called shift-invert algorithm: For a matrix H and a chosen
value γ , one applies Lanczos diagonalization to the matrix
(H − γ I )−1 so that one effectively finds the eigenvalues of
H close to γ . In practice, one does not invert the matrix
explicitly since that would generate a nonsparse inverse matrix.
Instead, the generation of the Krylov basis {ψi}, defined
through ψi+1 = (H − γ I )−1ψi , is performed by iteratively
solving (H − γ I )ψi+1 = ψi . There is thus an inner iteration
necessary for generating the Krylov basis in addition to the
usual Lanczos iteration. Such methods are often known as
inner-outer iterative methods.

While this method clearly takes significantly more run-time
than bare Lanczos diagonalization, it has the advantage that
any part of the spectrum can be accessed. For intermediate
Hilbert-space sizes (D ∼ 10 000), we have performed several
comparisons between the results of the sparse and the dense
methods and we have found them to yield consistent results.

In order to find all eigenvalues and eigenstates of a
large sparse matrix, we choose a set of initial energies {γi}
and compute in parallel typically 2000 eigenvalues close to
each of these values together with the EEVs for a set of
observables. Each application of the shift-invert method yields
the eigenvalues within a certain (a priori unknown) energy
interval. Afterwards, the results are patched together, i.e., for
the energy regions where two or more such intervals overlap,
the eigenvalues and EEVs are compared and duplicates are
removed such that each appears only once in the final
result. Finally, the total number of eigenvalues is compared
against the known dimension of the Hilbert space. If the
result does not contain all the eigenstates, more shift-invert
diagonalizations are performed until all eigenstates have been
obtained. The largest system for which we have found the
full eigenspectrum using this procedure is of Hilbert-space
dimension D = 116 280.

2. Hilbert-space dimensions and system sizes

Our results on the EEV fluctuations have been presented in
terms of the Hilbert-space dimension D. In order to translate
the results to system size L, one uses the relations

D =
(

L

N↑

)
, D =

(
L + Nb − 1

Nb

)
(C1)

042112-7



W. BEUGELING, R. MOESSNER, AND MASUDUL HAQUE PHYSICAL REVIEW E 89, 042112 (2014)

TABLE I. Overview of the system sizes L and Hilbert-space
dimensions D of the models used. The cases with boldface values
have been investigated with the sparse diagonalization algorithm; in
all other cases, full diagonalization has been used. For the XXZ

ladder model u = 2, v = 1, and w = 1; for the XXZ trap model
u = 3, v = 1, and w = 0; and for the Bose-Hubbard model u = 2,
v = 1, and w = 0.

XXZ ladder model
p 4 5 6 7 8 9
L 9 11 13 15 17 19
N↑ 4 5 6 7 8 9
D 126 462 1716 6435 24310 92378

XXZ trap model
p 3 4 5 6 7
L 9 12 15 18 21
N↑ 3 4 5 6 7
D 84 495 3003 18564 116280

Bose-Hubbard model
p 3 4 5 6 7
L 6 8 10 12 14
Nb 3 4 5 6 7
D 56 330 2002 12376 77520

for an L-site XXZ model with N↑ spins up and for an
L-site Bose-Hubbard model with Nb bosons, respectively.
In our numerical study, we approach the thermodynamic
limit with systems with (almost) constant filling fraction
f ≡ v/u for integers u and v. We perform our calculations for

the sequences (L,N↑) = (up + w,vp) and (L,Nb) = (up +
w,vp) (p = 1,2, . . .) for the XXZ and Bose-Hubbard models,
respectively; w is an additional constant integer. Table I
provides an overview of the choices of the parameters and
the resulting system and Hilbert-space sizes for the models
discussed in this work.

With a constant filling fraction v/u, the Hilbert-space
dimensions of Eq. (C1) can be approximated using Stirling’s
formula as

D →
√

cu,v√
2πp

(βu,v)p, (C2)

where cu,v equals u/v(u − v) for the XXZ models and (u +
v)/uv for the Bose-Hubbard model and

βu,v ≡
{
uu/vv(u − v)u−v (XXZ model)

(u + v)u+v/uuvv (Bose-Hubbard model)
(C3)

defines the limiting ratio limp→∞ Dp+1/Dp between the
Hilbert-space dimensions of two subsequent realizations in the
sequence of system sizes. In other words, the dimension of the
Hilbert space is approximately exponential in the system size L

as D ∼ Lβu,v . Assuming the power-law behavior σ�A ∝ D−e

of the EEV fluctuations (with e = 1
2 for nonintegrable models),

we find that this quantity scales exponentially in the system
size as σ�A ≈ const × (2πL)e/2(ζf )−eL, where

ζf ≡(βu,v)1/u=
{

1/f f (1 − f )1−f (XXZ model)

(1 + f )1+f /f f (Bose-Hubbard model)

(C4)
in terms of the filling fraction f .
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