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We investigate the dependence of the critical Binder cumulant of the magnetization and the largest Fortuin-
Kasteleyn cluster on the boundary conditions and aspect ratio of the underlying square Ising lattices. By means
of the Swendsen-Wang algorithm, we generate numerical data for large system sizes and we perform a detailed
finite-size scaling analysis for several values of the aspect ratio r , for both periodic and free boundary conditions.
We estimate the universal probability density functions of the largest Fortuin-Kasteleyn cluster and we compare
it to those of the magnetization at criticality. It is shown that these probability density functions follow similar
scaling laws, and it is found that the values of the critical Binder cumulant of the largest Fortuin-Kasteleyn cluster
are upper bounds to the values of the respective order-parameter’s cumulant, with a splitting behavior for large
values of the aspect ratio. We also investigate the dependence of the amplitudes of the magnetization and the largest
Fortuin-Kasteleyn cluster on the aspect ratio and boundary conditions. We find that the associated exponents,
describing the aspect-ratio dependencies, are different for the magnetization and the largest Fortuin-Kasteleyn
cluster, but in each case are independent of boundary conditions.
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I. INTRODUCTION

According to the universality hypothesis [1–3], all critical
systems with the same dimensionality, the same symmetry of
the order parameter, and the same range of interactions are
expected to share the same set of critical exponents. For the
two-dimensional (2D) Ising model (square and some other
lattices), all critical exponents are known exactly [4–7]. These
exponents are expected to be obeyed by the Ising model on all
2D lattices and also by all other models, which according to
the hypothesis are expected to belong in the same universality
class. Furthermore, there is strong evidence that, in addition
to critical exponents, certain critical-point ratios are universal
[8–10] and of particular interest is the value of the critical
Binder cumulant of the order parameter, discussed also in the
present work.

The fourth-order cumulant of some thermodynamic param-
eter Q of a finite lattice system, known as the Binder cumulant,
is defined as [8]

UQ(T ,L) = 1 − 〈Q4〉L
3〈Q2〉2

L

, (1)

with L the linear lattice size. The critical value of the Binder
cumulant of the order parameter of an Ising system is then

U ∗
M = lim

L→∞
UM (T = Tc,L), (2)

with M the magnetization

M = (1/N)
N∑

i=1

σi, (3)

σi the spin variable, and N the number of lattice sites. This
parameter is a measure of the deviation of the universal
probability density function from a Gaussian function. It is
well known that the characteristic behavior of UM [8,11]
near criticality provides a traditional route to obtain transition

temperatures (from the intersection of the cumulants of
systems with different sizes) and may also be used to extract the
critical exponent ν of the correlation length [8–10]. Its critical
value, U ∗

M , was originally believed to fully characterize a given
universality class. As discussed by various authors, the same
value seems to be shared by several 2D models, such as the
XY models with an easy axis, the nearest-neighbor spin-1 Ising
model, and the isotropic nearest-neighbor Ising-like models,
including also the nearest-neighbor “border φ4 model” with
softened spins [12–18]. It appears also to be independent of the
lattice details, such as the lattice structure [19,20]. However,
this “universality” applies only in a limited sense. The value of
U ∗

M does depend on the boundary conditions [8,11], the shape
of the system [13,17,21–25], as well as on the symmetry of
the interactions [19].

An accurate estimation of critical-point ratios for the
ferromagnetic Ising model on the square and triangular lattices
has been provided via the transfer-matrix technique [13]. In
this paper, Kamieniarz and Blöte estimated U ∗

M as a function of
the aspect ratio r (see discussion below for the definition of r),
reporting, in particular for the square Ising model with periodic
boundary conditions and r = 1, the value U ∗

M = 0.61069 . . . .

The influence of the anisotropic interactions on the critical
Binder cumulant was studied, analytically, by Dohm and
Chen [24,25] and, numerically, by Selke and Shchur [21,22],
indicating that U ∗

M depends continuously on the anisotropy,
in the case of periodic boundary conditions and r = 1. Fur-
thermore, Kastening [26] obtained a renormalization-group
quantitative description of the anisotropy dependence of U ∗

M .
In the present paper, we investigate certain aspects of the

critical Binder cumulant and, in particular, its dependence on
the boundary conditions and the relevant aspect ratio of the
lattice. We concentrate our interest on numerical observations
illustrating parallel behavior to that of the critical Binder
cumulant of the largest Fortuin-Kasteleyn cluster (LFKC). The
rest of the paper is organized as follows: In the next section,
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we define the model and outline the numerical details. Then,
in Sec. III, we present and discuss our numerical findings.
Finally, we summarize our conclusions in Sec. IV.

II. MODEL AND SIMULATION DETAILS

Let the size of the LFKC be denoted by SLFKC and let us
define, in analogy to the magnetization, l∞ = SLFKC/N . Then,
the relevant critical Binder cumulant may be denoted as U ∗

l∞ .
To be concrete, we consider the square Ising model in zero
field, with the standard Hamiltonian

H = −J
∑

〈ij〉
σiσj , (4)

where the spin variables σi take the Ising values ±1 and 〈ij 〉
denotes summation over all nearest-neighbor pairs of sites. For
the needs of our study, we construct ferromagnetic nearest-
neighbor square Ising systems with L rows and L1 = rL

columns, corresponding to N = L × L1 = L × rL ≡ (L∗)2

sites. Furthermore, we consider several values of the aspect
ratio r = {1,4,9,16,25,36,50,64,100}, and investigate both
periodic (PBC) and free boundary conditions (FBC). As
our numerical vehicle, we implement the Swendsen-Wang
algorithm [27–30], and we identify clusters by the Hoshen-
Kopelman procedure [29,31].

The comprehensive Monte Carlo study of De Meo et al. [32]
presented a review of the connections of Fortuin and Kaste-
leyn’s work [33] to the Swendsen-Wang algorithm and a
review of the relevant literature. In this study, the authors
investigated the scaling properties of the cluster size distribu-
tion and provided a numerical verification of the theoretical
results given by Hu [34]. In particular, they showed that
the relevant bond-correlated percolation model has the Ising
critical temperature and critical exponents. Thus, it is generally
assumed, that the LFKC corresponds to the magnetization,
but the distribution functions and, accordingly, the Binder
cumulants are quite different.

We concentrate on the dependency of the critical Binder
cumulants, U ∗

M and U ∗
l∞ , on the boundary conditions and

the aspect ratio and compare our results with previous work
when available [13,19,35]. We also illustrate and compare the
corresponding probability density functions (pdfs), observing
their evolution as a function of the aspect ratio. For PBC and
r = 4, a pronounced double-peak structure is observed in the
pdf of LFKC, and we give for this a geometrical explanation,
involving the probability that the LFKC percolates along
both (short and long) directions of the lattice simultaneously.
Finally, we discuss the critical-exponent equivalence [32,34]
and the scaling properties of Q = |M| and Q = l∞, for both
PBC and FBC. In particular, we estimate the amplitudes AQ of
the power law 〈Q〉 = AQL−β/ν for all values of the aspect ratio
considered. It is shown that these amplitudes follow a power
law with r , and the corresponding exponents are determined.
This analysis is related to the interesting superscaling concepts
reported by Watanabe et al. [36] in their study of percolation
on rectangular domains, as will be further discussed below.

The square Ising systems under study were simulated only
at the exact critical temperature kBTc/J = 2.2691853 . . . .

In our numerical approach, we define a Swendsen-Wang
Monte Carlo step to consist of 10–20 (depending on L∗)

Swendsen-Wang moves, in which all Fortuin-Kasteleyn clus-
ters attempt to flip with probability 1/2 [27,28]. A number
of Swendsen-Wang Monte Carlo steps, denoted as neq, is
used for equilibration and a large number of such steps,
denoted as nrec, is used for the recording of the data related to
the Fortuin-Kasteleyn cluster decomposition. Typical values
of the parameters neq and nrec, used in our simulations,
are neq = 1600 and nrec = 64 000 for L∗ = 20, whereas
neq = 7200 and nrec = 115 200 for L∗ = 120. In each case,
we used 10 independent runs, restarted from new random spin
configurations. The statistical errors of the corresponding data
were set equal to 3 standard deviations of the 10 independent
runs.

In order to achieve good accuracy in the estimation of the
above-mentioned amplitudes, via an extrapolation finite-size
scaling scheme, the above-described simulations were carried
out for all values of aspect ratio r . In all cases, approximately
the range L∗ = 20–120 was covered by 8–10 different widths
L, and for r = 1 and r = 4, we also simulated systems with
linear sizes L = 160 and 200.

III. NUMERICAL RESULTS AND DISCUSSION

All of our estimates for the critical Binder cumulants are
given in Table I, together with the existing ones from the
corresponding literature. In Fig. 1, we illustrate the finite-size
behavior of the critical cumulants for a selected set of the
cases (as indicated on the panel), and the rather smooth
linear extrapolation, which provides us with the limiting
values of the critical Binder cumulants. The values listed
in Table I were obtained by applying the expected leading
correction term aL−1.75 [13]. Note that, in almost all cases,
these values and the ones obtained by a linear extrapolation

TABLE I. Critical Binder cumulants of the order parameter and
the LFKC for PBC and FBC and several values of the aspect ratio r .
The numbers in parentheses denote errors.

BC r U ∗
M

a U ∗
M U ∗

l∞

PBC 1 0.61069 . . . [13] 0.61067(24) 0.6167(2)
PBC 4 0.48723 . . . [13] 0.48697(36) 0.4995(5)
PBC 9 0.27054 . . . [13] 0.2713(10) 0.3880(8)
PBC 16 0.1539(6) 0.4317(10)
PBC 25 0.0984(10) 0.4760(6)
PBC 36 0.0685(10) 0.5044(10)
PBC 50 0.04920 . . . [13] 0.0493(5) 0.5258(15)
PBC 64 0.0375(12) 0.5385(8)
PBC 100 0.02454 . . . [13] 0.0242(20) 0.5585(10)

FBC 1 0.396(2) [19] 0.3969(6) 0.4370(10)
FBC 4 0.2365(15) 0.3898(10)
FBC 9 0.1188(12) 0.4394(80)
FBC 16 0.0680(5) 0.4860(40)
FBC 25 0.0452(14) 0.5160(20)
FBC 36 0.0330(6) 0.5365(5)
FBC 50 0.0214(10) 0.5533(12)
FBC 64 0.0178(15) 0.5631(15)
FBC 100 0.0123(10) 0.5790(10)

aBest estimates from the literature.
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FIG. 1. (Color online) Illustration of the finite-size behavior of
critical Binder cumulants for the magnetization U ∗

M and the LFKC
U ∗

l∞ . Cases of PBC with r = 1 and r = 4 and FBC with r = 1 are
illustrated. The dashed lines are the extrapolated limits.

agree within error bars. From the table, one can observe a
very good agreement with previous estimates regarding the
magnetization’s critical Binder cumulants and the estimates of
the present study. The critical Binder cumulants of the LFKC
(U ∗

l∞) are found, in all cases, to be upper bounds to the values
of the critical Binder cumulants of the order parameter. The
smallest difference between the two cumulants corresponds to
the case of PBC with r = 1 and this difference is enhanced
as the order-parameter cumulant deviates from the value 2/3,
approaching the limiting (Gaussian) value 0, as r→∞.

This strong splitting behavior is presented in Fig. 2, which
gives a full illustration of the dependence of critical Binder
cumulants for magnetization and the LFKC on the aspect
ratio for both cases of boundary conditions considered. Several
interesting conclusions can be drawn from this figure. First, as
should be expected, and shown by Kamieniarz and Blöte [13]

FIG. 2. (Color online) Dependence of critical Binder cumulants
U ∗

M and U ∗
l∞ on the logarithm of the aspect ratio ln (r) for PBC and

FBC.

for PBC, the limiting magnetization cumulants U ∗
M agree with

the Gaussian value 0, describing linear systems, as r→∞ for
both PBC and FBC. For large r , U ∗

M (r) becomes linear in
r−1, and, as pointed out by Kamieniarz and Blöte [13], the
product AU (r) = rUM (r) approaches exponentially fast the
universal amplitude AU = limr→∞ [U ∗

M (r)r]. The estimates
for this universal amplitude of the transfer-matrix technique
in Ref. [13] agree to ∼5 significant figures with the value
AU = 2.46044(2), obtained from conformal invariance [35].
The statistical Monte Carlo errors permit here a moderately
accurate estimate of the order of AU = 2.466(7), as can be
seen by a linear fit of the r = 16–100 data of Table I. For FBC,
U ∗

M (r) becomes also linear in r−1, and the corresponding fit, in
the range r = 16–100, provides the estimate AU = 1.055(26).

The cumulant U ∗
l∞ of the LFKC shows a nonmonotonic

behavior approaching, finally, as r→∞, a nontrivial value
different to 2/3 (describing the ordered phase). To esti-
mate the limiting behavior, we assume the law U ∗

l∞ (r) =
U ∗

l∞ (∞) − Br−x . Fitting the r = 16–100 or the r = 25–
100 data of Table I, we find quite stable estimates.
For the r = 25–100 range, this estimation scheme gives
U ∗

l∞ (r) = 0.626(4) − 0.96(4)r−0.57(2) for PBC, and U ∗
l∞ (r) =

0.643(10) − 0.63(7)r−0.50(6) for FBC. Although, even for
r = 100, the values of the cumulants deviate significantly
from their limiting values, the exponents x agree with the
value 0.5 within error bars and appear to be independent of
the boundary conditions. Thus, the exponents controlling the
limiting r behavior are different for U ∗

M (r) and U ∗
l∞ (r), but

are independent of the boundary conditions. Note that the
above limiting values are indicated by the dashed (PBC) and
dotted (FBC) lines in the panel of Fig. 2 together with the
full line corresponding to the value 2/3. In the limit r→∞,
cumulant universality between PBC and FBC is reflected in
the exponents, and the role of the boundary conditions appears
to diminish in that limit. As noted above, for moderate values
of the aspect ratio, both U ∗

M and U ∗
l∞ have a strong dependence

on the boundary conditions. This nonmonotonic behavior, and
the smooth final approach in the limit r→∞, are reflections
of the evolution features of the corresponding pdfs, which are
further illustrated below.

Figure 3 illustrates the scaling of the order-parameter pdfs,
while Fig. 4 illustrates the scaling of the relevant functions
of the LFKC for the cases with PBC and FBC, for which
their Binder’s cumulant finite-size behavior is illustrated in
Fig. 1. The scaled distributions have been constructed by using
as scaling variables the x = Q/

√
〈Q2〉 [8,23,37–40], with

Q = |M| or Q = l∞. In the scaling limit (system size going to
infinity), these functions are expected to be universal and char-
acterize the given universality class [8,37]. The scaled density
functions are then obtained from p(x)dx = pQ(Q)dQ, i.e.,
p(x) = pQ(Q)

√
〈Q2〉, and also a smoothing process of the

fluctuations has been applied. The pronounced double-peak
structure for PBC and r = 4, the left shoulders for PBC and
r = 1 observed in Fig. 4, and also the nonmonotonic behavior
of the critical cumulant of the LFKC of Fig. 2 are interesting
findings reflecting geometrical features of the present bond-
correlated percolation model. A brief qualitative description
of these features is attempted below, observing the variation
of certain percolation probabilities with the aspect ratio (r).
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FIG. 3. (Color online) Scaled pdfs of the magnetization, x =
|M|/

√
〈M2〉, for (i) PBC with r = 1 and r = 4 and (ii) FBC with

r = 1. Sizes L∗ = 60 and L∗ = 120 are illustrated.

Throughout the years, different percolation probabilities
have appeared in the literature [41–43], using different terms
such as spanning probability [41], crossing probability [43],
or existence probability [36,42]. It is well known that above
the percolation threshold, there exists an infinite cluster with
probability one [44], while exactly at the percolation threshold,
the “crossing probabilities” need not be one and their study
is an important topic with many and famous contributions,
such as Cardy’s exact result [43] on the square lattice with
FBC. These critical probabilities depend on the boundary
conditions and the aspect ratio [36,45]. For the square systems
considered here, with L rows and L1 = rL columns, we define
pshort to be the probability that the LFKC percolates only
in the short direction, visiting every row of the lattice (that
is, having at least one point in every row). Respectively, the
corresponding probability that the LFKC percolates only in the
long direction, visiting all columns, will be denoted by plong,

FIG. 4. (Color online) Scaled probability pdfs of the LFKC, x =
l∞/

√〈l2∞〉, corresponding to the cases of Fig. 3.

FIG. 5. (Color online) Percolation probabilities pboth and pshort

with respect to ln (r). Dashed lines indicate the r = 1 values in the
thermodynamic limit (see discussion in the text), and the expected
large-r behavior. The crossover behavior for the PBC is associated
with the appearance of the double-peak structure in Fig. 4. In the inset,
we compare the r = 1 shoulderlike behavior in Fig. 4 with a restricted
pdf describing only the LFKC that percolates simultaneously in both
directions.

and the probability of simultaneously percolating in both the
short and long directions will be denoted by pboth. We may note
here that for the present bond-correlated LFKC percolation,
at the critical point, the sum pspan = pboth + plong + pshort

(spanning probability in some direction) will also depend on
the boundary conditions and the aspect ratio and need not be
one. The behavior of pboth and pshort as a function of r is
illustrated in Fig. 5 for both PBC and FBC. Clearly, a strong
variation with respect to the aspect ratio r is observed. To
construct Fig. 5, we have used systems with approximately
3600 lattice sites. For instance, for r = 2, lattices of 42 × 84
with 3528 lattice points were used, while for r = 36, lattices of
10 × 360 with 3600 lattice points were used. Additionally, for
r = 1, we carried out a brief finite-size scaling analysis using
data in the range L = 30–100. The resulting limiting values
are indicated with the dashed lines in Fig. 5 and demonstrate
that the finite-size behavior in the main panel, using systems
with 3600 lattice sites, is already a genuine representation
of the behavior in the thermodynamic limit. As can be seen,
for moderate values of r and PBC, the LFKC percolates with
significant probabilities in both directions of the square lattice,
giving rise to the double-peak structure. Then, as r grows, the
probability for percolation along the width of the rectangular
lattices increases substantially, whereas it declines along the
length direction, leading to the evaporation of the right peak.
The crossing of the probabilities for PBC, in the main panel of
Fig. 5, gives a clear explanation of the observed double-peak
structure, while the absence of such a structure in the case
of FBC is due to the very early and large separation of the
corresponding probabilities. The presence of the left shoulders
for PBC and r = 1, in the pdf of the LFKC shown in Fig. 4,
may also be explained by the existence of a nonvanishing
contribution of LFKC percolating only in one lattice direction.
This is illustrated in the inset of Fig. 5, where we compare this
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FIG. 6. (Color online) Main panel: Scaled pdfs of the LFKC, x =
l∞/

√〈l2∞〉, for PBC and FBC. Illustration of striking differences for
r = 4 and approach to the same universal pdf as r increases (r = 36).
Inset: Illustration of the similarity of the magnetization’s pdfs, x =
|M|/

√
〈M2〉, for large r (r = 36).

shoulderlike behavior to a restricted pdf describing only the
LFKC that percolates simultaneously in both directions.

Subsequently, Fig. 6 clarifies in the main panel the diversity
in the shape of the pdfs of the LFKC for the cases with PBC and
FBC for moderate aspect-ratio values and the similarity in the
shape for larger values (r = 36). The inset of the same figure
points out the similarity in the shape of the magnetization pdfs
for r = 36.

Differences in the shapes of the universal pdfs of the
magnetization and the LFKC should be expected from the
theoretical arguments of Hu [34] and the Monte Carlo study
of De Meo et al. [32]. As shown numerically in Ref. [32],
below Tc the magnetization susceptibility differs from the
corresponding percolation susceptibility. Thus, the above
illustrations reveal these differences at Tc, but also show a
variability in the behavior for moderate values of the aspect
ratio. The illustrations in Fig. 7 give a sketch of the evolution
of both pdfs, as we increase the aspect ratio from r = 1 to
r = 16 in the case of PBC. From Fig. 7(a), for the case r = 1,
we observe a small but noticeable difference in the left tails,
which is, however, enough to produce the small difference
of the cumulant values in Table I. The double-peak structure
of the pdf of the LFKC for r = 4, in Fig. 7(b), is associated
to the pronounced left tail in the pdfs of the magnetization.
For larger values of the aspect ratio [see Figs. 7(c) and 7(d)],
the pdfs of the LFKC tend to the shape illustrated in the main
panel of Fig. 6 for r = 36, and the corresponding pdfs of the
magnetization to the one illustrated in the inset of Fig. 6 for r =
36. Now, according to Refs. [32,34], the behavior of 〈Q〉, with
Q = |M| or Q = l∞, should be expected to be described by the
same power law of the form 〈Q〉 = AL−β/ν , with the critical
exponent having the 2D Ising value β/ν = 0.125. Thus, as we
vary the aspect ratio, the corresponding leading amplitudes,
A|M| and Al∞ , decrease and describe the asymptotic shifts to
smaller mean values. These shifts are considerable and are
responsible for the development of a Gaussian-like shape in

FIG. 7. (Color online) Scaled pdfs of the magnetization, x =
|M|/

√
〈M2〉, and the LFKC, x = l∞/

√〈l2∞〉, for PBC as we vary
the aspect ratio in the window r = 1–16. This figure elucidates the
similarity among the two functions for r = 1, but also highlights their
striking differences with increasing r .

the small M behavior of the pdfs of the magnetization, as also
illustrated in the inset of Fig. 6 for r = 36.

From the shape of the pdfs of the LFKC in Fig. 4, and also
from the comparative plot of Fig. 7, we observe that larger
fluctuations (widths) of the LFKC enhance, in all cases, the left
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tail of the magnetization’s pdf, since smaller Fortuin-Kasteleyn
clusters favor the mixing of positive and negative spin clusters.
However, for large values of the aspect ratio, the pronounced
M = 0 behavior of the universal pdfs is mainly due to the
shifts of the density functions of the LFKC, discussed above.
Comparing their shapes, i.e., Figs. 3 and 4, we can appreciate
this evolution for the case of FBC with r = 1 and also for the
case with PBC and r = 4. The large fluctuations of the LFKC
and their shifts to smaller mean values induce similar behavior
on the statistically significant part of the Fortuin-Kasteleyn
clusters, which contribute and enhance the small M behavior
of the order-parameter pdf.

Let us now consider the scaling properties of |M| and
l∞, and the critical-exponent equivalence [32,34]. In order
to observe quantitatively the scaling properties of the above
distributions, we attempted to apply to our data a simple
power law, 〈Q〉 = AQL−β/ν , and furthermore other expan-
sions, including algebraic powers, but also logarithmic terms,
〈Q〉 = AQL−β/ν[1 + B ln (L)/L + C/L + · · · ]. For PBC and
almost all values of r , the simple power law produced stable
estimates with effective exponents converging to the 2D
Ising value β/ν = 0.125. Furthermore, by fixing the exponent
to the above expected value, and varying the width range
L = (Lmin − Lmax), we obtained smoothly behaving effective
values for the corresponding amplitudes AQ. Employing a
linear extrapolation in 1/Lmin to the above effective values, we
found very accurate estimates for the amplitudes in the ther-
modynamic limit. The same procedure was also followed us-
ing the simplest correction form 〈Q〉 = AQL−β/ν(1 + B/L),
giving final estimates which are the same, within error bars,
as those obtained by the simple power law. For the case of
FBC, the fitting attempts to the simple power law produce, in
general, overestimated values of the exponent, and by fixing
β/ν = 0.125, the resulting effective values of amplitudes AQ

deviate significantly from their asymptotic values. However,
the fitting attempts to the form 〈Q〉 = AQL−β/ν(1 + B/L)
gave a smooth behavior of effective amplitudes with small
deviations of their asymptotic values, allowing an accurate
estimation of the amplitudes.

In particular, for the case of PBC with r = 1, we found,
by applying a simple power law, β/ν = 0.1248(4) from
the magnetization data and β/ν = 0.1249(2) from the l∞
data, with corresponding amplitudes A|M| = 1.008(2) and
Al∞ = 1.007(2). However, this was an exceptionally good
case, while for FBC with r = 1, the simple power law, when
applied in the range L = 20–96, produces the results 〈|M|〉 =
0.581(5)L−0.146(2) and 〈l∞〉 = 0.556(4)L−0.145(2). Moving
to larger values of Lmin, upon using the range L =
60–96, we found 〈|M|〉 = 0.559(5)L−0.137(2) and 〈l∞〉 =
0.541(3)L−0.139(1). Thus, even the simple power law improves
the estimation by increasing Lmin. However, the fitting attempts
using the correction term are now most effective, giving, in the
range L = 20–96, 〈|M|〉 = 0.520(5)L−0.124(2)[1 + 1.07(9)/L]
and 〈l∞〉 = 0.504(4)L−0.125(2)[1 + 0.98(7)/L]. The sequence
of effective estimates resulting from the scheme with the
correction term and a fixed exponent to the expected value
β/ν = 0.125 converges smoothly to A|M| = 0.5239(4) and
Al∞ = 0.5031(4). These results indicate that the amplitudes
of 〈|M|〉 and 〈l∞〉 are, in general, different and, in the case of
FBC, the simplest correction term B/L is very effective since

TABLE II. Amplitudes of the power law 〈Q〉 = AQL−β/ν ob-
tained by the schemes detailed in the text using the data of
magnetization and the LFKC.

PBC FBC

r A|M| Al∞ A|M| Al∞

1 1.008(2) 1.007(2) 0.5239(4) 0.5031(4)
4 0.7204(1) 0.7073(1) 0.3550(10) 0.3250(50)
9 0.4674(2) 0.4251(3) 0.2470(60) 0.1970(30)
16 0.3436(4) 0.2826(4) 0.1896(2) 0.1335(2)
25 0.2727(2) 0.2033(2) 0.1530(4) 0.0965(1)
36 0.2259(2) 0.1542(2) 0.1278(2) 0.0732(1)
50 0.1912(12) 0.1198(3) 0.1088(3) 0.0567(4)
64 0.1689(9) 0.0988(9) 0.0962(4) 0.0466(2)
100 0.0764(2) 0.0697(6) 0.0764(8) 0.0325(2)

the effective estimates of the range L = 20–96 are already
very close to their asymptotic values.

The systematic application of the above-described ex-
trapolation schemes verifies that for all aspect ratios r ,
the amplitude A|M| is higher than Al∞ and, in fact, their
difference grows with increasing r . This is an interesting
topic related to the theoretical arguments of Hu [34] and
to the superscaling concepts reported by Watanabe et al.
in their study of percolation on rectangular domains [36].
Adapting this superscaling proposal of Ref. [36] to our
study at criticality, we assume that the above amplitudes
follow, for large r , a power law. This is equivalent to the
proposal 〈Q〉 = ar−zL−β/ν(1 + · · · ) and thus, for the relevant
amplitudes, we associate a superscaling exponent z. Watanabe
et al. [36] have pointed out the interest of a study of their
superscaling concept to correlated percolation models [34,46],
such as the present model. In order to verify these concepts,
in the realm of the present study, we have carried out an
accurate estimation of the amplitudes for all r considered here.
Our estimates are given in Table II and the general behavior
is illustrated in Fig. 8. The amplitudes of the magnetization
follow closely, for large enough r , say r � 9, a simple power
law of the form A|M|(r) = ar−z, with small corrections. Thus,
for PBC, we obtain A|M|(r) = 1.361(9)r−0.50(2), whereas for
FBC, A|M|(r) = 0.762(9)r−0.50(2). For the amplitudes Al∞ of
the LFKC, the deviations from the simple power law are
larger. Now, a correction term of the form B/r stabilizes
the behavior of the effective estimates. Thus, in the case of
PBC, we find Al∞ (r) = 3.01(10)r−0.816(14)[1 − 1.71(20)/r],
while Al∞ (r) = 1.42(5)r−0.816(14)[1 − 1.52(22)/r] for the
case of FBC. The above asymptotic behaviors have been
illustrated in Fig. 8 by drawing the corresponding lines
through the estimates in the range r � 3. As expected (see
also Ref. [36]), the power laws apply only for systems
with large r .

IV. CONCLUSIONS

To summarize our conclusions, the amplitudes of 〈|M|〉 and
〈l∞〉 are, in general, different and depend on the boundary
conditions. Their dependence on the aspect ratio r can
be meaningfully described by the superscaling concepts of
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FIG. 8. (Color online) Amplitude dependence on r and illus-
tration of the power law AQ(r) = ar−z on a double logarithmic
scale. The lines through the estimates in the range r � 3 represent
only the asymptotic behaviors, as also discussed in the main
text.

Ref. [36], and by estimating the corresponding exponents.
These superscaling exponents (z) are certainly different
for 〈|M|〉 and 〈l∞〉, but are independent of the boundary
conditions. This universality with respect to the boundary
conditions appears to be also valid, as we have shown, for
the approach of the cumulants to their limiting values for large
r . Our illustrations of the distribution functions allow for a
better understanding of the different behaviors of the Binder
cumulants and provide an interpretation showing the domi-
nance of the fluctuations of the LFKC and the importance of

their shifts for the corresponding order-parameter’s universal
distribution functions. Larger fluctuations of the LFKC and
their shifts to smaller values induce similar behaviors on the
statistically significant part of the Fortuin-Kasteleyn clusters,
enhancing the small order-parameter behavior, which is mainly
responsible for large deviations of the critical cumulant from
the value 2/3 of the ordered phase. A straightforward future
challenge emerging from the current work would be to test
the above findings for different lattice geometries and higher
dimensions.

The main issue of this work was to explain, by looking
at the geometrical sensitivity of the LFKC upon varying
the boundary conditions and the aspect ratio, the interesting
behavior of critical Binder cumulants of the order parameter.
As shown, these features are reflected in the distribution
functions of the LFKC and it should be underlined at this point
that one aspect of the fundamental achievement in the theory
of equilibrium critical phenomena, i.e., the confirmation of
universality and the calculation of critical exponents, has been
obtained via the pdfs of the main thermodynamic variables
of the system at criticality. The use of the universal character
of the order-parameter pdf in describing critical properties of
models in statistical mechanics has been shown to be quite
valuable [8,23,37–40,47], has been extended to the study of
pure and disordered magnetic systems, and is of current interest
(for a recent review and update on the topic, see Ref. [47]).
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MALAKIS, FYTAS, AND GÜLPINAR PHYSICAL REVIEW E 89, 042103 (2014)

[29] D. P. Landau and K. Binder, Monte Carlo Simulations in
Statistical Physics (Cambridge University Press, Cambridge,
2000).

[30] M. Weigel, Phys. Proc. 3, 1499 (2010).
[31] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
[32] M. D’Onorio De Meo, D. Heermann, and K. Binder, J. Stat.

Phys. 60, 585 (1990).
[33] P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. 26, 11

(1969); C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536
(1972); C. M. Fortuin, ibid. 58, 393 (1972); ,59, 545 (1972).

[34] C.-K. Hu, Physica A 119, 609 (1983); ,Phys. Rev. B 29, 5103
(1984).

[35] T. W. Burkhardt and B. Derrida, Phys. Rev. B 32, 7273 (1985).
[36] H. Watanabe, S. Yukawa, N. Ito, and C.-K. Hu, Phys. Rev. Lett.

93, 190601 (2004).

[37] A. D. Bruce, J. Phys. C 14, 3667 (1981).
[38] M. M. Tsypin and H. W. J. Blöte, Phys. Rev. E 62, 73 (2000).
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