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Fluctuations in partitioning systems with few degrees of freedom
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We study the behavior of a moving wall in contact with a particle gas and subjected to an external force. We
compare the fluctuations of the system observed in the microcanonical and canonical ensembles, by varying the
number of particles. Static and dynamic correlations signal significant differences between the two ensembles.
Furthermore, velocity-velocity correlations of the moving wall present a complex two-time relaxation that cannot
be reproduced by a standard Langevin-like description. Quite remarkably, increasing the number of gas particles
in an elongated geometry, we find a typical time scale, related to the interaction between the partitioning wall
and the particles, which grows macroscopically.

DOI: 10.1103/PhysRevE.89.042105 PACS number(s): 05.70.−a, 05.20.−y, 02.50.Ey

I. INTRODUCTION

Macroscopic objects contain at least N = O(1020) parti-
cles; therefore, in the mathematical modeling, one can safely
assume N → ∞ and study their asymptotic features (e.g., the
thermodynamics limit). As a consequence of such a huge value
of N , up until a few decades ago statistical mechanics had been
devoted almost only to the study of systems with many degrees
of freedom [1]. In contrast, present day instrumentation allows
us to manipulate (and sometimes control) small systems at
the microscale and even the nanoscale; it is not necessary to
emphasize the practical relevance of small systems [2,3].

In order to deal with systems with a small number of
particles, say, O(102) or less, we are forced to (re)consider
in detail some aspects of statistical mechanics [4] that for
macroscopic bodies are not very relevant. For instance, in
large systems the fluctuations are always relatively negli-
gible and apparently irrelevant [5]. In a similar way, for
macroscopic objects, there are neither particular problems for
the definition of temperature [6] nor significant differences
using different statistical ensembles (e.g., microcanonical or
canonical).

Among the physical systems relevant for the nanosciences
we can mention the class of partitioning objects containing an
extra degree of freedom (a wall) that separates the system into
subsystems. A paradigmatic example is given by the adiabatic
piston [7–11]: a system of N particles of mass m (e.g., an

ideal gas) in a container of length L and cross section A,
separated in two regions by a movable wall (the piston) of
mass M . The walls of the container are supposed to be perfect
insulators preventing any mass or heat exchanges with the
exterior. Gas particles undergo purely elastic collisions with
the piston and the walls and the piston is constrained to move
along one axis. If at initial time the temperatures TL,TR and
pressures PL,PR in the left and right parts do not coincide,
the system shows a rather rich phenomenology (depending
on M/m, N/L, etc.) in the approach to the mechanical and
thermodynamic equilibrium.

A physical version of the adiabatic piston is a big Brownian
particle sliding along a microtubule filled with particles [12].
The authors of Ref. [12] showed how the presence of the wall
is able to induce, even in the equilibrium state, rather complex
(and slow) dynamical behavior.

Our paper is devoted to the statistical mechanics of a system
similar to a piston where particles are confined in a tube with
a nonfixed wall, on which an external force acts (see Fig. 1).
The pressure on the piston due to the interaction with the gas
particles on one side is balanced by the external force, so the
piston reaches a stationary state. We are interested in the study
of piston fluctuations (of position and velocity) around the
equilibrium state. In the case of noninteracting particles it is
possible to find in an exact way the equilibrium properties of
the system in both microcanonical and canonical ensembles
(this latter case is realized by putting a thermostat on the fixed
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FIG. 1. Sketch of the piston model. A gas of particles is confined
by a moving wall that is subjected to a constant external force.

wall, which thermalizes particles colliding with the wall). One
obtains that, even in the limit N � 1, the fluctuations of the
wall position are different in the canonical and microcanonical
ensembles. An important consequence of such a difference,
which holds also for the interacting particles, is that the
correlation function (of the velocity) C(t) must be different
in the two ensembles.

Numerical simulations show a nontrivial behavior of
C(t) with a negative minimum around a characteristic time
τ (N ) increasing linearly with N . A comparison between the
numerical results and an appropriate Langevin equation shows
how even for large N the presence of the wall has nontrivial
consequences that can have a role in an effective modeling of
the system.

The paper is organized as follows. Section II describes the
model in detail and presents the analytical results for the ideal
gas case. In Sec. III we report the results of molecular dynamics
simulations in the interacting case. Section IV is devoted to
the derivation of an effective Langevin equation for describing
the dynamics of the piston. In Sec. V a summary is given and
conclusions are drawn. Two Appendixes provide details about
the computations.

II. MODEL

We consider a two-dimensional system composed of a
gas of N pointlike particles with mass m, positions xi =
{xi,yi}, and momentum pi , with i = 1, . . . ,N , contained in
a rectangular box with one moving adiabatic wall of length
L (hereafter referred to as the piston). The position of the
piston is denoted by Y and its momentum and mass are P

and M , respectively (see Fig. 1 for a visual explanation).
An external force F = −F · ŷ, directed along the horizontal
axis ŷ, acts on the piston, which is also subject to the
collisions with the particles. In the tubular geometry that
we consider, in which the size of the system is increased
anisotropically only along one direction when adding particles,
the piston plays the role of a partitioning object with respect
to the particle gas, namely, its position determines the volume
available for the gas. This system has been studied in [6]
as an effective thermometer model. In the following the
particle-particle and particle-piston interactions are described
in a Hamiltonian (conservative) context and the piston can slide
without dissipation along the y axis. The case of dissipative

interactions, inducing nonequilibrium behaviors, of similar
systems have been studied, for instance, in [13–18].

We start by considering the case of a noninteracting gas, so
the Hamiltonian of the system reads

H =
N∑

i=1

|pi |2
2m

+ P 2

2M
+ FY, (1)

with geometrical constraints

Y > 0, 0 < xi < L, 0 < yi < Y. (2)

We are interested in the study of the behavior of fluctuations
for a varying number of gas particles and in particular in
the comparison between the microcanonical and canonical
ensembles. As shown in Appendix A, in the microcanonical
ensemble the temperature of the system is related to the energy
E of the system by the relation

kBT =
(

∂ ln �(E)

∂E

)−1

= E

2N + 3
2

, (3)

where

�(E) =
∫
H<E

dN x dN p dY dP (4)

is the phase space volume and kB the Boltzmann constant.
The static properties of this system, average position 〈Y 〉,
and variance σ 2

Y = 〈Y 2〉 − 〈Y 〉2 can be readily obtained (see
Appendix A), yielding

〈Y 〉 = (N + 1)kBT

F
, (5)

σ 2
Y = (N + 1/2)(N + 1)

2N + 5/2

(
kBT

F

)2

. (6)

Let us parenthetically remark on the definition of
temperature. Equation (3) is not a unique possibility; another
way is via the formula

kBT ′ =
(

∂ ln ω(E)

∂E

)−1

, (7)

where ω(E) = ∂�(E)
∂E

. There are cases in which T and T ′
can be different and in particular T ′ can be negative, e.g.,
in the case of point vortex systems [19]. On the other hand,
in a perfect gas it is easy to see that the two definitions are
equivalent for N � 1 since T − T ′ = O( 1

N
) [20]; this result

also holds for weakly interacting systems.
Analogous results can be obtained for the canonical case,

where the system is in contact with a reservoir at temperature
T . In this case, the energy of the system is

E = −∂ ln Z(β)

∂β
=

(
2N + 2

3

)
kBT , (8)

where

Z(β) =
∫

dNx dN p dY dP e−βH (9)
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TABLE I. Comparison of average position and variance in the
microcanonical and canonical ensembles.

Observable Canonical Microcanonical

temperature T E

2NkB

〈Y 〉 NkBT

F

E

2F
= NkBT

F

σ 2
Y

N(kBT )2

F 2
E2

8NF 2 = N(kBT )2

2F 2

and β = 1/kBT is the inverse temperature. The average
position and variance σ 2

Y read (see Appendix A)

〈Y 〉 = (N + 1)kBT

F
, (10)

σ 2
Y = (N + 1)

(
kBT

F

)2

. (11)

In order to compare the results for static quantities 〈Y 〉
and σ 2

Y in the two ensembles, for each temperature T in the
canonical ensemble we consider the corresponding energy in
the microcanonical, such that T = E/2NkB , in the limit of a
large number of particles N � 1. While the average position
is always the same, from Eqs. (6) and (11) one observes that
fluctuations differ by a factor 1/2, also in the large-N limit. In
Table I we summarize these findings.

The equivalence of ensembles in the thermodynamic limit
is expected only for average values and not for fluctua-
tions [4,21]. Indeed, the observed discrepancy is explained
by noting that the variance in the canonical ensemble can be
expressed as the sum of two contributions, namely, a term that
corresponds to the variance of the piston in the microcanonical
ensemble at fixed energy plus a term corresponding to energy
fluctuations at fixed temperature:

σ 2
Y (T ) = ασ 2

E(T ) + σ 2
Y (E)|E=〈E〉β , (12)

where α = 1/4F 2 + O(1/N) and σ 2
E = 〈H2〉 − E2. There-

fore, for N � 1, since σ 2
E(T ) ≈ 2N (kBT )2, one has σ 2

Y (T ) =
2σ 2

Y (E)|E=2NkBT .
Let us briefly digress on terminology. With the term “canon-

ical ensemble” we mean the system with the Hamiltonian in
Eqs. (1) and (2) (in the following we will include also the
interactions among the particles) interacting with a thermal
bath at temperature T . Noting that the pressure is nothing but
F/L, one can then say that we are dealing with an ensemble
at fixed temperature and fixed pressure for the system without
the terms FX and P 2/2M in the Hamiltonian [21]. In a similar
way our microcanonical ensemble corresponds to an ensemble
with fixed enthalpy for the system without the terms FX and
P 2/2M in the Hamiltonian. We prefer the terms canonical
and microcanonical because they put the dynamical variables
describing the wall on the same level as that for the particles.
Let us note that the mass of the piston is important for the
dynamical properties.

The above results on the fluctuations immediately produce
two important consequences on the dynamical correlations
in the two ensembles. First, notice that the finite value of
the variance σ 2

Y in both cases for finite N implies that the
diffusion coefficient D of the piston is zero, implying that the
piston remains confined. Second, the difference in the static

fluctuations has repercussions on the shape of the velocity-
velocity fluctuations in the canonical and microcanonical
ensembles. Let us note that

σ 2
Y = 〈(Y − 〈Y 〉)2〉 =

∫ ∞

0

∫ ∞

0
〈V (t ′)V (t ′′)〉dt ′dt ′′, (13)

where V (t) is the velocity of the piston. Since σ 2
Y are different

in the canonical and microcanonical ensembles, also the
correlation 〈V (t)V (0)〉 must be different. These issues will
be addressed in the next section, in the case of interacting gas.

Exactly the same considerations about the difference of
fluctuations in the canonical and microcanonical ensembles
hold in the case that a different thermodynamic limit is consid-
ered, in which the size of the piston is increased isotropically.
In this case, in order to have that for each value of N the shape
of the gas compartment is isotropic, namely, 〈Y 〉 = L, and that
the density ρ = N/L2 and the pressure p = F/L are constant,
we need the scaling F ∼ √

N for the force acting on the piston.
If we insert such scaling for F in Eqs. (6) and (11), we find that
increasing isotropically the size of the compartment, at vari-
ance with the tubular geometry, the mean square displacement
σ 2

Y of the partitioning wall becomes asymptotically constant
for increasing N in the two ensembles. On the contrary, the
factor 2 by which canonical and microcanonical fluctuations
differ remains the same. The comparison between the two
different thermodynamic limits on the one hand tell us that
the result of the difference in canonical and microcanonical
fluctuations is robust and on the other hand allows us to point
out the peculiarities of the tubular geometry.

III. NUMERICAL SIMULATIONS
FOR THE INTERACTING CASE

In order to understand whether the previous results are
peculiar to the noninteracting case and to study a more realistic
case, we perform molecular dynamics simulations of the
system with an interacting particle gas. We consider a repulsive
interaction potential V (r) for soft disks, with cutoff rc,

V (r)=
{

V0
[(

r0
r

)12− (
r0
rc

)12+12
(

r0
rc

)12( r
rc

− 1
)]

for r < rc

0 for r > rc,

(14)

where r = |r| is the distance between particles, V0 is the
potential intensity, and r0 is the average interaction range.
The same potential also describes the interaction of particles
with walls. In the simulations of the canonical ensemble the
coupling with the reservoir at temperature T is implemented
in the following way. We consider that the side of the box
opposite to the piston acts as a thermostat, so that when a
particle enters the interaction region with the wall, namely, its
distance from the wall is smaller than r0, the velocity changes
along the y axis according to the Maxwellian distribution
p(vy) ∝ vy exp(−v2

y/2mkBT ), for vy > 0 [22]. The study of
the system upon varying N is performed by retaining a tubular
geometry, namely, keeping the length L and the force F

constant and letting the equilibrium position 〈Y 〉 increase
accordingly, so that the gas density remains fixed. The results
described here are not related to a specific interaction. Indeed,
we also studied the case of a stronger interaction potential
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FIG. 2. (Color online) Temperature kBT (in the microcanonical
ensemble it is M〈V 2〉) plotted as a function of energy E (in
the canonical ensemble E = 〈H〉) for N = 128. The dashed line
represents the theoretical result for noninteracting particles kBT =
E/(2N + 3/2), which is expected to hold for high temperatures. The
other parameters in the simulations are L = 10, F = 10, m = 1, and
M = 128.

V (r) ∼ r−64, which at low density reproduces the behavior of
hard-disk statistics [23], finding analogous results.

We start the numerical study of this interacting case by
checking the validity of the relation (3). In Fig. 2 we plot
the temperature T as a function of the energy E in the
microcanonical and canonical ensembles. The temperature is
computed as kBT = M〈V 2〉, whereas energy is E = 〈H〉. As
expected, the theoretical relation (3) derived in the noninter-
acting system is valid at high temperatures, where interactions
become negligible. In Fig. 3 we report the average values of the
piston position and its variance in the two ensembles. Notice
that also in this case the analytical predictions (5) and (10) hold
in the high energy (or temperature) regions. It is interesting that
also in the interacting case the factor 1/2 between the σ 2

Y in the
canonical and microcanonical ensembles is still present (see
Fig. 4).

Interesting behaviors are also found for the dynamical prop-
erties of this system. Indeed, differences in the fluctuations be-
tween microcanonical and canonical are evident from the study
of correlation functions. In particular, in Fig. 5 we compare the
behavior of the normalized velocity autocorrelation function of
the piston C(t) = 〈V (t)V (0)〉/〈V (0)V (0)〉 for different values
of N . First, one clearly observes that, as expected from the
static results, fluctuations are larger in the canonical ensemble,
namely, the system is less correlated than in the microcanonical
ensemble. Moreover, let us notice the nontrivial shape of C(t).
For small N one has a damped oscillatory relaxation, while
for increasing N a peculiar behavior emerges: After the first
stage of relaxation, governed by a simple exponential decay, at
later times a negative bump occurs, signaling the presence of
another time scale in the system. This negative contribution to
the correlation is necessary for the vanishing of the diffusion
constant:

∫ ∞
0 C(t)dt must be zero.

From the above results for C(t), a two-time scenario
emerges. We have the time τ0, characterizing the first
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FIG. 3. (Color online) (a) Average position 〈Y 〉 and variance σ 2
Y

plotted as a function of energy E in the microcanonical ensemble
with N = 128. Dashed lines represent the theoretical results for the
noninteracting gas 〈Y 〉 = (N + 1)E/F (2N + 3/2) and σ 2

Y = (N +
1)(N + 1/2)/[(2N + 5/2)(2N + 3/2)2](E/F )2. (b) Same quantities
as a function of kBT in the canonical ensemble. The theoretical results
for the noninteracting gas are 〈Y 〉 = (N + 1)kBT /F and σ 2

Y = (N +
1)(kBT )2/F 2. The other parameters in the simulations are L = 10,
F = 10, m = 1, and M = 128.

exponential decay, empirically defined as the time necessary
to cross the zero axis for the first time. In addition, we have
the time τ (N ) where the negative bump occurs. The first
decay of the velocity correlation function C(t) saturates upon
increasing the number of particles and so the time τ0 tends
to a constant value, independent of N [see Fig. 6(a), where
τ0 is plotted as a function of N on a semilogarithmic scale,
for both the microcanonical and canonical ensembles]. On
the other hand, we find that the second time scale τ depends
linearly on N , as shown in Fig. 6(b), where C(t) is plotted as
a function of t/N . In the inset we also plot τ (N ) as a function
of N on a log-log scale for the canonical ensemble, showing
the linear increase with N (analogous results are observed
for the microcanonical ensemble). As discussed in the next
section, such a peculiar behavior, induced by the presence of
the partitioning piston, cannot be easily described by a standard
Langevin-like approach.
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FIG. 4. (Color online) Variance σ 2
Y plotted as a function of

kBT in the canonical and microcanonical ensembles (in the latter
case we consider simulations at constant energy and the tem-
perature is obtained from kBT = M〈V 2〉E) for N = 128. The
other parameters in the simulations are L = 10, F = 10, m = 1,
and M = 128.

IV. LANGEVIN EQUATION

In the limit of N and M very large, the relaxation times
of the piston and of the gas particles are well separated and
one may consider the gas particles weakly perturbed by the
presence of the piston. Within this strong assumption, the gas
distribution is fixed and independent of the motion of the piston
and the dynamics can be described by a master equation for
the probability density function P (V,Y,t) of the velocity V

of the piston at position Y at time t . In particular, for the first
moment of this distribution, it is possible to write down the
following equation (for the details refer to Appendix B):

d〈V 〉
dt

= 〈Fcoll(Y,V )〉. (15)

Then the fluctuations around the equilibrium position (Y �
Yeq and V � 0) are described by expanding up to first order
the right-hand side of Eq. (15), obtaining

dV (t)

dt
= −kNy − γV + ξ (t), (16)

where the displacement y ≡ Y − Yeq has been introduced.
The parameters kN and γ can be calculated by means of
kinetic theory and their explicit expressions are written in
Eq. (B11). One must notice that in Eq. (16) a noise term
ξ (t) has been added, whose expression cannot be directly
derived from Eq. (15) for the mean velocity. Actually, the
correlation of the noise term can be determined by exploiting
the equipartition theorem valid for equilibrium dynamics. By
requiring Maxwellian statistics for the stationary P (V ), it is
well known that ξ (t) must be white noise with variance

〈ξ (t)ξ (t ′)〉 = 2γ T δ(t − t ′). (17)
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FIG. 5. (Color online) Velocity autocorrelation functions of the
piston in the microcanonical and canonical ensembles for
(a) N = 16, (b) N = 64, (c) N = 256, and (d) N = 1024.
The other parameters are L = 30, F = 150, T = 10, m = 1,
and M = 50.
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FIG. 6. (Color online) (a) First relaxation time τ0 of the piston
velocity correlation for different values of N , in the microcanonical
(black circles) and canonical (red squares) ensemble with parameters
M = 50, F = 150, L = 30, and kBT = 10. Notice that the first
relaxation saturates for large N and the time τ0 reaches a constant
value in both the canonical and microcanonical ensembles. (b)
Velocity correlation functions as a function of time rescaled by N

in the canonical ensemble with same parameters. In the inset the time
τ shows a linear dependence on N for large N .

From the linearity of Eq. (16) it is possible to calculate the
autocorrelation of velocity, obtaining

〈V (t)V (0)〉 = T

M
e−γ t/2

[
cosh

(



2
t

)
− γ sinh

(


2 t

)



]
,

(18)

where we introduced the parameter 
 =
√

γ 2 − 4kN , which
rules the passage between the underdamped and overdamped
regimes. More specifically, if Nm

m+M
> π

2 , the system is over-
damped; otherwise the system is underdamped.

Making a comparison between Eq. (18) and the numerical
experiments presented in Fig. 5, it appears evident that the
Langevin equation is able to capture, for N large, only the small
time relaxation τ0 � γ −1, while it is unable to detect the
oscillation of 〈V (t)V (0)〉, which appears for times τ (N ) ∼ N .
We report in Fig. 7 the explicit comparison between the
Langevin approximation (black curve) and the piston velocity
correlation (red curve) in the noninteracting case. The same

0 20 40 60
t

-0.4

-0.2

0

0.2

0.4

0.6

C
(t)

〈V(t)V(0)〉
〈vc.m.(t)vc.m.(0)〉
〈vi(t)vi(0)〉
Langevin theory

~τN~τ0

FIG. 7. (Color online) Autocorrelation of different observables
in the case of a piston with noninteracting particles (canonical
ensemble) measured in numerical simulations and the Langevin
approximation for the piston velocity correlation (black line). It is
possible to observe how the oscillation in the autocorrelation of the
piston velocity 〈V (t)V (0)〉 (blue circles) are in phase with the one of
the center of mass of the gas particles 〈vc.m.(t)vc.m.(0)〉 (red squares).
Green diamonds represent the autocorrelation of a single-particle
velocity 〈vi(t)vi(0)〉. All the correlations are normalized to one for
t = 0. The parameters are F = 150, T = 10, M = 50, and N = 500.

mismatch between analytical prediction and numerical results
is observed also for interacting particles. The oscillations
presented by 〈V (t)V (0)〉 are related to the interplay mechanism
between the moving wall and a collective mode of the gas
particles, which makes the assumption of Markovian nature
fail. We note how this phenomenon is quite general and it is
present also in the case of noninteracting gas particles. In order
to verify this point, one can analyze a natural collective variable
of the gas, i.e., the center of mass velocity vc.m.(t) ≡ 1

N

∑
vi(t).

In the simpler case of a noninteracting gas confined in a fixed
volume, the autocorrelation 〈vc.m.(t)vc.m.(0)〉 would be trivially
equal to the one of a single particle in the gas. On the contrary,
this is not true anymore with the presence of the piston since
the different particles of the gas are strongly correlated with
each other via the mutual interaction piston or border. The time
scale of this process is very close to τ (N ), as can be observed in
Fig. 7. Such a time scale is completely hidden if one consider
only the single-particle autocorrelation 〈vi(t)vi(0)〉.

V. CONCLUSION

In the present work we have shown, with analytical
calculations in the ideal gas case and with simulations for
interacting particles, that the fluctuations in the canonical
and microcanonical ensembles [24] show relevant differences
when a partitioning object, such as a moving wall, is
introduced. The relevant points that we have highlighted are
the following. First, we have shown that the interaction with
the partitioning object induces nontrivial correlations among
the particles even in the ideal gas approximation (see Fig. 7
in Sec. IV), irrespectively of the ensemble, canonical or
microcanonical, where the dynamics is studied. Then we have
shown that the Langevin approach to the dynamics of the
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piston captures only partially the physics of the system. The
Langevin equation correctly predicts only the fast time scale,
namely, τ0 ∼ γ −1, but fails completely to catch the slower
one, which grows linearly with the number of particles in
the partitioned system τ (N ) ∼ N . This second time scale is
produced by nontrivial correlation between the velocity of the
gas particles and the one of the piston, which is present, quite
remarkably, also in the case of noninteracting particles, as
shown in Fig. 7.

We recall that the macroscopic growth of τ (N ) is related
to the particular tubular geometry of the problem, where
the size of the gas compartment is increased only in one
direction. Notwithstanding the different behavior of the largest
time scale, the factor 2 difference between canonical and
microcanonical fluctuations of the partitioning object σ 2

Y is
independent of how the thermodynamic limit is taken, which
is clear from Eqs. (6) and (11). We can therefore conclude
that partitioning geometries with a single macroscopic degree
of freedom that is effectively coupled to the motion of all the
microscopic constituents of the system represent an eligible
framework in which to study the dynamical properties of small
systems.
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APPENDIX A

1. Microcanonical ensemble

In the microcanonical ensemble at energy E, the invariant
measure is nonzero only on the hypersurface of constant energy
SE . If M is a subset of SE and dσ is the infinitesimal surface
element

P(x ∈ M ⊆ SE) =
∫
M

dσ

ω(E)

1

|∇H| , (A1)

where ω(E) = ∂�(E)/∂E. In order to derive the expression
of the temperature of the system as a function of the energy,
we must compute �(E). This quantity is given by

�(E) =
∫
H<E

dNx dNy dY dNp dP

= LN

∫
∑

i |pi |2/2m+P 2/2M+FY<E

dNy dY dNp dP.

(A2)

Recalling that the volume of a D-dimensional sphere of radius
R is

V (R) =
∫

∑
i x2

i <R2
dDx = πD/2

�
(

D
2 + 1

)RD,

where �(x) is the Euler Gamma, from Eq. (A2) we obtain

�(E) = (2m)N
√

2MLN πN+1/2

�
(
N + 3

2

)
×

∫ Y

0
dNy

∫ E/F

0
dY (E − FY )N+1/2

= (2m)N
√

2M

F

(
L

F

)N
πN+1/2

�
(
N + 3

2

)E2N+3/2

×
∫ 1

0
dx xN (1 − x)N+1/2 (A3)

and eventually

�(E) = (2m)N
√

2MLN

FN+1
πN+1/2 �(N + 1)

�
(
2N + 5

2

)E2N+3/2 (A4)

and

ω(E) = (2m)N
√

2MLN

FN+1
πN+1/2 �(N + 1)

�
(
2N + 3

2

)E2N+1/2. (A5)

Now we can compute the temperature of the system using the
relation S = kB ln �(E), namely,

kBT = kB

(
∂S

∂E

)−1

= �(E)

ω(E)
= E

2N + 3
2

. (A6)

Using alternative definitions of S, e.g., S = kB ln ω(E) or
S = kB ln �
E(E), where �
E(E) = �(E + 
E) − �(E) �
ω(E)
E, where 
E is the tolerance on E, for N � 1 one has
negligible differences [20].

We are interested in the probability density function of
the position of the piston Y . Observing that for a generic
phase space function A(X) in the microcanonical ensemble
one has [25]

ρA(a) = 1

ω(E)

∂

∂E
I(E,a), (A7)

where

I(E,a) =
∫
H<E

δ(A(x) − a)dx, (A8)

setting A(X) = Y one readily obtains

I (E,Y = Ỹ ) =
∫

H<E

dY dNx dNy dNpidp δ(Y − Ỹ )

= (2m)N
√

2MLN πN+1/2

�
(
N + 3

2

) Ỹ N (E − F Ỹ )N+1/2

(A9)

for 0 < Ỹ < E/F ; therefore,

ρE(Y ) = 1

ω(E)

∂I

∂E
= �

(
2N + 3

2

)
�

(
N + 1

2

)
�(N + 1)

× F

E

(
FY

E

)N(
1 − FY

E

)N−1/2

. (A10)

From the above result we obtain

〈Y 〉 = (N + 1)kBT

F
(A11)

and

σ 2
Y =

(
N + 1

2

)
(N + 1)

2N + 5
2

(
kBT

F

)2

. (A12)

where, in these two last equations, we used Eq. (A6) to express
〈Y 〉 and σ 2

Y as functions of T instead of E.
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2. Canonical ensemble

In the canonical ensemble at constant temperature T with
β = 1/kBT the partition function of the system is given by

Z =
∫

dNx dNy dY dNp dP e−βH

=
(

2

π

)N+1/2

N ! mN
√

Mβ−(2N+3/2)F−(N+1). (A13)

We can easily compute the mean energy of the system

E = 〈H〉 = −∂ ln Z

∂β
=

(
2N + 3

2

)
kBT . (A14)

Now we want to find the probability distribution function of
the position of the piston Y : Starting from

ρβ(Y,{yi}) = e−βFY∫
dY dNy e−βFY

∏
i

�(Y − yi) (A15)

and integrating over all the yi , one obtains

ρβ(Y ) = YNe−βFY∫
dY YNe−βFY

. (A16)

The mean value of this distribution is

〈Y 〉 = kBT (N + 1)

F
, (A17)

whereas its variance is

σ 2
Y = (N + 1)(kBT )2

F 2
. (A18)

APPENDIX B

In this appendix we detail the derivation of the Langevin
equation for the motion of the piston, following elementary
kinetic theory. The basic idea is to estimate the average force
exerted by the gas particles that collide with the piston, by cal-
culating the average momentum exchanged in the collisions.
The following approach dates back to Smoluchowski [26] and
it has been used to write a Langevin equation for colloidal
particles [27]. For the variable y = Y − Yeq we will derive a
stochastic equation

M
d2y

dt2
= Fav(y,ẏ) + Cη, (B1)

where Fav(y,ẏ) is the average force acting on the piston in
the position Yeq + y and velocity ẏ, η is a white noise, and
the constant C can be fixed a posteriori from the condition
M〈ẏ2〉 = kBT .

Consider the gas at equilibrium and focus on the collision
of the piston, characterized by its mass M and precollisional
velocity V , and a particle of the gas, which is characterized by
m and v, respectively. The collision rule is

V ′ = V + 2m

m + M
(vy − V ), v′

y = vy − 2M

m + M
(vy − V ),

(B2)
where the primed quantity are postcollisional velocities and
vy is the y component of v. The rate of such collisions can be

obtained by considering the equivalent problem of a piston,
at rest, hit by a flux of particles moving at relative velocity
V ŷ − v. The rate is then determined by counting the number of
pointlike particles hitting the unit surface in the infinitesimal
time interval dt . This number corresponds to the particles
contained in a rectangle of infinitesimal base length δx and
height (vy − V )�(vy − V )dt . The step function �(s) selects
the condition for having a collision. Setting v = vy , the mean
force exerted by the particles of the gas on the piston is

Fcoll(Y,V ) =
〈
M


V

dt

〉

= M

∫ ∞

−∞
dv

∫ L

0
dx ρ(x,Y − r ′

0)

×φ(v)(V ′ − V )(v − V )�(v − V )

= 2mM

m + M

∫ ∞

−∞
dv

∫ L

0
dx ρ(x,Y − r ′

0)

×φ(v)�(v − V )(v − V )2, (B3)

where φ(v) is the equilibrium distribution of velocities of the
gas, i.e.,

φ(v) =
√

m

2πkBT
e−mv2/2kBT , (B4)

and ρ(x,Y ) is the spatial density of particles in the proximity
of the piston. At equilibrium, this density is uniform on all the
available volume and therefore depends on the position of the
piston Y . Carrying on the integration on the spatial coordinates,
we obtain

Fcoll(Y,V ) = 2mM

m + M
λ

∫ ∞

V

dv(v − V )2φ(v), (B5)

where λ = N
Y

. We note that the equilibrium properties of the
gas used in the derivation of this equation do not depend on
the choice of the ensemble. Of course, Fav(y,ẏ) is nothing but
Fcoll − F .

In order to decouple the motion of the piston from the one of
the gas molecules it is necessary to assume that M � m and,
moreover, that V is always small if compared to the thermal
velocity of the particles vm = √

2kBT /m: The expansion
of the integral in Eq. (B5) in powers of

√
m/M will give

the viscous drag force appearing in the Langevin equation
of motion. Defining g = √

m/2kBT (v − V ) and expanding
perturbatively φ(v) as a function of g,

exp

(
− m

2kBT
v2

)
= exp

[
−

(
g +

√
m

2kBT
V

)2
]

� exp

(
−g2 −

√
2m

kBT
gV

)

� e−g2

(
1 −

√
2m

kBT
gV

)
, (B6)
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we can compute the integral, performing the change of
variables v → g,

2kBT

m
√

π

∫ ∞

0
g2e−g2

(
1−

√
2m

kBT
gV

)
dg= kBT

2m
−

√
2kBT

πm
V,

namely,

Fcoll = N

Y

[
M

m + M
kBT − 2

M

m + M

√
2mkBT

π
V

]
. (B7)

Expanding the previous expression to first order in y and V

around the equilibrium position of the piston Yeq , defined
by the condition F = Fcoll and V = 0, we obtain a linear
Langevin equation. The equilibrium conditions are

M

m + M
kBT

N

Yeq

= F, Veq = 0 (B8)

and therefore

Yeq = NMkBT

F (m + M)
. (B9)

The Langevin equation has the shape

d2y

dt2
= −kNy − γ v + C

M
η, (B10)

where

γ = 2F

M

√
2m

πkBT
, kN = F 2(m + M)

M2NkBT
. (B11)

It is easy to compute the correlation function

〈V (t)V (0)〉 = kBT

M
e−γ t/2

[
cosh

(



2
t

)
− γ



sinh

(



2
t

)]
,

(B12)

where 
 =
√

γ 2 − 4kN . Let us note that for any finite N (i.e.,
kN �= 0) one has

∫ ∞
0 〈V (t)V (0)〉dt = 0.
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