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Nonlinear dynamics of trapped waves on jet currents and rogue waves
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Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and
numerically. For wave fields narrow band in frequency but not necessarily with narrow angular distributions the
developed asymptotic weakly nonlinear theory based on the modal approach of Shrira and Slunyaev [J. Fluid.
Mech. 738, 65 (2014)] leads to the one-dimensional modified nonlinear Schrödinger equation of self-focusing
type for a single mode. Its solutions such as envelope solitons and breathers are considered to be prototypes of
rogue waves; these solutions, in contrast to waves in the absence of currents, are robust with respect to transverse
perturbations, which suggests a potentially higher probability of rogue waves. Robustness of the long-lived
analytical solutions describing modulated trapped waves and solitary wave groups is verified by direct numerical
simulations of potential Euler equations.
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I. INTRODUCTION

In the last two decades there was a surge of interest
in the phenomenon of extreme or rogue waves in various
areas of physics, e.g., [1–3]. In the most studied area of
water waves in the ocean the main thrust of the studies was
the search for mechanisms of rogue waves in the absence
of currents [3]. The modulational (or Benjamin-Feir, BF)
instability of narrow-band wave fields has been identified as
a likely mechanism leading to formation of anomalously high
waves and a significant increase of their probability. This route
has been most intensively studied and is most effective for
one-dimensional (1D) wave propagation; the theoretical and
experimental modeling is the simplest. However, in reality
the 1D patterns are transversally unstable and hence, short
lived; there is a dramatic difference in the probability of
rogue events due to the BF instability for the strictly 1D and
two-dimensional (2D) wave propagation: The likelihood of
rogue events is much higher for the 1D propagation, moreover
it completely vanishes for wave fields with the angular spectra
width exceeding a certain threshold [3,4]. For most of the wave
fields in the ocean the angular spectra are not narrow [5], and
hence the 1D theory is not valid even qualitatively. On the
other hand, it is known that the rogue waves are much more
frequent on currents; the Agulhas current gained notoriety in
this respect [3,6].

To explain an increased probability of rogue waves on
currents the prevailing approach exploits separation of scales
between the typical wavelength and current, which leads to
the WKB or ray description with a special consideration of
caustics (see the literature reviews in [3,7,8]).

With the focus on nonlinear dynamics, various versions
of nonlinear Schrödinger equations (NLSE) were derived
and analyzed under general assumptions of slow current,
weak nonlinearity, and narrow-banded spectrum (see [7], and
references therein). In these works the BF instability was
found to be strengthened for waves on adverse intensifying
currents. The triggering of the BF instability of a narrow-band
field due to intensification of the current was considered in
[9]. However there is an essential feature not captured by the

existing NLS-type models: Waves propagating upstream can
be trapped by the current; there are multiple caustics. Such
trapped waves have been observed on the Gulf Stream and
were found to have considerably higher steepness than free
waves on current [10]. A more general and profound difficulty
is that there is no technique enabling one to describe wave
resonant interactions on currents; the waves refract on currents
and hence vary in space, while the resonant interactions and,
in particular, the resonance conditions have to be described
in the wave-vector space. A new approach suggested in [8]
allows one to overcome these obstacles. Instead of operating
with rays we deal with the modes propagating on jet currents
for which the standard nonlinear theory applies.

Here, based on the modal approach and weakly nonlinear
asymptotic expansions, we derive equations governing one-
dimensional wave evolution along the current; the transverse
structure of the field is being provided by the modes. For a
one mode we derive 1D NLSE without the constraint of a too
narrow angular spectra. In contrast to unguided waves, here the
NLSE solitary wave type solutions are robust. The robustness
of such wave patterns suggests a dramatic increase in the
probability of rogue waves. The predictions of the asymptotic
model are validated by direct numerical simulations of the
Euler equations.

II. MODAL REPRESENTATION FOR WAVES
ON JET CURRENTS

We consider wave motions on the free surface of an ideal
incompressible fluid of unit density; waves are propagating
along the Ox direction on a given vertically uniform unidirec-
tional steady current U = {U (y),0,0}.

The motions are governed by the standard Euler and
continuity equations in the domain occupied by the fluid
z � η, where η(x,y,t) is the water surface elevation; the water
depth is assumed infinite for convenience. These equations
are complemented with the standard boundary conditions for
gravity waves: dynamic and kinematic boundary conditions
on the surface and decay of velocities as z → −∞. We focus
on the evolution of waves trapped by the current; trapped
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modes are selected by the boundary conditions stipulating
lateral decay of velocities at y → ±∞.

In the linear setting the problem formulated above was
thoroughly examined in [8]. Making use of uniformity of the
problem with respect to x and t , the Fourier transform may
be applied with respect to these variables; then the complete
linear solution has the form of a superposition of traveling
waves propagating collinear to the current with some structure
in the (y,z) plane,

w = Re
∑

n

ŵn(y,z) exp (iωnt − ikx), (1)

where w(x,y,z,t) is the vertical component of fluid velocity
and index n numerates the lateral modes. The modes ŵn(y,z)
are specified by the two-dimensional boundary value problem
(BVP)
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ŵn = 0, (2)

ŵn|y→±∞ → 0, ŵn|z→−∞ → 0,

with �n(y) = ωn − kU . Each mode is characterized by its
cyclic frequency, ωn, and longitudinal wave number, k; we
choose k > 0 with no loss of generality.

The 2D BVP (2) may be either solved numerically or
reduced to a one-dimensional BVP using an asymptotic
separation of variables [8]. Here we adopt the second route,
which assumes the following representation:

ŵn = BnYn(y)Zn(z,y). (3)

Thus, the mode is specified by two real functions: Zn(z,y)
determines the vertical structure which depends on y slowly,
Yn∂Zn/∂y � dYn/dyZn, and is equal to one on the surface;
Yn(y) determines the mode transverse dependence. Constants
Bn may be complex.

Asymptotic 1D reductions of BVP (2) were derived in [8]
for two regimes: of “weak” currents (compared to the wave
phase velocity), and of “broad” currents (compared to the
longitudinal wave length). For the dominant wind waves and
swell we are primarily interested in, all oceanic currents are
weak in this sense. The corresponding 1D BVP is of the Sturm-
Liouville type,

d2Yn

dy2
+ 4k2

[
ωn

ωg

−
(

1 + kU

ωg

)]
Yn = 0, (4)

Yn|y→±∞ → 0.

Here ωg = √
kg denotes the frequency of linear gravity waves

unaffected by the current. The wave frequency ωn is the to-
be-defined eigenvalue of the problem. When the eigenmodes
of (4) are complemented by the nondecaying solutions of (4)
corresponding to passing trough modes, they form a complete
basis and thus provide an efficient tool for studying waves on
jet currents. For single-humped currents trapped modes require
kU < 0 to exist; waves must run against the current.

III. WEAKLY NONLINEAR MODEL FOR MODULATED
WAVES ON JET CURRENTS

Now we concentrate on the regime where nonlinear
interactions only between the trapped modes are essential.

Employing a standard asymptotic procedure based upon a
small parameter characterizing smallness of wave steepness:
ε ∼ k max |η| or, equivalently, smallness of fluid velocities,
ε ∼ k max |w|/ωg; it is straightforward to derive a variety of
evolution equations governing wave field nonlinear dynamics;
the resulting equations for constants Bn now being slow
functions of time and coordinate x are determined by the
choice of initial configurations of the field. In view of our
interest in rogue wave formation we focus on narrow-band
spectra and consider wave fields with the longitudinal spectrum
confined to ε vicinity of the chosen carrier wave number, k.

We stress that jet currents profoundly modify the picture
of wave resonances as compared to the freely propagating
deep-water gravity waves; crucially, three-wave resonances
become possible, which results in dynamical equations of the
three-wave-interaction type. However, it can be shown that in
the limit of weak currents, in which we are primarily interested,
the four-wave interactions dominate. A key feature of the
four-wave regimes is that to leading order wave dynamics
is potential. A detailed analysis of all the regimes will be
reported elsewhere. Here we provide and briefly discuss the
new version of the NLSE which we obtain for the wave fields
belonging to a single, say nth, trapped mode with spectra
narrow in longitudinal wave numbers k; it reads
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(5)

κ =
∫ ∞
−∞ Y 4

n dy∫ ∞
−∞ Y 2

n dy
.

Equation (5) describes evolution of the surface elevation,

η = Re[A(x,t)Yn(y) exp (iωnt − ikx)]. (6)

A is linked to the vertical velocity component as B = iωnA;
the subscripts for A and B are omitted for brevity. Sets of
similar coupled equations appear when more than one mode is
initially excited. The detailed derivation of (5) and its coupled
generalizations will be reported elsewhere.

Equation (5) differs from the classical NLSE in the still
water by the account for the Doppler frequency shift and a
reduced nonlinear coefficient due to factor κ . By virtue of the
Cauchy-Schwarz inequality κ < 1.

The NLSE (5) is of focusing type, hence it supports the
BF instability and being integrable it admits a wide class of
well studied exact solutions of variable degrees of complexity
[11]. The basic solutions are uniform waves, localized solitary
wave groups (envelope solitons), and breathers. Being a
one-dimensional evolution equation, (5) provides a dramatic
simplification of a description of the complicated dynamics of
2D nonlinear trapped wave patterns. Crucially, in contrast to
the situations involving unguided waves these 1D patterns are
stable with respect to 2D perturbations and hence robust. In
particular, the 1D NLSE envelope solitons are asymptotics of
the initial problem with generic localized initial data, which is
not the case in the absence of a waveguide.
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FIG. 1. (Color online) Simulation of propagation of one trapped
mode with k = 0.1 rad/m and kH/2 = 0.15 with an initial 5%
longitudinal modulation. Surface elevation at time t = 829.4 s; the
maximal wave is characterized by kH/2 ≈ 0.32. The longitudinal
cross section through the peak of the maximal wave is shown by lines
above the current maximum and above the x axis. The profile of the
current is shown above the y axis.

IV. NONLINEAR DYNAMICS OF TRAPPED WAVES IN
SIMULATIONS OF THE PRIMITIVE EQUATIONS

To verify the obtained asymptotic description a few key
solutions of (5) are tested below by means of strongly non-
linear numerical simulations of the primitive hydrodynamic
equations. The high order spectral method (HOSM, [12])
to solve the potential Euler equations is adopted for the
situations when the four-wave interactions dominate. The
computational domain is periodic in both x and y coordinates.
The current is chosen to be close to sech2y, and it is taken to be
periodical in y with widely separated humps; it is specified as
U = Umaxcn

2(2K
y

Ly
,s2), where K(s2) is the complete elliptic

integral of the first kind, Ly is the computational domain size
in the Oy direction, and Umax = −2 m/s and s = 0.9 are used.
The current varies from zero to Umax at y = 0; it is shown with
arrows in Figs. 1 and 2.

A. Single trapped mode

In the first experiment we verify the ability of trapped waves
belonging to a single mode to propagate with no noticeable
radiation in the fully nonlinear system. The initial condition
has the form of a uniform train of ten Stokes waves with
the wave number k = 0.1 rad/m and steepness kH/2 = 0.15
(where H is the trough-to-crest wave height), modulated in
the transverse direction according to the fundamental (n = 0)
mode function, Y0(y). The function Y0 is found by solving (2)
numerically (see details in [8]).

The evolution of an initially uniform wave train of trapped
waves is simulated for about 80 wave periods. It propagates
steadily with no evidence of significant radiation or structural
deformation [13]. The presence of some small-amplitude
ripples is natural since the initial condition is not exactly
a one-mode solution. The examination of the instantaneous
wave height record gives some clues of two processes which

FIG. 2. (Color online) Simulation of a solitary group of trapped
waves belonging to the fifth mode (the surface at t ≈ 868 s is shown;
see videoclip [13]). The snapshot longitudinal cross section is shown
by red solid lines above the current maximum and above the x axis;
the corresponding sections of the initial condition are shown by thin
black curves. The snapshot transverse cross section is shown in front
of the surface above the y axis.

lead to a slow decrease of the trapped wave height: (i) about
10% of wave height is lost during the first ≈10 wave periods
(we attribute this to the imperfect initial conditions); (ii) a
longer-term slow trend resulting in the total loss of about 2%
of energy over the simulated 80 wave periods is apparently
caused by interaction with noise. In other respects the train of
trapped waves exhibits robustness. The peak frequency of the
numerical solution corresponds to the eigenfrequency of the
boundary value problem.

B. Modulational instability of a single trapped mode leading to
a rogue wave pattern

An initial 5% modulation along Ox was applied to the
wave train used in the previous simulation to initiate the
modulational instability. Also, the reference simulation was
performed when the current was set equal to zero, and the train
had no modulation in the transverse direction. Supporting the
NLSE prediction, the initial modulations grow in both cases
with the maximal waves eventually reaching the breaking limit.

The initially modulated train of trapped waves undergoes
further localization of wave energy, and the emerging large
wave breaks at some instant, which leads to blowing up of the
numerical iterations in time. The picture of surface elevation
at the moment close to the wave breaking is given in Fig. 1.
Due to the factor κ in (5), the evolution governed by the NLSE
for trapped waves on currents is slower compared with the
1D free gravity waves. Indeed, the curves of instantaneous
maximal wave heights versus time in the simulations discussed
above may be fitted onto each other, when the time is scaled
with factor 0.65 in the case of trapped waves. This value
only slightly differs from κ ≈ 0.71 calculated for the chosen
profile of the current; the discrepancy is most likely due to the
inaccuracy in prescribing the single-mode initial conditions
for the trapped wave simulation.
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C. Solitary groups of trapped waves

Envelope solitons are the most fundamental solutions
supported by the 1D NLSE; they represent asymptotics of
the initial problem with generic localized initial data. The
2D generalizations of the NLSE for deep-water waves also
admit planar envelope soliton solutions, but they are no longer
asymptotics of the initial problem and are known to be unstable
with respect to long transverse perturbations [14] and, hence,
relatively short lived.

To specify the initial condition for the strongly non-
linear simulations we use the exact analytic solution to
Eq. (5) in the form of an envelope soliton, A(x,t = 0) =
As sech(

√
2k2Asx), with the transverse shape prescribed by

the modal function, Yn(y); two cases (n = 0 and n = 4)
were considered. In the runs the carrier wave has the same
longitudinal wave number, k = 0.1 rad/m, though the intensity
is smaller, kAs ≈ 0.12.

Figure 2 shows the result of simulation of a solitary wave
which corresponds to the fifth mode. The surface snapshot
corresponds to the moment when the solitary group has passed
the computational domain twice, that is. about 40 wave lengths.
The longitudinal section of the solitary group is shown by lines
above the maximum of the current and above the x axis (red
solid line); the transversal section of the group is shown in front
of the surface above the y axis (red solid line). These sections
are compared with the corresponding sections of the initial
condition (thin black curves). The amplitude of the solitary
wave group ends up somewhat reduced compared to the initial
condition; the radiated wave patterns are discernible in the
figure. The survived intense solitary wave group in Fig. 2 is an
indication of the robustness of such groups of trapped waves,
although the solitary group produces some radiation each time
it interacts with other wave patterns which exist in the simula-
tion domain [13]. In the course of evolution the group is slowly
losing energy; the total drop of the maximum wave height over
120 wave periods is about 20%–25%. The solitary group of
waves belonging to the fundamental mode preserves energy
better, though some radiation is observed as well [13]. The
decrease of maximum wave height over the same time of sim-
ulation is about 10%–15%. The patterns causing radiation by
the groups can be viewed as an artifact of the imperfect choice
of the initial conditions, or an unavoidable element of the
imperfect reality the solitary waves are likely to encounter in
nature.

V. CONCLUDING REMARKS

In the context of oceanic waves the robust solitary groups
of trapped waves found to be possible on jet currents represent

a unique case of intense patterns of deep-water gravity waves
localized in both dimensions; these long-lived groups can
emerge as asymptotics of generic initial conditions. The
employed asymptotic theory assumes that the characteristic
spatial scale of nonlinear evolution along Ox far exceeds the
characteristic width of the trapped mode, which is often the
case in the oceanic conditions.

We stress that the exploited one-dimensionalization of
wave dynamics occurs without a narrow angular spectrum
assumption; in the example shown in Fig. 2 the width of the
spectrum is O(1). It makes relevant for oceanic conditions a
huge corpus of theoretical and laboratory studies concerned
with strictly one-dimensional wave dynamics. Waves in the
ocean are typically characterized by a relatively broad angular
spectra, so that nonlinearity is hardly able to balance dispersive
effects and support long-lived coherent patterns; even for
swells with narrow angular spectra about 10◦ [5] this nar-
rowness is seemingly not enough to balance dispersive terms
with much weaker nonlinearity. This makes the applicability
of 1D and even 2D NLSE models to real sea states doubtful.
In our setting the 1D NLSE model is applicable wherever a
single trapped mode is dominant and as long as its frequency
spectrum is narrow.

As long as to the leading order the trapped waves are
described by the integrable 1D NLSE, all powerful mathe-
matical techniques and analytic solutions obtained since the
1970s may be applied (e.g., [11], and references therein).
Correspondingly, the same well studied dynamics resulting
in extreme waves for planar waves in other contexts (e.g.,
[1,2]) holds for the trapped waves. In particular, a higher
likelihood of rogue waves in the field of trapped waves is
expected due to the existence of long-lived coherent nonlinear
wave patterns. Exploiting integrability of the NLSE, elements
of deterministic forecasting of oceanic rogue waves might be
possible to elaborate for particular conditions.

The situations when several or many trapped modes and/or
passing modes are present and interact with the trapped waves
require a dedicated study. Here we note that the phenomenon of
one dimensionalization of wave dynamics and its implications
we discussed are not confined to water waves on currents;
similar effects are likely in all branches of physics wherever
there are nonlinear guided waves.
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