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Statistics of shocks in a toy model with heavy tails
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We study the energy minimization for a particle in a quadratic well in the presence of short-ranged heavy-tailed
disorder, as a toy model for an elastic manifold. The discrete model is shown to be described in the scaling limit
by a continuum Poisson process model which captures the three universality classes. This model is solved in
general, and we give, in the present case (Frechet class), detailed results for the distribution of the minimum
energy and position, and the distribution of the sizes of the shocks (i.e., switches in the ground state) which
arise as the position of the well is varied. All these distributions are found to exhibit heavy tails with modified
exponents. These results lead to an “exotic regime” in Burgers turbulence decaying from a heavy-tailed initial
condition.
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I. INTRODUCTION AND MODEL

Strongly pinned elastic objects, such as interfaces, occur
in nature in the presence of substrate impurity disorder which
exhibits large fluctuations. The ground-state configuration is
determined by a competition between the energy cost of
deforming the interface and the energy gain in exploring larger
regions of disorder. In the well-studied case of Gaussian disor-
der, no impurity site particularly stands out and the optimum
arises from a global optimization. The typical interfaces are
rough, with nontrivial roughness exponents u ∼ Lζ , where u

is the deformation field and L an internal coordinate scale. The
total optimal energy H fluctuates from sample to sample with
another exponent H ∼ Lθ . For directed lines (i.e., internal
dimension d = 1) wandering in one dimension, ζ = 2/3 and
θ = 1/3, which in turn are related to the exponents of the
standard universality class for the Kardar-Parisi-Zhang growth
equation [1].

In some physical systems however, the picture is completely
different: a small fraction of the impurity sites produce a finite
contribution to the total pinning energy, and the interface is
deformed over large macroscopic scales, pinned specifically
on those particular regions. One can see realizations of that
situation in various areas such as transition in chemical reaction
of BZ type, or in granular flows [2]. One expects that the usual
critical exponents are modified, but much less is known in this
case, both about equilibrium (e.g., ground states) and about
nonequilibrium dynamics (e.g., depinning).

The present paper focuses on heavy-tailed disorder, which
is paradigmatic of that situation, and whose probability
distribution function1 (PDF), P (V ), shows an algebraic tail. In
terms of the cumulative distribution function (CDF), denoted
P<(V ) = ∫ V

−∞ P (V ′)dV ′, we have

P<(V ) � A

(−V )μ
for V → −∞. (1)

As was found in numerous works, such a scale-free distribution
often leads to behaviors dominated by rare events. They have
been much studied in the context of diffusion in random
media, where they generate anomalous diffusion [3]. More

1Also called probability density function below.

recently, heavy-tailed randomness was studied in the context
of spin glasses and random matrices [4,5]. For instance, in [6]
it was found that the PDF of the maximal eigenvalue of a
large random matrix with i.i.d. entries distributed as changes
from the standard Tracy-Widom distribution (the Gaussian
universality class) to a Frechet distribution as μ is decreased
below μ = 4.

Only a few works address the pinning problem in the
presence of heavy tails. In [6] it was argued, based on a
Flory argument, that for a directed polymer in the so-called
(1 + 1)-dimensional geometry (meaning internal dimension
d = 1 and displacement u ∈ RD with D = 1), for μ < 5 the
roughness and energy exponents at T = 0 change to ζ = (1 +
μ)/(2μ − 1) and θ = 3/(2μ − 1). For μ � 5 one recovers the
above-mentioned values for Gaussian disorder, i.e., the tails
have subdominant effect. While some mathematical results
are available for μ < 2 [7], little is presently known rigorously
for general μ or on the effect of a nonzero temperature on the
problem [8].

In this paper we solve the much simpler case of a particle,
which can be seen as the limit d = 0 of the elastic interface
problem. We consider the minimization problem:

H (r) = min
u

H (r,u) = H (r,u(r)), (2)

H (r,u) = m2

2
(u − r)2 + V (u), (3)

where V (u) is a random potential (a random function of
u) and we define u(r) = argminH (r,u) the position of the
minimum. The quadratic term confines the position u of
the particle and mimics the elastic term for interfaces (see
Fig. 1). More precisely, this model can be extended to an
interface in a quadratic well and there m sets an internal length
Lm = 1/m [9]. The PDF of u(r) − r and H (r) − H (r) (where
we denote by · · · the average over the disorder) are independent
of r if V (u) is statistically invariant by translation. Hence one
can again define the exponents, as m → 0 (see Sec. II A for
more details):

u(r) − r ∼ m−ζ , H (r) − H (r) ∼ m−θ . (4)

This “toy model” has been much studied in the context of
disordered systems for Gaussian disorder. It also appears in the
context of the decaying Burgers equation with random initial
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FIG. 1. Particle in a random potential landscape confined by an
elastic force (i.e., a quadratic potential centered at r). u(r) is the
position with minimal total energy H (r). Its fluctuations from sample
to sample scale as um ∼ m−ζ .

conditions, in the limit of vanishing viscosity (see Appendix A
for details of the mapping). The case of short-range correla-
tions corresponding to a short-range potential V (u) was solved
in the seminal paper of Kida [10]. An elegant derivation using
replica was also given in [11]. Other derivations are given
in [12] (Appendix J) and [13] (Appendix A). The case of
Brownian correlations for V (u) is related to the Sinai model
studied in [12,14–18]. Other type of correlations have been
studied in [19–23].

Here we consider the case where (i) correlations of V (u)
are short range and (ii) the PDF of V (u) contains heavy tails.
We then ask how the exponents and the PDF of u(r) and
H (r) depend on the heavy-tail exponent μ. Another interesting
observable are the jumps of the process u(r). Indeed in the limit
of small m the process u(r) consists mostly of jumps called
“static avalanches” or shocks (see below), and one defines the
shock sizes s = u(r+) − u(r−).

To be specific we solve here two variants of the model as
follows.

(i) The discrete model: one starts with u on a discrete
lattice and i.i.d. random variables V (u). In the limit m → 0 by
rescaling the position u the process converges to a continuum
limit.

(ii) The second is defined directly in the continuum for u:
there V (u) is defined as a Poisson point process.

Both models enjoy the same universal scaling limit.
In the absence of the quadratic well, H = minu V (u) and

the discrete problem reduces to the standard extreme value
statistics problem. It must then be defined for a fixed system
size u = 1, . . . ,N . For i.i.d. random variable (or weakly
correlated ones) H then grows to infinity with the system
size N and, after a proper rescaling, the PDF of aNH + bN

converges to one of the famous three universality classes [24]:
(i) Gumbel when P (V ) decays faster than a power law;
(ii) Frechet of index μ when P (V ) decays as a power law (1),
and Weibull when P (V ) vanishes below some threshold (e.g.,
for V < 0). In the presence of the confining quadratic well,
the same three classes survive: the Kida case belongs to the
Gumbel class, while the heavy tail case belongs to the Frechet
class. There are, however, some different universal features,

such as the exponents and the distributions of shock sizes and
minimum position.

In this paper we derive a general formula for the PDF of
the position of the minimum u(r), and for the distribution
of the shock sizes s. Although our formula is valid for the
three universality classes, we give a detailed calculation in the
case of the Frechet class with power-law exponent μ. We find
that both distributions exhibit algebraic tails with modified
exponents. These results are extended to space dimension
D > 1.

Note that some of our results were anticipated in the
context of the decaying Burgers equation. In [25] Bernard and
Gawedzki looked for universality classes distinct from Kida
for statistically scale-invariant velocity fields: they focused on
the Weibul class and called it an “exotic regime” for Burgers
turbulence. In [26], a more general study was presented,
encompassing the three regimes. However, in none of these
works the distribution of the shock sizes was obtained. The
present work thus gives results on another exotic regime for
decaying Burgers turbulence.

Note that the nonequilibrium version of this toy model,
where one studies the dynamics of a particle pulled quasistat-
ically by the harmonic well in the random potential V (u) was
studied in [27]. The three universality classes were also found
to appear, and the distribution of the avalanche sizes were
obtained for the three classes.

In Sec. II, we solved the discrete toy model and obtain the
joint PDF of the energy and the position in the small m limit. In
Sec. III we consider the Poisson process model, and derive the
shock size distribution. In Sec. IV, we consider the discrete toy
model in higher dimension. Finally, in Sec. V, we discuss the
case of a more general elastic manifold of internal dimension d

using Flory arguments. The Appendixes contains the mapping
to Burgers, and mode details.

II. FROM THE DISCRETE MODEL TO THE CONTINUUM:
ONE-POINT DISTRIBUTIONS

A. Scaling exponents and dimensionless units

We now start from the discrete model where u ∈ Z and
V (u) are i.i.d. random variables drawn from the distribution
P (V ). We show that one obtains a nontrivial continuum
limit in the limit m → 0 upon rescaling of u (in what we
call dimensionless units below). This procedure makes the
universality appear clearly.

Let us study first the one-point distributions. For that
purpose we can set r = 0 and consider H = H (r = 0). The
probability that the minimum total energy H is attained in
position u with a value of the disorder V is equal to the
product of (i) the probability P (V ) of having V in u and
(ii) the probability to have higher total energies on all the other
sites u′ �= u. It is thus given by the infinite product:

p(u,V ) = P (V )
∏
u′ �=u

P>

(
H − m2u′2

2

)
. (5)

To study the limit of small m, it is convenient in the follow-
ing to absorb the dependence with m in the units (um,Hm,Vm)
defined for the variables (u,H,V ), respectively. One can then
recover the dimensionful results by the substitution in all
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dimensionless results:

u → u/um = mζu,

V → V/Vm = mθV,

H → H/Hm = mθH.

Except if stated, we work now in the dimensionless system of
units defined above. Without loss of generality, A in Eq. (1)
has been set to 1 by a rescaling of V .

At this stage the exponents θ and ζ are not specified. To
obtain a nontrivial limit one needs to scale V as m2u2 which
imposes the exponent relation:

θ = 2ζ − 2, (6)

which is known in the directed polymer context as the STS
relation [28].

The joint PDF Eq. (5) for the optimal position u and the
value of the random potential V on the optimal site then
becomes, in the small m limit,

p(u,V ) = m−ζ−θP (m−θV )
∏
u′ �=u

P>

[
m−θ

(
H−u′2

2

)]

≈ μ

|V |1+μ
exp

{
−

∫
du′m−ζ P<

[
m−θ

(
H−u′2

2

)]}

×θH<0

≈ μ

|V |1+μ
exp

(
− Fμ

∣∣∣∣V + u2

2

∣∣∣∣
1
2 −μ)

θ
V + u2

2 <0
, (7)

where H = V + u2

2 and we denote everywhere θx<0 the
characteristic function of the interval (Heaviside function).
Here and below we denote

Fμ =
√

2π�[μ − 1/2]

�[μ]
. (8)

The joint PDF of u and H is simply p(u,V = H − u2

2 ). Going
from the infinite product to the exponential in the second line
of Eq. (7) requires that P>(·) ∼ 1 at all sites, or equivalently
H < 0, which is verified for m small enough. The final
expression for the joint PDF Eq. (7) is normalized to unity∫

dV dup(u,V ) = 1, which shows that we have correctly
taken the small mass limit (no regions have been overlooked).
More precisely, and as is further explained in Appendix B, as
m → 0 (the continuum limit), the rescaled cumulative (CDF)
m−ζ P<(m−θy) converges to θ−y

(−y)1+μ [under the condition that

the right tail is in o(V −(1+μ)); cf. Appendix B]. Hence
only the contribution of the left tail of P<(·) contributes
to the integral in Eq. (7), a typical behavior in power-law
statistics, and one can readily replace P<(·) by its asymptotic
expression (such estimates can be established rigorously by
the use of Tauberian theorems [29]). This implies the second
relation:

ζ = μθ, (9)

which leads to

ζ = 2μ

2μ − 1
, (10)

θ = 2

2μ − 1
. (11)

One could wonder about the existence of a threshold value
μc above which the algebraic decay of the tails is fast enough
to recover the behavior in the Gaussian disorder ζ = ζSR and
θ = θSR (where SR stands for short-range Gaussian disorder).
One notes that, unlike the directed polymer (see Sec. V), such
a finite critical value μc for the disorder tail doesn’t exist. In
other words, any power-law tail matters. More precisely, one
can say that μc = +∞. In that limit, indeed, ζ → 1 which is
the value for the Gumbel class [12]. There is an interesting
crossover in that limit where the leading contribution goes
from the bulk of P (V ) (as is the case for the Gumbel class) to
the tail (for the present power-law case).

B. Results for the one-point distributions

From Eq. (7), one can obtain the joint distribution of (H,V ).
Taking into account the Jacobian ∂(u,V )

∂(H,V ) = [
√

2(H − V )]−1/2

and a factor of 2 from integration over positive and negative u

yields

p(H,V ) = μ
√

2

|V |1+μ
√

H − V
e−Fμ|H | 1

2 −μ

θH<0,V <H . (12)

After integration, one obtains the various marginal distribu-
tions of H , V , and u. First we obtain

p(H ) =
(
μ − 1

2

)
Fμ

|H |μ+ 1
2

e−Fμ|H | 1
2 −μ

θH<0. (13)

Hence the PDF of the total energy H is a Frechet distribution.
On one hand, this appears as natural since we are dealing with
extreme value statistics of heavy-tailed distributions. However,
the index of the Frechet distribution is not μ (as would be
naively expected) but μ − 1/2, which is thus a correction
coming from the competition with the elastic energy. As the
particle chooses amongst the deepest sites, the distribution of
its energy acquires a power-law tail which is even broader than
the initial disorder. It is easy to extend the above calculation to
a generalized elastic energy growing as uα , the modified index
being then μ − 1/α.

Next we also obtain the PDF of the potential V at the
position of the minimum as

p(V ) = μ

|V |μ+1
φμ(|V |)θV <0, (14)

where we have defined the auxiliary function:

φμ(x) =
√

2
∫ x

0

dy√
x − y

e−Fμy
1
2 −μ

. (15)

Note that the factor φμ(|V |) gives the relative change of the
tail of the PDF of the potential at the optimal site with respect
to the tail of the original PDF of the disorder. For |V | of order
one it is of order one; hence the original tail exponent is not
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THOMAS GUEUDRÉ AND PIERRE LE DOUSSAL PHYSICAL REVIEW E 89, 042111 (2014)

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0 u

0.001

0.01

0.1

1

P(u)

FIG. 2. (Color online) Comparison of the PDF for the position u

as given in Eq. (17) (black dashed lines) with numerical simulations
(red solid lines). The algebraic tails are clearly distinguishable as
straight lines on the semilogarithmic plot. From the narrowest shape
to the broadest (corresponding to the fatter tails), μ = 15, 10, and 4.
The sample size is N = 5 × 105.

changed, but the amplitude is changed.2 For large negative V ,
it diverges; hence we find

p(V ) � 2
√

2μ

|V |μ+ 1
2

, V → −∞, (16)

which is again the original tail but with the same shift in
the exponent μ → μ − 1

2 as noticed above, and a different
amplitude. This surprising shift can be recovered by invoking
results from record statistics theory. Consider a realization
of the disorder with a particularly deep minimum, where the
particle sits. From record statistics, it is known that the tail of
the minimum of N heavy-tailed random variables decays as
∼ N

V 1+μ . Balancing elastic energy and potential leads to E ∼
uα ∼ V , and then to N ∼ u ∼ V 1/α . Hence the dependence
of N with V , inherent to the fact that large deviations in the
disorder allows the particle to explore a larger space, leads to
a modified exponent μ − 1/α of the tail of H and V .3

Finally we obtain the PDF of the optimal position u of the
particle as

p(u) = μ ψμ

(
u2

2

)
(17)

in terms of the auxiliary distribution:

ψμ(x) =
∫ ∞

0

dy

(x + y)μ+1
e−Fμy

1
2 −μ

. (18)

The PDF of u decreases from a constant at u = 0 to a power
law at large u. The position of the particle is thus heavy tailed
as well as its PDF decays as

p(u) � 2μ

u2μ
, |u| → +∞. (19)

2One should keep in mind that here V denotes the dimensionless
potential; hence it is deep in the tail, since we use units of Vm ∼ m−θ .

3We thank Jean-Philippe Bouchaud for helping to set up this
argument.

The moments u2n thus exist only for 2n < 2μ − 1 and are
given in Appendix C. The comparison with numerics is made
in Fig. 2. Finally, note that for μ < 1

2 the particle explores the
whole space u ∼ W , as the energy of the optimal site ∼u1/μ

grows faster than the elastic energy ∼u2.
We note that the PDF of the “elastic energy” E = u2/2 has

also a tail:

p(E) � 1√
2

1

E
1
2 +μ

, (20)

with exponent μ − 1
2 analogous to Eq. (16) for large values.

To conclude, the typical H,V of order one are already drawn
in the original tail of P (V ) with exponent μ (since we work in
the units m−θ ) and the rare events acquire a tail with exponent
μ − 1

2 .

III. STATISTICS OF THE SHOCKS

As the center of the harmonic potential r is shifted, the
optimal position u(r) of the particle is changed as shown in
Fig. 3. This corresponds to a jumpy motion of the particle;
each jump is called a shock because corresponding to traveling
shocks in the Burgers velocity field (see Appendix A). We now
introduce the Poisson process model.

A. General case

1. Poisson process model and one-point distribution

The computation on the discrete model being rather
cumbersome, we follow [25] and start directly in the
continuum by distributing the random energies over the
line as a Poisson process over the plane (V,u) of density
f (V )dV du. Each cell of size dV du is then either occupied
or not, depending on the value of the random potential Vi at
site ui . This means that the potential is defined only at the ui

with values V (ui) = Vi and that

H (r) = min
j

Hj (r) = min
j

(
Vj + (uj − r)2

2

)
, (21)

u(r) = argminHj (r). (22)

u

V(u)

u*r1 r2u1 u2

V1

V2

FIG. 3. Parabola construction for the minimization problem:
when the center r of the parabola is shifted from r1 to r2, the
position of the particle moves from u1 to u2. For given r1 and r2,
the intersection of both the parabola is called u∗. More details are
displayed in Appendix E.
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We denote the primitive F (x) = ∫ x

−∞ f (t)dt and assume that
F (+∞) = +∞. We now calculate, using methods similar to
the one of [25], the one- and two-point characteristic function
of the field u(r).

For the one-point function we can choose r = 0, and define
u = u(0). Using formulas similar to Eq. (5) we find for the
joint distribution of position and potential at the minimum

p(u,V )dV du

= f (V )dV du
∏

dV ′du′

(
1 − θ

V ′+ u′2
2 <V + u2

2
f (V ′)dV ′du′).

(23)

From the infinitesimal version of Eq. (5), and after the
change of variables z = u′, φ = V + u2

2 , the one-point distri-
bution of the position of the minimum can be expressed as

p(u) =
∫

dφ f

(
φ − u2

2

)
exp

[
−

∫
dz F

(
φ − z2

2

)]
.

(24)

It is easy to check the normalization
∫

dup(u) = 1 by noting
that the integral is a total derivative. This result is valid for
arbitrary Poisson measure f (V ). As we discuss below one can
recover the results of the previous section in a particular case.

2. Shock and droplet size distributions

To describe the statistical properties of the jumps of the
optimal position u(r) of the particle as r is varied one defines
the shock density as

ρ(s) = lim
δr→0+

1

δr
δ[u(r + δr) − u(r) − s]. (25)

Another definition, equivalent in the present case, uses the
decomposition

u(r) =
∑

i

siθr>ri
+ ũ(r), (26)

where ũ(r) is the smooth part of the field u(r), which, for the
Poisson process model can be set to zero. For other models in
the same universality class this part is subdominant. The shock
density is then defined as [9]

ρ(s) = δ(r − ri)δ(s − si), (27)

where the (ri,si) are the positions and sizes of the shocks. Note
that all the si > 0.

The shock density is intimately related to another quantity,
the droplet density D(s), namely the probability density for
the total energy Hj (r) in (21) for a given r , to exhibit two
degenerate minima at positions u1 and u2, separated in space by
s = u2 − u1 (see Fig. 4). By construction D(s) is a symmetric
function D(s) = D(−s) and has dimension 1/(sE), where
E is an energy. More precisely, it is defined as D(s) =∫

du1du2δ(s − u2 + u1)p(u1,u2,0), where p(u1,u2,E) is
the probability density for the absolute minimum in u1 and
the secondary minimum in u2 separated by E > 0 in energy.
Note that the knowledge of this function allows one to study
more generally the statistics of several interesting observables
(e.g., the position u) at low (but nonzero) temperature (for
more details of the procedure, see, e.g. [12,30]).

u

s

V(u)

rsu1 u2

V1

V2

FIG. 4. Discontinuous motion of the particle can be decomposed
in shocks. Those shocks occur (here in rs) while the parabola is shifted
and touches the potential at two positions u1 and u2, as depicted. The
size of the shock is denoted s = u2 − u1.

As before, we denote the minimal total energy φ =
H (u1) = H (u2). Requiring all the other sites to have higher
total energy induces a factor exp[− ∫

F (φ − z2/2)dz] similar
to Eq. (24). Then the integrated probability over the value φ of
the minimum and the positions u1 and u2 at fixed s = u2 − u1

lead to

D(s) =
∫

dφ du1du2f

(
φ − u2

1

2

)
f

(
φ − u2

2

2

)

× exp

[
−

∫
F

(
φ − z2

2

)
dz

]
δ(s − u2 + u1). (28)

The relation between the shock and the droplet density can
be written (see Ref. [12], Secs. IV B 5 and E 4) for s > 0:

ρ(s) = sD(s)θs>0. (29)

The factor s originates from the change of variable from energy
to position as ∂H

∂r
noting that a small change in the position of

the parabola around the point of degeneracy amounts to shift
the relative energies of the two states by

δH = δr × (u1 − u2). (30)

Using this relation, from Eq. (29) we now obtain the shock
density, which can be rewritten as, for s > 0,

ρ(s) = s

2

∫
dφ dz f

(
φ − (z − s)2

8

)

×f

(
φ − (z + s)2

8

)
e− ∫

dz′F (φ− z′2
2 ), (31)

where we denoted z = u1 + u2.
From the shock density one can define a normalized size

probability distribution as

ρ(s) = ρ0p(s), (32)

where
∫ ∞

0 ds p(s) = 1 and ρ0 is the total shock density. The
density ρ(s) satisfies the following “normalization” identity:∫ ∞

0
ds s ρ(s) = 1, (33)
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which expresses that all the motion occurs in the shocks.
Similarly D(s) satisfies

∫ +∞
−∞ ds s2D(s) = 2. This identity,

proved in Appendix D, is a signature of the STS relations
which originate from the statistical translational invariance of
the problem.

As a consistency check, ρ(s) can also be extracted from
the small separation behavior of the two-point characteristic
function of the position field u(r), for r > 0:

eλ[u(r)−u(0)] = 1 + r

∫ ∞

0
ds ρ(s)(eλs − 1) + O(r2). (34)

The calculation of this function is more cumbersome and
displayed in Appendix E. As shown there, by identification
in the above formula one recovers Eq. (31).

B. Scale invariance and universality classes

From Eq. (31), one can read the distribution of the shock
sizes for any disorder in the continuum Poisson process model.
For this model to be a “fixed point” (i.e., continuum limit) of a
more general class of models (e.g., the discrete model studied
in Sec. II as m → 0) one should in addition require scale
invariance. Then, similar to the usual problem of extremal
statistics [31], and to the problem of the driven particle [27],
three different classes of universality emerge. The nice feature
of the Poisson process model is that it contains the three scale-
invariant models.

1. Three universality classes

Let us consider again the minimization problem (22) in a
dimensionful form:

Hm(r) = min
j

(
Vj + m2 (uj − r)2

2

)
. (35)

Let us require that Hm(r) is scale invariant in law, i.e., that
Hm(m−ζ r) has the same distribution as m−θHm=1(r), possibly
up to an additive constant in H . One easily sees that it implies
that f (mθV ) = m−(θ+ζ )f (V + Cm) and the STS exponent
relation (6). There are three type of solutions.

(i) The “Gumbel” class, where the disorder left tail is
exponentially fast decaying. This case corresponds to the
well-known Kida statistics of the Burgers equation [10], and
is obtained for a Poisson density f (φ) = eφ with the density
of shocks:

ρ(s) = 1

2
√

π
s e−s2/4. (36)

(ii) The “Weibull” class, where the disorder is bounded
from below. It corresponds to the Poisson process model
with f (φ) = 1

φ1+μ θφ>0 with −∞ < μ < −1. This model was
studied in [25].

(iii) The “Frechet” class, the focus of the present paper,
where the disorder presents an algebraic left tail, accounting
for rare but large events. It corresponds to the choice f (φ) =

1
|φ|1+μ θφ<0. As discussed above, this choice represents the
continuous limit of the system defined in Sec. II.

Note that in all three classes the exponents are given by (10),
the Gumbel class corresponding to μ = +∞ (with additional
logarithmic corrections in that case).

0.1 0.2 0.5 1.0 2.0 5.0 10.0
s

10− 5

0.001

0.1

ρ(s)

FIG. 5. (Color online) PDF ρ(s) of the shock size, plotted from
Eq. (37) for μ = 3/2. In black dotted lines are the asymptotics for
small and large s as given by Eqs. (38) and (39).

We now study in more detail the distribution of shock
sizes in the Frechet class, and compare to the classical Kida
statistics.

2. Shock size distribution in the Frechet universality class

Let us consider the Poisson process model with the choice

f (φ) = μ

(−φ)1+μ
θφ<0,

F (φ) = 1

(−φ)μ
θφ<0 + ∞ × θφ>0.

With this choice one sees that Eq. (24) for p(u) for the Poisson
model becomes identical (identifying y = −φ) to Eq. (17) for
the discrete model with the same constant Fμ given by (8).
Note that the exponential factor in Eq. (24) vanishes if φ > 0;
hence the φ integration is in effect restricted to φ < 0.

We now consider the shock size distribution from Eq. (31):

ρ(s) = μ2s

∫ ∞

0
dz

∫ 0

−∞
dφ exp(−Fμ|φ| 1

2 −μ)

×
[(

(z + s)2

8
− φ

)(
(z − s)2

8
− φ

)]−(1+μ)

(37)

and we assume here μ > 1/2. This distribution is plotted
Fig. 5.

This function does not exhibit any divergence for small
shock sizes, rather it behaves similarly to the Kida distribution
at small s with

ρ(s) � Cμs (38)

and the constant Cμ is displayed in Appendix F. The main
difference arises in the behavior of the large shocks. Instead of
the exponential tail e−s2/2 in the Kida case, it shows algebraic
tails of the form (see Fig. 5)

ρ(s) � 22+μμ

sτ ′ for large s, (39)
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with the decay exponent τ ′ for the right tail:4

τ ′ = 1 + 2μ. (40)

To obtain this result from Eq. (37) one notes that it is the
region for z near s which contributes most; hence one shifts
z → z + s in Eq. (37) and replaces 1

8 (z + 2s)2 − φ → s2/2
in the first factor. The remaining integral can be extended
from z ∈ [−∞,∞] and can then be performed exactly, being
related to the normalization of the distribution p(u) of a single
minimum (17): one uses

∫
dz ψμ(z2/8) = 2/μ. Note that

since we assumed μ > 1/2 it implies that τ ′ > 2; hence the
integral (33) exists, as required. However, the second moment
of the shock size,

∫ +∞
0 ds s2ρ(s), is finite only for μ > 1.5

Finally, it is useful to recall for comparison the avalanche
size distribution for the nonequilibrium version of this model,
i.e., the quasistatic depinning. There the jumps occur between
the metastable states actually encountered in the driven
dynamics as r increases, which are different from the absolute
energy minima. The result of [27] for the Frechet class for the
normalized distribution is

p(s) = (α + 1)(α + 2)

�
(
2 + 1

α

)
∫ +∞

0

dy

(y + s)3+α
e−y−α

, (41)

where the local disorder force is short-range distributed with
a heavy-tail index μ = 1 + α. The large s behavior is also a
power law p(s) ∼ s−(2+α) ∼ s−(1+μ).

IV. MODEL IN DIMENSION D > 1

The methods of solution presented in the previous sections
can be extended to the toy model of the particle (i.e., d = 0)
in general (external) space dimension u ∈ RD . The position of
the minimum when the quadratic well is centered in r ∈ RD is
now denoted as u(r), a vector process which exhibits jumps;
in fact it is constant on cells in RD , separated by shock walls
with discontinuities where it jumps by s. To generalize most
of the calculations one must simply replace the integrals over
the spatial variable u by integrals over vectors u. The new
scaling exponents necessary to retain invariance of the tail of
the potential are

ζ = 2μ

2μ − D
, (42)

θ = 2D

2μ − D
, (43)

which reduce to Eq. (10) for D = 1 and still satisfy the
relation (6). Let us first discuss one-point probabilities, hence
setting r = 0.

4We use the notation τ ′ to distinguish from the exponent for the
divergence of small shocks usually called τ .

5In the functional RG this quantity equals −�′(0+)/m4, while the
second moment of p(u) in Eq. (17) is m2u2 = �(0) (which exists
only for μ > 3/2), where �(u) is the correlator of the renormalized
disorder (see [9,12] for definitions).

A. One-point distribution

Due to the rotational invariance of the elastic energy, one
readily obtains the joint distribution:

p(u,V ) = μ

|V |1+μ
e−Fμ,D |H | D

2 −μ

θH<0, (44)

where H = V + u2

2 . It is normalized to unity∫
dDu dV p(u,V ) = 1 and we have defined

Fμ,D = SD2D/2−1 �[D/2]�[μ − D/2]

�[μ]
, (45)

where SD is the surface of the unit sphere in dimension D

(S1 = 2). From this we extract the joint distribution of V and
H as

p(V,H ) = SD2
D
2 −1(H − V )

D
2 −1 μ

|V |1+μ
(46)

× exp
( − Fμ,D|H | D

2 −μ
)
θH<0,V <H , (47)

which exhibit a “level repulsion” between H and V for D > 2.
The marginal distribution for H is again a Frechet with

index now μ − D
2 :

p(H ) =
(
μ − D

2

)
Fμ,D

|H |μ− D
2 +1

e−Fμ,D |H | D
2 −μ

θH<0, (48)

while the PDF of V takes the form

p(V ) = μSD

21−D/2|V |μ+1
φD

μ (|V |)θV <0, (49)

where we have defined

φD
μ (x) =

∫ x

0

dy

(x − y)1−D/2
e−Fμ,Dy

D
2 −μ

. (50)

Finally, the distribution of the optimal position is

p(u) = μ ψD
μ

(
u2

2

)
, (51)

where

ψD
μ (x) =

∫ ∞

0

e−Fμ,Dy
D
2 −μ

(x + y)μ+1
(52)

and, interestingly, the tail exponent of P (u) is independent
of D:

p(u) � 2μ

u2μ
, |u| → +∞, (53)

while the PDF for the radius |u| decays as �2μSD/|u|2μ+1−D .
Note that the condition for the thermodynamic limit to be

defined is now μ > D
2 , as the typical minimum site energy at

a distance u of the center grows as uD/μ.

B. Droplet and shock densities

Note that the formula for the droplet density also general-
izes easily in D dimension as

D(s) =
∫

dφ dDu1d
Du2f

(
φ − u2

1

2

)
f

(
φ − u2

2

2

)

× exp

[
−

∫
F

(
φ − z2

2

)
dz

]
δD(s − u2 + u1), (54)
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where �s is the vector joining the two degenerate minima. It is
now normalized as ∫

dDs s2D(s) = 2D (55)

as shown in Appendix D. The shock density is now defined by
reference to a direction of unit vector ex as

ρ(s) = lim
δr→0+

1

δr
δD[u(r + δrex) − u(r) − s]. (56)

Since Eq. (30) generalizes to δH = δrex · (u1 − u2), one sees
that the relation between the shock and droplet densities is
now

ρ(s) = sxD(s)θsx>0, (57)

where sx = s · ex denotes the component of the jump along the
direction x.

Using isotropy it now enjoys the normalization∫
sx>0

dDs sxρ(s) = 1, (58)

which, again, expresses that all motion when r varies along a
line occurs in shocks. Note that the relation Eq. (57), combined
with the isotropy of D(s) implies a number of relations6

between moments, for instance,〈
s2
x

〉 = 2
〈
s2
y

〉
, (59)

as well as 〈s4
x〉 = 8

3 〈s4
y〉 = 4〈s2

xs
2
y〉 and so on provided these

moments exist, i.e., that the tail of D(s) decays fast enough.7

It is interesting to note that Eqs. (54) and (57) factorize in
the Kida (i.e., Gumbel) universality class [i.e., with the choice
f (φ) = eφ] leading to the simple result, after some Gaussian
integrations:

ρ(s) = sx

(4π )
D
2

e−s2
x /4e−s2

⊥/4, (60)

where we denote s = (sx,s⊥) and s⊥ represents the “wander-
ing” part of the shock motion, transverse to the shift direction
of the parabola. For instance, in two dimension s = (sx,sy),
Eq. (60) reads ρ(s) = ρD=1(sx)DD=1(sy). Hence, in the Kida
case, higher dimension statistics of the shocks are completely
solved from the D = 1 case.

The Frechet case, however, does not simplify as nicely. One
now obtains

ρ(s) = μ2 sx

2D

∫ ∞

0
dDz

∫ 0

−∞
dφ exp

( − Fμ,D|φ| D
2 −μ

)

×
[(

(z + s)2

8
− φ

)(
(z − s)2

8
− φ

)]−(1+μ)

(61)

6These are easily shown, e.g., by integrating with respect to
D(s) → e−μs2

, since any isotropic distribution can be represented
as a superposition of such weights.

7The relation (59) is believed to be more general (i.e., to extend to
interfaces) and was anticipated in [32], where it was related via the
functional RG to the existence of a cusp in the effective action of the
theory (see also [33]).

and we assume here μ > D/2. The tail for large s = |s| is
obtained, by manipulations similar to the case D = 1 as

ρ(s) � 22+μμsx

s2+2μ
for large s. (62)

Interestingly, going to higher dimensions allows the fluctua-
tions of the particle motion to spread even more. To illustrate
that fact one can compute the marginal shock density along ex

defined as

ρ(sx) =
∫

s⊥
ρ(s) = sxθsx>0

∫
s⊥

D(s). (63)

After some integrations from Eq. (61) one finds

ρ(sx) = μ2F 2
μ+1,D−1sx

∫ ∞

0
dz

∫ 0

−∞
dφ e−Fμ,D |φ| D

2 −μ

×
[(

(z + sx)2

8
− φ

)(
(z − sx)2

8
− φ

)]−( 3−D
2 +μ)

.

(64)

Hence a formula very similar to Eq. (37), but with a modi-
fied exponent μ̃ = μ − (D − 1)/2, leading to an asymptotic
algebraic decay of the shock size along x with exponent
τ ′ = 2 − D + 2μ. The thermodynamic condition μ > D/2
again ensures that the normalization integral (58) exists.

V. ELASTIC MANIFOLDS: RECALLING THE GENERAL
FLORY ARGUMENT

We now check that the obtained values for the exponents
agree with the general argument. For this we now recall the
Flory argument given in [6] for the directed polymer, which we
straightforwardly generalize to a manifold of internal dimen-
sion d (internal coordinate x ∈ Rd ) with D displacement com-
ponents u ∈ RD . We consider that the random potential V (x,u)
lives in a total embedding space dimension d + D and has
short-range correlations with a heavy-tailed PDF (1) indexed
by μ. Assume that a piece of size L (in x) explores typically
W ∼ Lζ in dimension D. The volume explored by the mani-
fold is LdWD; hence the minimal value of V on this volume
behaves as ∼(LdWD)1/μ. This leads to μθ = d + Dζ . Impos-
ing again that elasticity and disorder scale the same way (this
is guaranteed by the general STS symmetry, i.e., statistical in-
variance under tilt) leads to θ = 2ζ + d − 2. Hence we obtain

ζ = d + μ(2 − d)

2μ − D
, (65)

θ = 2d + D(2 − d)

2μ − D
, (66)

with the (naive) threshold value beyond which one
(presumably) recovers Gaussian disorder universality class:

μc = d + DζSR

d − 2 + 2ζSR

, (67)

where ζSR is the roughness exponent for short-range Gaussian
disorder. For d = 0 one recovers the above values Eq. (42) and
Eq. (43) for the toy model in general dimension D. For d = 1,
ζSR = 2/3 and θSR = 1/3, which gives the value μc = 5
given in [6] and recalled in the Introduction. It is interesting
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to note that at the upper-critical dimension duc = 4, ζSR = 0;
hence the critical value is μc = 2.

VI. CONCLUSION

In the present paper we have studied the toy model for
the interface, i.e., a point in a random potential, in presence
of heavy-tailed disorder with exponent μ. In the scaling
regime it leads to a universality class analogous to the
Frechet class for extreme value statistics. It was found that
all the relevant distributions (minimum energy, position, and
sizes of shocks) exhibit also power-law tails with modified
exponents continuously dependent on μ. Hence the presence
of heavy tails in the underlying disorder pervades through
all observables and modifies the behavior for every value
of μ. That has to be compared with the directed polymer
problem, where the effect of heavy tails disappears in favor of
a “Gaussian” behavior for μ > 5.

In addition, we have obtained here the shock size distribu-
tion for an “exotic” example of decaying Burgers turbulence,
close from the Kida class because of the short-range correla-
tions in the initial potential, but markedly different because of
the heavy tails.

Finally, because of these heavy tails the functional RG
method which, in its present form, is based [12,27] on the
existence of the moments of the position of the minimum
u(r) cannot be applied in a standard way (at least in d = 0).
We hope our study will inspire progress on the more general
problem of the elastic manifold in the heavy-tailed disorder.
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APPENDIX A: EXOTIC REGIME IN DECAYING
BURGERS TURBULENCE

The above particle model is directly related to the Burgers
equation for a velocity field v(r,t), a simplified version of
Navier-Stokes used to model compressible fluids:

∂tv = ν∂2
r v − 1

2∂rv2. (A1)

This equation can be integrated using the Cole-Hopf transfor-
mation. Here we study only the inviscid limit (of zero viscosity
ν = 0+). In that case the solution is given by

v(r,t) = ∂rH (r) = r − u(r)

t
. (A2)

In terms of (3) one defines the “time” t as

t = m−2 (A3)

and the initial condition

v(r,t = 0) = ∂rH (r)|t=0 = ∂rV (r), (A4)

where V (u) is the bare disorder of the toy model. In this paper
we focused on the case when V (u) is short-range correlated
with a heavy tail. This corresponds to a well defined but
peculiar type of distribution for the initial velocity field: it
also has a tail exponent μ, but exhibits local anticorrelations
so that V (u) remains short-range correlated [if v(r,t = 0)
was short-range correlated with a heavy-tail distribution, that

would correspond to V (u) following a Levy process, either a
Brownian motion for μ > 2 or a Levy flight for μ < 2].

As is well known evolution from a smooth initial condition
presents shocks in finite time, i.e., the velocity field v(r,t)
does not remain continuous but presents (negative) jumps in a
discrete set of locations rα , where v(r+

α ,t) − v(r−
α ,t) = �v <

0. These correspond to the (positive) jumps in u(r), more
precisely one has �v = −S/t , where S is the dimensionful
shock size S = ums = m−ζ s with the dimensionless size s

studied in the present paper. To translate our results in terms
of velocity jumps in Burgers, one thus just identifies �v =
−t

ζ

2 −1s (indeed the length scale is m−ζ = t ζ/2), where ζ is
given by Eq. (42).

Finally, the time dependence of the mean energy density
E is given by E = 1

2 v2 ∼ t−(2−ζ ) = t−2(μ−D)/(2μ−D), which
recovers the result of [26]. Note that the regime D/2 < μ < D

is very peculiar since it predicts an energy density growing
instead of decaying, as discussed there.

APPENDIX B: FROM INFINITE PRODUCT TO INTEGRAL

To understand better the convergence to the continuum limit
let us first choose a Pareto distribution, i.e., with a hard cutoff,

P>(V ) =
(

1 − 1

(−V )μ

)
θV <V0 , (B1)

and consider again the infinite product Eq. (5). It can be
rewritten, in the rescaled units, i.e., u → m−ζ u, V → m−θV

as (taking into account the Jacobian involved in the rescaling)

p(u,V ) = m−(ζ+θ) μ

(m−θ |V |)1+μ
θV <V0mθ

×
∏
u′ �=u

θ

(
H − u′2

2
< V0m

θ

)
eln[1−mμθ (−H+ u′2

2 )−μ].

(B2)

We see here that for m → 0 it vanishes unless H − u′2
2 < 0

for all u′ �= u, but since in that limit the lattice grid tends
to continuum, this condition becomes equivalent to H < 0.
Since V < H we do not need to retain the constraint V < 0.
The infinite product becomes an integral, and the logarithm
can be expanded, leading to

p(u,V ) = μ

|V |1+μ
θH<0e

− ∫
du′(−H+ u′2

2 )−μ

,

which leads to the result given in the text.
The mechanism holds for more general distributions with

the same tail. As discussed in the text the rescaled P>(m−θy)
converges to unity for y < 0 and to zero for y > 0 so
the precise shape of the distribution does not matter. More
precisely, the weight of the events with H > 0 vanishes. To
illustrate the point consider the worst case, i.e., when P>(V )
is slowly decaying on the positive V side, e.g., as V −α . Then,
for H > 0 (and m → 0), there is an additional factor:

≈
∏
u′ �=u

θ
H− u′2

2 >0

m−αθ
(
H− u′2

2

)α �mαθe
− ∫ √

2H

−√
2H

du′ ln(H− u′2
2 ) = O(mαθ ),

since the integral is convergent, and this factor kills the contri-
bution of the events with H > 0 (more precisely all the events
with H > −m−γ with any 0 < γ < θ , in the original units).
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APPENDIX C: MOMENTS OF u

From Eq. (17) and Eq. (18), we find the moments, for any
real n > 0 such that 2n < 2μ − 1:

u2n = F
2n

2μ−1
μ

2n�
(
n + 1

2

)
�

(μ− 1
2 −n

μ− 1
2

)
�

(
μ + 1

2 − n
)

√
π�

(
μ + 1

2

) .

The 2nth moment thus diverges as n → μ − 1
2 |− as

u2n � 2μ

μ − 1
2 − n

. (C1)

APPENDIX D: NORMALIZATION OF THE SHOCK
DENSITY

A consistency check for the shock density is to check the
normalization given in Eq. (33), i.e.,

∫
ds s ρ(s) = 1. We recall

that

I =
∫

s>0
ds s ρ(s)=1

2

∫
s

s2D(s)=1

2

∫
du1du2dφ(u1 − u2)2

×f

(
φ − u2

1

2

)
× f

(
φ − u2

2

2

)
e− ∫

dz′F (φ− (z′ )2
2 ). (D1)

Due to the symmetry in the variables (u1,u2), one can only
consider, for example,

Iu1 =
∫

du1du2dφu2
1f

(
φ − u2

1

2

)

×f

(
φ − u2

2

2

)
e− ∫

dz′F (φ− (z′ )2
2 )

= −
∫

du1dφ u2
1f

(
φ − u2

1

2

)
∂φe− ∫

dz′F (φ− (z′ )2
2 )

=
∫

du1dφ u2
1∂φf

(
φ − u2

1

2

)
e− ∫

dz′F (φ− (z′ )2
2 ), (D2)

where we used the fact that, because of the limits f (φ) →
0 at φ → −∞ and F (φ) → ∞ at +∞, the boundary terms
vanish. Considering the argument φ − u2

1/2 in f (·), one has
the equivalence of the operators ∂φ ↔ −u−1

1 ∂u1 acting on f (·).
Switching to ∂u1 derivatives in Eq. (D2), and integrating by
parts once again,

Iu1 = −
∫

du1dφ u1∂u1f

(
φ − u2

1

2

)
e− ∫

dz′F (φ− (z′ )2
2 )

=
∫

du1dφ f

(
φ − u2

1

2

)
e− ∫

dz′F (φ− (z′ )2
2 ) = 1,

where again the boundary terms vanish due to f (φ − u2/2) →
0 for u → ±∞. Hence I = 1

2 (Iu1 + Iu2 ) = 1 and the nor-
malization is properly recovered. The deeper reason behind
these identities arises from the STS symmetry, i.e., the fact
that the disorder is statistically translationally invariant (see,
e.g. [12,30]).

Note that all the steps of this calculation easily generalize
to higher D, the only change being that now u2

1∂φ ≡ −u1 ·
∇u1 acting on f (φ − u2

1/2). The final result is then I = D as
discussed in the text.

APPENDIX E: TWO-POINTS FUNCTION

Let us consider the joint probability that (V1,u1) and
(V2,u2) realize the minimum total energy respectively when
the quadratic well is centered in r1 and when it is centered in r2,
in the same realization of the disorder. The minimal energies
are denoted by

Hj = Vj + (uj − rj )2

2
, j = 1,2. (E1)

This probability reads

p(V1,u1,V2,u2)dV1du1dV2du2

= f (V1)f (V2)dV1du1dV2du2

×
∏

dV ′
j ,du′

j

u′
1 < u∗

u′
2 > u∗

(
1 − θ

V ′
1+

(u′
1−r1)2

2 <V1+ (u1−r1)2

2

f (V ′
1)dV ′

1du′
1

)

× (
1 − θ

V ′
2+

(u′
2−r2)2

2 <V2+ (u2−r2)2

2

f (V ′
2)dV ′

2du′
2

)
, (E2)

where u∗ is the intersection abscissa of the two parabola, as
represented in Fig. 3 given by

H1 − (u∗ − r1)2

2
= H2 − (u∗ − r2)2

2
, (E3)

whose common value is denoted φ below. The additional
Heaviside functions ensure that the random potential lies above
these two parabola and touches those parabola on the two
points u1 and u2.

The characteristic function can then be written

〈eλ[u(r2)−u(r1)]〉=
∫

dV1dV2du1du2e
λ(u2−u1)

[
f (V1)δV2=V1,u2=u1

+ f (V1)f (V2)θu1<u∗<u2

]

× e− ∫
u<u∗ F (H1− (u−r1)2

2 )−∫
u>u∗ F (H2− (u−r2)2

2 ), (E4)

where the first term accounts for the contribution when there
is no shock between r1 and r2 and the second when there is at
least one. Let us now perform the change of variables:

x = r2 − r1

2
and y = u∗ − r1 + r2

2
,

z = u − r1 and z′ = r2 − u,
(E5)

z1 = u1 − r1 and z2 = r2 − u2,

φ = H1 − (x + y)2

2
= H2 − (x − y)2

2
.

Hence x + y = u∗ − r1 and x − y = r2 − u∗. In terms of the
auxiliary functions,

J+(φ,y,x) =
∫

z1�x+y

dz1f

(
φ + (x + y)2 − z2

1

2

)
e−λz1 ,

J−(φ,y,x) =
∫

z2�x−y

dz2f

(
φ + (x − y)2 − z2

2

2

)
e−λz2 ,

I+(φ,y,x) =
∫

z�x+y

dz F

(
φ + (x + y)2 − z2

2

)
,

I−(φ,y,x) =
∫

z′�x−y

dz′F
(

φ + (x − y)2 − z′2

2

)
,
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the characteristic function of the difference u(r2) − u(r1) takes
the form

〈eλ[u(x)−u(−x)]〉
=

∫
dφ dy[f (φ) + 2x e2λxJ+(φ,y,x)J−(φ,y,x)]

× exp[−I+(φ,y,x) − I−(φ,y,x)], (E6)

where the 2x = r2 − r1 factor comes from the Jacobian
dV1dV2du1du2 = 2x dφ du∗dz1dz2.

This formula generalizes to arbitrary f (φ) the one given
in [25] for a particular function f (φ). There it is given in terms
of the (scaled) Burgers velocity field v(r) = r − u(r). One
easily checks the normalization, i.e., that for λ = 0 Eq. (E6) is
a total derivative and integrates to unity.

It is now rather straightforward to expand this formula
to O(x) and to recover the expression for the shock

density ρ(s) given in the text using the identification
(34).

APPENDIX F: ASYMPTOTICS OF THE SHOCK DENSITY

The constant Cμ in the text can be obtained as

Cμ = μ(2μ − 1)(2π )
μ+1
1−2μ

3(4μ + 1)

×
(�(μ− 1

2 )
�(μ)

) 4μ+1
1−2μ �

(
2μ + 3

2

)
�

(
4 + 3

2μ−1

)
�(2μ + 2)

, (F1)

where Cμ is an increasing function which vanishes at μ =
1/2+ with an essential singularity Cμ � exp(− 3

4
2−ln(9/8)

μ− 1
2

) and

grows as Cμ � μ3/2

2
√

π
at large μ.
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