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An adaptive-mesh-refinement (AMR) algorithm for the finite-difference lattice Boltzmann method (FDLBM)
is presented in this study. The idea behind the proposed AMR is to remove the need for a tree-type data structure.
Instead, pointer attributes are used to determine the neighbors of a certain block via appropriate adjustment of its
children identifications. As a result, the memory and time required for tree traversal are completely eliminated,
leaving us with an efficient algorithm that is easier to implement and use on parallel machines. To allow different
mesh sizes at separate parts of the computational domain, the Eulerian formulation of the streaming process is
invoked. As a result, there is no need for rescaling the distribution functions or using a temporal interpolation at the
fine-coarse grid boundaries. The accuracy and efficiency of the proposed FDLBM AMR are extensively assessed
by investigating a variety of vorticity-dominated flow fields, including Taylor-Green vortex flow, lid-driven cavity
flow, thin shear layer flow, and the flow past a square cylinder.

DOI: 10.1103/PhysRevE.89.033310 PACS number(s): 47.11.Qr

I. INTRODUCTION

The adaptive-mesh-refinement (AMR) technique is a log-
ical extension of the concept behind invoking nonuniform
grids to efficiently utilize computer resources. Grids of
higher resolution are used wherever a more accurate solution
is desired. There are numerous scientific and engineering
applications with large variations in the scale of their problems
of interest, for which AMR routines are most suited. For
instance, in complex fluids, higher resolution is preferred near
the interface between different phases because of the rapid
changes in the fluid properties.

The concept of AMR for structured grids was pioneered by
Berger and co-workers [1,2]. Berger and Colella [2] proposed
a grid-based AMR for solving two-dimensional hyperbolic
equations in a conservative form. Rectangular, overlapping
grid patches were placed in regions with a need for higher
resolution. Each patch consisted of a varying number of cells
of the same size. This strategy, however, is not flexible in
adaptivity, nor is it optimal in terms of computational cost
and memory management because the overlapping rectangular
patches may cover parts of the computational domain that do
not need to be resolved, resulting in a waste of computer
memory and time. Moreover, the entire grid hierarchy must
be rebuilt once the refinement-derefinement is carried out.
de Zeeuw and Powel [3] proposed an AMR scheme with a
quad-tree data structure in two dimensions (2D). The idea was
to bisect each cell, once it was flagged for refinement, along the
coordinate directions. They claimed that finding the neighbors
of a given cell was superior to storing eight integer words per
cell. Consequently, they preferred to perform a tree search to
find the neighboring cells rather than storing the cell-neighbor
information via pointers, which cost them approximately 25%
of their computation time. To overcome the computational
overhead of the tree-based approach, a fully threaded tree
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(FTT) AMR was proposed by Khokhlov [4]. In the FTT
algorithm [4,5], the computational domain is covered by cubic
cells (octs) in 3D. Each oct has eight child cells arranged in
an oct-tree data structure. Although tree traversal to find the
nearest neighbors of a given cell is avoided using pointers
and linked lists, the tree structure must still be maintained
and modified for traversing the threaded tree during search
operations. The FTT data structure is, however, simpler and
more efficient than the tree-based approach. Compared to an
equivalent uniform mesh, a minimum factor of 10 savings in
memory and computation time was reported using FTT [4].
Recently, Ji et al. [6] proposed a cell-based structured AMR
that replaces the tree structure with a hash table. Accordingly,
the computer memory required for storing the data structure
is reduced. The penalty paid for this savings in memory is of
course the computation overhead arising from the calculation
of the connectivity information, such as finding the neighbors
of a particular cell. Needless to say, the hashing technique
relies on external resources for maintaining the data structure
and connectivity information, which prevents the user from
having a transparent and stand-alone AMR routine.

There are numerous AMR packages available [7–12] in the
literature. Among them, PARAMESH [7] is designed to extend
an existing serial code with a uniform mesh to a parallel code
with AMR capabilities. It uses a hierarchy of structured blocks
containing a fixed number of cells. While the data structure is
that of a tree, the constituent elements are regular blocks that
contain a fixed number of computational cells as opposed to an
irregular number of cells in the grid-based AMR [2]. Instead of
storing the connectivity information for a single cell, an array
of cells within each block shares the data, reducing the memory
overhead. On the downside, however, time-consuming tree
traversal and search operations must still be performed to
find the neighbors of a given block. Constructing a parallel
AMR algorithm is yet another demanding issue. There is
ongoing research concerning paralleling AMR algorithms and
the load balancing techniques associated with them. For further
information on the AMR and its challenges, the interested
reader is referred to an excellent discourse by Rantakokko and
Thuné [13].
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Over the past two decades, the lattice Boltzmann method
(LBM) has become increasingly popular [14]. It has been
improved and utilized by many researchers in different
areas [15]. Different strategies have been used to facilitate
implementation of the LBM on nonuniform grids. In addition
to interpolation-supplemented LBM [16,17], a variety of
finite-difference [18–20], finite-volume [21–23], and finite-
element [24] lattice Boltzmann equation (LBE) models have
been proposed. Most of the available LBE methods deal
with local grid refinement with static refinement of the
mesh at the beginning of simulation [25–28]. Few studies,
however, have been focused on developing a dynamically
refined grid for lattice Boltzmann models. Tölke et al. [29]
proposed such a scheme for the simulation of multiphase
flows. They invoked a data structure containing a hierarchy
of tree-type grids. Yu and Fan [30] used the PARAMESH

toolkit [7] to develop an AMR LBM for the simulation of
a bubble rising under buoyancy. Recently, a stencil adaptive
LBM in 2D was proposed by Wu and Shu [31]. The idea
is to combine two types of symmetric stencils to achieve
adaptivity for a nine-velocity lattice in 2D. Chen et al. [32]
proposed an interpolation-supplemented LBM on quad-tree
grids. They used a back-and-forth error compensation and
correction algorithm to maintain the second-order accuracy
of the streaming step while invoking a linear, rather than
quadratic, interpolation. Most recently, Eitel-Amor et al. [33]
developed an AMR LBM with a cell-centered data structure,
as opposed to the conventional LBM with vertex points.

Most of the above-mentioned AMR LBM schemes use
different time steps on grids with different lattice sizes. This
requires storing additional data from the previous time step(s)
to perform temporal interpolation for coarse grids. The afore-
mentioned methods modify the relaxation time, according to
the grid spacing, to keep the viscosity constant in the fine and
coarse grids. This approach has two evident shortcomings.
First, the maximum grid ratio, which is the ratio of the
coarsest and finest grid spacings, is limited by the choice of the
relaxation time. Increasingly larger relaxation times are needed
on the finer grids and smaller relaxation rates are required
on the coarser grids and these choices are restricted by the
constraints of a small Knudsen number and numerical stability,
respectively, which in turn limit the maximum allowable grid
aspect ratio. Second, to maintain a continuous solution across
grid boundaries, rescaling the distribution functions on the
borders of fine-coarse grids is inevitable.

In the present study, we propose a lattice Boltzmann
model with an adaptive-mesh-refinement strategy. The aim
of this study is twofold. On the one hand, an efficient and
straightforward algorithm for AMR is proposed that does
not need a tree structure to maintain the connectivity data
between the blocks. The proposed AMR algorithm alone
can be used to solve partial differential equations including,
but not limited to, the Navier-Stokes equations. On the
other hand, in conjunction with the AMR, a finite-difference
lattice Boltzmann method (FDLBM) is developed. Unlike
the previous multiblock LBMs, the current model does not
manipulate the speed of sound (as is the case in, e.g., [26]), nor
does it need to rescale the distribution functions at the borders
of fine-coarse blocks. All of the blocks at different refinement
levels are advanced in time with the same time step but differ-

ent Courant-Friedrichs-Lewy (CFL) numbers depending on
the grid resolution. Consequently, temporal interpolation of
the solution on the coarser blocks is not required to provide
the boundary data for the finer blocks. It is worth mentioning
that comparison of the proposed FDLBM with the standard
LBM on nonuniform grids is not covered in this study.

The rest of the paper is organized as follows. The AMR al-
gorithm will be elaborated in Sec. II, followed by a description
of the FDLBM in Sec. III. The verification and validation of the
proposed FDLBM AMR is presented in Sec. IV. This includes
the evaluation of the convergence rate for the Taylor-Green
decaying vortex flow, comparison of error indicators in the
simulations of cavity flow and Kelvin-Helmholtz instability of
a shear layer, and transient flow over a square cylinder. The
paper is concluded in Sec. V with a brief summary.

II. ADAPTIVE-MESH REFINEMENT

We start by describing the architecture of our AMR scheme.
For the sake of simplicity in illustration and explanation, we
elaborate the AMR algorithm in 2D. The corner stone of the
present AMR is a rectangular block with nx × ny vertex nodes,
as depicted in Fig. 1. Initially, the computational domain is
covered by a single block or, depending on the geometry,
multiple blocks, referred to as the root block. The root block
is obviously too coarse to start with; therefore, it is flagged for
refinement. Upon refinement, four child blocks (eight child
blocks in 3D) are created. The refinement process is continued
until the maximum refinement level lmax is reached. The blocks
at the highest refinement level are called leaf blocks because
they have no children. The constructing blocks are self-similar
in the sense that they have the same number of vertex points
but different grid spacings depending on their hierarchical
levels. The root block has a refinement level of l = 0, while
the refinement level associated with the finest block is l = lmax,

(a) (b) (c)

(d) (e) (f)

FIG. 1. (Color online) Block-structured AMR: configuration of
the blocks (black lines) containing an interface (red-color contour)
for (a) lmax = 0, the root block with (nx × ny) = 5 × 5 vertex nodes
(green lines); (b) lmax = 1; (c) lmax = 2; (d) lmax = 3; (e) lmax = 4; and
(f) lmax = 5, final arrangement of the blocks.
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where lmax is an input parameter usually chosen in the range
lmax ∼ 5–8. The grid spacings can be computed from the size
of the root block in the x and y directions, Lx and Ly , by

�x = Lx

(nx − 1)2l
, �y = Ly

(ny − 1)2l
. (1)

It is clear that the resolution increases by a factor of 2
when moving from a parent block to its child at the next
refinement level. It is worth mentioning that, in the LBM,
all the quantities in Eq. (1) are integers; therefore, the grid
spacings can be determined at no cost whenever necessary.
However, it is preferable to store the connectivity information.
Each block, which is a derived type in FORTRAN, stores
its parent identification (ID) and its level of refinement. It
also holds four pointers to its children, eight pointers to its
orthogonal and diagonal neighbors, and a logical variable that
indicates whether it is a leaf block. Unlike the FTT [5] or
the cell-based AMR [6], we keep track of all the pointers
to neighbors and of all the children IDs of a given block.
This increases the performance of the code by avoiding “if
statements” or “lookup tables” to find the neighbors of a certain
block because the position of a block and its refinement level
are required to find the neighboring blocks. We will further
explain the key differences later on.

A block of cells has some advantages over a single cell.
First, the memory required to store connectivity information
and other necessary data is significantly reduced because
each block has (nx − 1) × (ny − 1) cells that share the same
attributes. Second, there is no need to refine additional cell
layers around a refined cell to maintain a smooth solution
across a fine-coarse boundary; this is automatically taken
care of using the block-structured scheme. To have a smooth
solution, however, a constraint requiring at most one level
jump between the refinement levels of neighboring blocks is
imposed in both orthogonal and diagonal directions.

The AMR hierarchy is built by noting that the neighbor-
neighbor relation between two adjacent blocks with different
levels is not reciprocal [4]. For example, in Fig. 2(a), the east
neighbor of block A2 is block B, while the west neighbor
of block B is not block A2. Indeed, the west neighbor of
block B is block A (A2’s parent block), which is at the same
refinement level as block B. That is, the neighbors of a given
block can be at the same level or at a lower level, but not at
a higher refinement level; otherwise some blocks will end up
having two neighbors on at least one side, which impairs the
consistency of and causes ambiguity in the AMR algorithm,
as is the case in [6].

The key strategy of the present AMR, which relieves us
from the necessity of a tree-type data structure, is the proper

(a) (b)

FIG. 2. (Color online) Neighboring blocks at different refine-
ment levels: (a) before refinement and (b) after refinement.

(a) (b)

FIG. 3. (Color online) Interblock communications via ghost
nodes: blue circles (with a +) are (a) the ghost nodes for the fine
block to the left, to be filled from the data points of the coarse block
(×) to the right. (b) Interpolation points.

allocation of the child pointers of a newly created block along
with a unique designation of the pointers that determine the
neighboring blocks. To illustrate this point, let us consider
blocks A4 and B in Fig. 2. The east neighbor of block A4 is
assigned by associating its pointer with the third child of the
east neighbor of its parent, that is, the third child of block B.
The FORTRAN pseudocode for this reads as

Block(A4)%East Neighbor

=> Block(A)%East Neighbor%child(3).

On the other hand, referring to Fig. 2(a), the child pointers
for block B, which is still a leaf block with no children, are
assigned to their parent ID. Therefore, the east neighbor of
block A4 is pointing to block B at this time. Upon refinement
of block B in Fig. 2(b), four child blocks are created and their
pointers IDs are updated automatically. The east neighbor of
block A4 is then pointing to block B3. It is worth noting that the
pointers to neighbors are allocated only once upon the creation
of the block. After that, no further modification to these
pointers is necessary. Once the child IDs are updated, these
pointers will automatically point to the active neighboring
block.

Now that the connectivity information for interblock and
intrablock communications is established, each block should
grant access to the portion of the data from the adjacent blocks.
This is accomplished by using ghost nodes on each side of the
blocks (see Fig. 3). For those neighboring blocks that are at the
same refinement level, for example, A1 and A2 or A4 and B3
in Fig. 2(b), the corresponding ghost nodes are easily filled.
However, if the neighboring block is one level coarser, as is
the case in Fig. 3(a), an interpolation is required. One option
would be to use a bilinear interpolation to fill the unavailable
data points according to

f (x,y) = (x − x1)(y − y1)

(x0 − x1)(y0 − y1)
f (x0,y0)

+ (x0 − x)(y − y1)

(x0 − x1)(y0 − y1)
f (x1,y0)

+ (x − x1)(y0 − y)

(x0 − x1)(y0 − y1)
f (x0,y1)

+ (x0 − x)(y0 − y)

(x0 − x1)(y0 − y1)
f (x1,y1), (2)
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which, for the configuration shown in Fig. 3(b), can be
simplified to

f (x,y) = f (x0,y0) + f (x1,y0) + f (x0,y1) + f (x1,y1)

4

+O(�x2). (3)

Another option is to use a higher-order interpolation
scheme, such as the following biquadratic interpolation written
at point (x,y) in Fig. 3(b):

f (x,y) = [9f (x0,y0) + 18f (x1,y0) − 3f (x2,y0)

+ 18f (x0,y1) + 36f (x1,y1) − 6f (x2,y1)

−3f (x0,y2)−6f (x1,y2) + f (x2,y2)]/64+O(�x3).

(4)

As will be shown later, not only does the bilinear interpolation
lead to less accurate results, but also it causes a pressure jump
across the interface of fine-coarse blocks. For the case that a
block is adjacent to an external boundary, the corresponding
boundary condition is applied instead of filling the ghost nodes.

III. FINITE-DIFFERENCE LATTICE
BOLTZMANN METHOD

The discrete Boltzmann equation (DBE) for nearly incom-
pressible single-phase flows [34] with a single-relaxation-time
collision operator can be written as

∂fα

∂t
+ eα · ∇fα = −fα − f

eq
α

λ
, (5)

where fα is the particle distribution function, t is the time, and
λ is the relaxation parameter. For the nine-velocity lattice used
in this study, the microscopic velocity set is given by

eα =

⎧⎪⎨
⎪⎩

(0,0), α = 0

(cos θα, sin θα), θα = (α − 1)π/2, α = 1–4√
2(cos θα, sin θα), θα = (2α − 9)π/4, α = 5–8

(6)

and the modified equilibrium distribution function is [34]

fα = wα

[
p + ρ0c

2
s

(
eα · u

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

)]
, (7)

where cs = 1/
√

3 is the lattice speed of sound and the weight
coefficients are w0 = 4/9, w1–4 = 1/9, and w5–8 = 1/36. The
density ρ0 is constant and the pressure and velocity are
calculated from the following relations:

p =
8∑

α=0

fα, ρ0c
2
s u =

8∑
α=1

eαfα. (8)

Following the idea proposed in [20], we recast the DBE (5)
into two separate steps:

collision

f̂α = fα − fα − f
eq
α

τ + 0.5
(9)

and streaming

∂f̂α

∂t
+ eα · ∇f̂α = 0, (10)

where τ = λ/�t is the dimensionless relaxation time and
�t is the time step. Because of the Eulerian nature of
the streaming step (10), temporal and spatial discretizations
are now decoupled, allowing us to have different spatial
resolutions irrespective of the time step. The Taylor-series
expansion of the streaming equation is then approximated by

f̂α(x,t + �t) = f̂α(x,t) − �teα · ∇f̂α

∣∣∣∣
(x,t)

+ �t2

2
(eα · ∇)2f̂α

∣∣∣∣
(x,t)

. (11)

Discretizing the first and second derivatives using central
differences along characteristic lines leads us to the following
Lax-Wendroff scheme, with second-order accuracy in both
time and space:

f̂α(x,t + �t) = f̂α(x,t) − σ [f̂α(x,t) − f̂α(x − �xα,t)]

− 1
2σ (1 − σ )[f̂α(x + �xα,t) − 2f̂α(x,t)

+ f̂α(x − �xα,t)], (12)

where σ = |eα |�t

�xα
is the CFL number and �xα is the grid

spacing in the direction of eα . As can be seen in Eq. (12), when
the CFL number is equal to one (σ = 1) the streaming process
collapses into the perfect shift f̂α(x,t + �t) = f̂α(x − �xα,t),
as is the case in the conventional LBM. This occurs when the
spatial resolution is at its finest level, for instance, close to
the solid walls, which is favorable because this solution is the
most accurate one. At other points, where the CFL number is
less than one, the streaming step is solved with second-order
accuracy in time and space.

Since the collision step is local, we only need to pro-
vide boundary conditions for the streaming step, as will
be described in the following section. Also, in the present
study the collision step is conducted using the multiple-
relaxation time (MRT) [35]. This affects only the collision step
in Eq. (9) to

f̂α = fα − M−1ŜM
(
fα − f eq

α

)
, (13)

where M is the orthogonal transformation matrix and M−1 is
its inverse [35]. The diagonal relaxation matrix is

Ŝ = diag(0,se,sε,0,sq,0,sq,sν,sν). (14)

The zero elements in the diagonal relaxation matrix correspond
to the conserved quantities (density and momentum in the x

and y directions). The relaxation rates related to the energy
mode are set to se = sε = 1 and the one related to the
energy flux is chosen as sq = 1.7. These relaxation rates are
chosen according to linear stability analysis [35,36]. The last
two elements are related to the regular relaxation time, and
therefore to the kinematic viscosity, by

sν = 1

τ + 0.5
, ν = τc2

s . (15)

IV. NUMERICAL RESULTS

One of the key components of any AMR algorithm is
an error indicator routine to determine whether the mesh
in a particular region needs to be refined. It is crucial to
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have a consistent and reliable estimator to obtain an accurate
solution wherever it is needed. Because we are dealing with
vortex-dominated flow problems, several refinement criteria in
a dimensionless form, based on vorticity, are examined in the
following sections.

The magnitude of the dimensionless vorticity is used as the
first error indicator:

ε1 = |ω∗| =
∣∣∣∣∂v∗

∂x∗ − ∂u∗

∂y∗

∣∣∣∣, (16)

where the variables with an asterisk are dimensionless. The
reference velocity U0 and the length scale L are used to
nondimensionalize the vorticity. The vorticity has been used
as the refinement criterion in other studies as well (e.g., [9]).

The second indicator is a variation of the relative error in
vorticity:

ε2 =
√

(�xω)2 + (�yω)2

|ω| , (17)

where �x and �y are the undivided first derivatives in the
x and y directions, respectively. A similar criterion was also
used in Refs. [10,11]. This criterion is mostly useful when the
mesh close to the walls needs to be refined, as will be seen in
the simulation of cavity flow.

The final indicator is based on the so-called Q criterion
[37,38]

ε3 = Q = ‖�‖2

‖S‖2
, (18)

where S is the rate of strain tensor and � is the rate of rotation
tensor. These tensors are the symmetric and antisymmetric
parts of the velocity gradient tensor, respectively. Here
Q > 1 indicates regions with larger vortical strength than shear
strength.

In this paper, the time step is fixed at �t = 1 (all the
dimensions are in lattice units). At every time step, the errors
are calculated for all the leaf blocks. A block is flagged for
refinement if the indicator is above a prescribed value ε > εr .
Similarly, a block is marked for derefinement if ε < εd . The
actual refinement-derefinement is performed by considering
the one-level-jump rule for the refinement level of neighboring
blocks. In this study, the typical thresholds for refinement and
derefinement are, respectively, εr = 0.2/U0 and εd = 0.1/U0

when using the dimensionless vorticity magnitude ε1, εr = 0.2
and εd = 0.1 when using the relative error in vorticity ε2,
and εr = εd = 1 when using the Q criterion ε3 as the error
indicator.

A. Taylor-Green vortex flow

As a test problem, we consider the Taylor-Green decaying
vortex flow in a periodic domain with the following analytic
solution [36,39,40]:

ua(x,y) = −U0 cos(kx) sin(ky) exp(−t/tc),

va(x,y) = U0 sin(kx) cos(ky) exp(−t/tc), (19)

pa(x,y) = p0 − ρ0U
2
0

4
[cos(2kx) + cos(2ky)] exp(−2t/tc),

FIG. 4. (Color online) Pressure contour in decaying vortex flow:
comparison between (a) bilinear and (b) biquadratic interpolations.

where k = 2π
L

is the wave number and tc = 1
2νk2 is the viscous

time. The constant parameter p0 is set to zero and the initial
conditions are set by calculating Eq. (19) at t = 0.

In order to assess the accuracy of the proposed model, three
systematically refined grids are considered at Re = 20. The
Mach number of the flow Ma = U0/cs is kept below 0.017.
For each case, the left half of the domain is covered with
blocks with �xα

|eα | = 1, while the right half of the domain consists

of blocks with �xα

|eα | = 2 (see Fig. 4). This has two imminent
implications. First, the conventional perfect shift is implied
as the solution to the streaming equation (10) on the left side
of the domain, while the Lax-Wendroff scheme with σ = 0.5
gives the solution on the right side. Second, at the interface
between the fine-coarse blocks in the middle of the domain, an
interpolation is necessary to provide the distribution functions
needed to perform the streaming step on the finer blocks. This
gives us the opportunity to examine the effect of interpolation
schemes on the order of accuracy of the model as well.

The computations are done for three different values
of maximum refinement level lmax = 3, 4, and 5, which
correspond to the domain lengths of L = 64,128, and 256,
respectively. The numerical results are compared to the
analytical solution given by Eq. (19) at t = tc and the error
is measured by calculating the L2 norm

‖δu‖2 =

√√√√√√
∑
x,y

[(u − ua)2 + (v − va)2]

∑
x,y

(
u2

a + v2
a

) , (20)

where u and v are the macroscopic velocities computed using
FDLBM and the summation is taken over the entire domain.

As can be seen in Fig. 5, bilinear interpolation degrades
the order of accuracy of the FDLBM to first order. This is
due to the fact that, although bilinear interpolation gives us
a second-order-accurate value for the distribution function, it
causes the gradient calculation of the distribution function
in the streaming step (10) to be of first-order accuracy,
thus reducing the overall accuracy of the FDLBM to first
order. Comparing the bilinear and biquadratic interpolations
in Fig. 5, we observe that the bilinear interpolation not only
makes the FDLBM first order, but also produces an error
that is about one order of magnitude larger than that of
the biquadratic interpolation. Moreover, as shown in Fig. 4,
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Nx

⎥⎜
δu

⎥⎜
2

64 128 192 256 320

10-3

10-2

10-1

bilinear
biquadratic

slope -2

slope -1

FIG. 5. Convergence test: order of accuracy of the proposed
model using bilinear and biquadratic interpolations.

bilinear interpolation causes a discontinuity in the pressure
at the border of fine-coarse blocks. This behavior was also
observed by Lagrava et al. [28]. It is worth mentioning,
however, that when we adaptively refine-derefine the mesh,
this pressure jump across the interface of fine-coarse blocks
is greatly suppressed. Nevertheless, the bilinear interpolation
should be used with great care.

B. Lid-driven cavity flow

A lid-driven cavity flow is simulated to further validate and
evaluate the accuracy of the code with regard to the error
indicators introduced earlier. The Reynolds number of the
flow Re = U0L/ν is set to 3200. The lid of the cavity, at
the top, is moving to the right with U0 = 0.1 (Ma = 0.17).
Figure 6 shows the streamlines for three different error criteria
along with the streamlines on a uniform mesh after 200 000
iterations. Qualitatively, the first and the second error criteria,
defined in Eqs. (16) and (17), seem to be more successful
in capturing the large eddies at the corners of the cavity.
The third error criterion, however, has failed to capture the
eddies, especially the smaller one at the top left corner, as
elegantly as the other two indicators. The arrangement of the
blocks for all the refinement criteria can be seen in Fig. 7.
It is interesting to note that, although the first two plots in
Fig. 7 have substantially different configurations, they result
in almost the same solution, qualitatively. On the other hand,
the performance of the last estimator, based on the Q criterion,
is very poor in detecting the large gradient regions.

In order to quantify the errors associated with these
refinement indicators, we calculate the difference between
the velocity fields based on the uniform mesh and the AMR
solutions. The absolute difference in the magnitude of the
velocity and the L2 norm are presented in Table I. The common
points for different block configurations in Fig. 7 are used to
calculate the errors. As can be seen in Table I, the errors given
for the last refinement criterion defined in Eq. (18) is one order

FIG. 6. Lid-driven cavity flow at Re = 3200 after 200 000 itera-
tions. Comparison of different error indicators: (a) ε1, (b) ε2, (c) ε3,
and (d) uniform mesh.

of magnitude larger than the other two indicators. Although
the first error indicator, which is based on the vorticity, gives
us acceptable results with less than 0.5% discrepancy with
uniform-mesh results, the second refinement criterion, defined
in Eq. (17), gives us the smallest error (0.3%) for this particular
problem. This is due to the fact that all the blocks adjacent to
the wall boundaries are refined to their finest levels as a result
of using a relative error in vorticity.

We also compared the FDLBM AMR results to the uniform-
mesh solution and the benchmark study by Ghia et al. [41].
In Fig. 8, the centerline velocities inside the lid-driven cavity
flow at Re = 3200 are plotted and satisfactory agreement with
the benchmark study is observed. The very small difference
between the results is due to the fact that Ghia et al. [41] used
a moderate 128 × 128 grid, while we are using a 256 × 256
grid for the uniform-mesh solution.

C. Thin shear layer

In a recent study [42], we examined the instability of a
shear layer for single-phase and multiphase flows using an

TABLE I. Absolute and relative errors of the velocity field in the
simulation of cavity flow using different error criteria (the uniform-
mesh result is used as the reference solution).

Refinement criterion
∑
x,y

|�u| ‖δu‖2

ε1 [Eq. (16)] 0.030 0.0049
ε2 [Eq. (17)] 0.018 0.0029
ε3 [Eq. (18)] 0.336 0.0538
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FIG. 7. Configuration of the adaptively created blocks in the cavity flow for different error indicators: (a) ε1, (b) ε2, and (c) ε3.

MRT LBM on a uniform mesh. In this section, the stability
of a single-phase Kelvin-Helmholtz billow is considered and
the results are compared to the findings of Fontane and
Joly [43], who solved the Navier-Stokes equations using an
AMR technique to study the Kelvin-Helmholtz instability of
two miscible fluids in the absence of gravity and interfacial
tension. The following velocity profile, which consists of a
base flow and small perturbations for the initiation of the
Kelvin-Helmholtz instability, is imposed across the shear
layer:

u(y) = U0 tanh

(
y

δ

)
+ εu′(y) cos(αx),

(21)
v(y) = εv′(y) cos(αx),

where δ is half the shear-layer depth or vorticity thickness,
α = 2π/λ is the wave number with λ being the wavelength,
ε is the perturbation amplitude, and u′ and v′ are complex
eigenfunctions of the Rayleigh stability equation [43,44]. For
the most unstable mode we found αδ = 0.444 92 [42].

We seed the initial disturbances similarly to what was
performed in [43]. The size of the computation domain
corresponds to a uniform mesh with 256 × 256 lattice
points. The boundary conditions are periodic in the streamwise
direction and free slip at the top and bottom. The Reynolds
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FIG. 8. (Color online) Centerline velocities inside the cavity flow
at Re = 3200: (a) dimensionless x velocity along the vertical
centerline and (b) dimensionless y velocity along the horizontal
centerline.

number of the flow is

Re = U0δ

ν
, (22)

where U0 is half the velocity difference across the shear
layer. Here U0 = 0.1, which results in Ma = 0.17. The
dimensionless time is also defined by t∗ = tU0/δ.

A comparison of the performance of the error estimators is
presented in Fig. 9. While the best result is obtained using the
vorticity magnitude as the error indicator in Fig. 9(a), the error
criterion based on the relative error in vorticity does not yield
very accurate results. This is contrary to what we observed in
the cavity flow simulations. The main reason is that we are
dealing with a larger vorticity value in the middle of the shear
layer compared to the small eddies at the corners of the cavity.
Because the vorticity magnitude appears in the denominator of
Eq. (17), the corners of the cavity, where the magnitude of the
vorticity was small, were flagged for refinement. However, in
the middle of the shear layer, the magnitude of the vorticity is
rather large and the difference in vorticity is small. Therefore,
the middle part of the domain was not flagged for refinement.
The opposite is the case for the parts of the shear layer that are
far from the center; the vorticity magnitude is close to zero,
making the denominator of Eq. (17) small, and incorrectly
signals to refine the mesh away from the center. Consequently,
the results shown in Fig. 9(b) are not in good agreement with
the uniform-mesh solution. Once again, the results of the Q-
criterion indicator, depicted in Fig. 9(c), are not in line with
the uniform-mesh results.

We further verify our explanations, which are based on
qualitative comparisons, by quantifying the errors between
AMR results and uniform-mesh results. Once again, the
absolute error in the velocity field as well as the L2 norm
is calculated and the results are given in Table II. As can be

TABLE II. Absolute and relative errors of the velocity field in the
simulation of thin layer shear flow using different error criteria (the
uniform-mesh result is used as the reference solution).

Refinement criterion
∑
x,y

|�u| ‖δu‖2

ε1 [Eq. (16)] 0.019 0.0014
ε2 [Eq. (17)] 0.094 0.0067
ε3 [Eq. (18)] 0.362 0.0259
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FIG. 9. Vorticity contour levels for Kelvin-Helmholtz instability at Re = 1500 and t∗ = 26. Comparison of different estimators: (a) ε1, (b)
ε2, (c) ε3, and (d) uniform mesh. The vorticity increment between contours is 1/6.

seen in Table II, the first indicator defined in Eq. (16) gives
us the most accurate results with about 0.1% discrepancy with
the uniform-mesh solution. The error for the second criterion,
although acceptable, is 5 times larger than the first one. On the
other hand, the Q criterion gives us the least accurate results
with more than 2% error.

A comparison of our FDLBM AMR result to that of Fontane
and Joly [43] is also shown in Fig. 10. As can be seen,
the current FDLBM AMR results, using the magnitude of
the dimensionless vorticity as the error indicator, are in good
agreement with those obtained in [43].

From the obtained results, we see that the choice of the error
criterion is rather case specific. When dealing with stationary
walls, the error indicator based on the relative difference in
vorticity helps to refine the mesh close to the wall boundaries.
In the absence of exterior walls, however, the magnitude of
the vorticity is found to be a reliable estimator in detecting
gradients and capturing the essential physics of the problem.
Of course, the identification of a universal error indicator for
AMR schemes is still the subject of ongoing research and will
not be further discussed in this study.

D. Flow past a square cylinder

Although the AMR technique can be applied to steady state
flows, its maximum benefit is obtained when it is used for the
simulation of unsteady flows with large variations in the scale
of the physics of the problem. Moreover, the versatility of an
AMR scheme is better manifested when applied to unsteady
flows such as the vortex-shedding phenomenon behind a
cylinder. The physics of a uniform flow past a square cylinder

FIG. 10. Comparison of (a) current FDLBM AMR findings with
(b) AMR benchmark results in Ref. [43] [Fig. 2(a) therein] for Kelvin-
Helmholtz instability at Re = 1500 and t∗ = 26 with lmax = 5.

placed in an infinite domain has been studied extensively both
numerically and experimentally [45–51]. There are also a few
studies on the flow pattern behind a square box in a confined
channel (with blockage effects) using the LBM [52–54]. For
a uniform flow over a square cylinder, it is well known that
once the Reynolds number is above a critical value Recr ∼ 52
[47,52], the flow field becomes unstable and the so-called von
Kármán vortex street is generated downstream of the flow.
To examine the accuracy of the present FDLBM AMR, the
unsteady flow over a square cylinder in an unbounded uniform
flow (without blockage effects) is examined.

The computational domain is chosen similar to previous
studies [47–49], as depicted in Fig. 11. A square box with
length D is placed at x = 8D from the inlet. The length and
height of the domain are equal to L = 32D and H = 16D,
respectively. The no-slip boundary condition is applied at the
walls of the square cylinder, while a uniform flow profile
(u,v) = (U0,0) is imposed at the inlet, top, and bottom of
the domain, as shown in Fig. 11. At the outlet, the pressure
is fixed and the following convective boundary condition is
solved to update the velocity:

∂u
∂t

+ U0
∂u
∂x

= 0. (23)

The far-field boundary conditions are imposed using the
momentum-exchange scheme [15] at the inlet, top, and bottom
boundaries, while the distribution function is set equal to the
equilibrium value at the outlet. On the walls of the square
cylinder, the second-order link bounceback is applied. The
initial condition is a constant pressure with a uniform velocity

u=U0 , v=0 

u=U0  
v=0 

D 

D H=16D 

L=32D 

u=U0 , v=0 

convec�ve 
ou�low 

FIG. 11. (Color online) Flow past a square cylinder: computa-
tional domain and boundary conditions.
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FIG. 12. (Color online) Vortex shedding past a square cylinder at Re = 100 for (a) lmax = 5 (D = 16), (b) lmax = 6 (D = 32), and (c)
lmax = 7 (D = 64). Shown on the left are streamlines and pressure contours and on the right are vorticity contours and mesh configurations.

profile everywhere except in the vicinity of the square cylinder,
where the velocity is set to zero. The important parameters
of the flow field are the Reynolds number and the Strouhal
number, which are defined as

Re = U0D

ν
,

(24)

St = fsD

U0
,

where fs is the shedding frequency determined from the
alternation of the lift force at the surface of the cylinder.
The momentum-exchange method [15] is used to calculate
the force exerted on the cylinder:

F =
∑
xb

8∑
α=1

eα[fα(xb,t) + fβ(xb + �xα,t)]. (25)

For bounceback on the link, the effective location of the wall
is halfway between the boundary nodes and the fluid nodes.
As a result, the momentum exchange between the cylinder and
the flow field can be rewritten as

F = 2
∑
xb

8∑
α=1

eαfα(xb,t). (26)

After evaluating the force on the cylinder, the drag and lift
coefficients are calculated by

CD = 2Fx

ρ0U
2
0 D

, (27)

CL = 2Fy

ρ0U
2
0 D

.

Note that the actual value of D used in Eqs. (24) and (27) is the
input value (16, 32, or 64) plus one. The one comes from the
fact that, as a result of the bounceback on the link, the actual
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FIG. 13. (Color online) Drag and lift coefficients versus dimen-
sionless time for a uniform flow past a square cylinder at Re = 100.

location of the wall is halfway between the fluid nodes and the
solid nodes.

The vortex-shedding phenomenon past a square cylinder is
studied at Re = 100 (Ma = 0.17) and the numerical values of
the time-averaged drag coefficient and the Strouhal number are
measured. The grid consistency of the results is ensured using
three different grid resolutions around the square cylinder. The
sides of the square cylinder are resolved using 16, 32, and 64
lattice nodes, corresponding to lmax = 5, 6, and 7, respectively.
In Table III, the obtained results are compared with previous
studies. As can be seen, the calculated drag coefficient and
the Strouhal number are in reasonable agreement with the
benchmark studies. Also, increasing the resolution from lmax =
6 (D = 32) to lmax = 7 (D = 64) does not affect the predicted
values for the drag and the Strouhal number, confirming the
grid convergence of the findings.

The contour plots of pressure and streamlines, as well
as the dynamically created blocks, are shown in Fig. 12 for
lmax = 5–7. As can be seen, the refinement criterion based on
the vorticity magnitude, defined in Eq. (18), is fairly successful
in capturing the von Kármán vortex structures. The mesh
is refined where it needs to be, producing a more accurate

TABLE III. Drag coefficient and Strouhal number for unsteady
flow past a square cylinder at Re = 100.

Reference C̄D St

[46] 0.141–0.145
[47] 1.44–1.48 0.144–0.146
[48] 1.51 0.159
[49] 1.51 0.150
[50] 1.40–1.53 0.144–0.146
present work (D = 16) 1.53 0.151
present work (D = 32) 1.51 0.150
present work (D = 64) 1.51 0.149

TABLE IV. Efficiency of the proposed FDLBM AMR compared
to a uniform-mesh solver.

Uniform-mesh FDLBM AMR
Case study time (s) time (s) Speedup

cavity flow 2678 2957 0.9
thin shear layer 65 38 1.7
vortex shedding (lmax = 5) 701 331 2.1
vortex shedding (lmax = 6) 6074 1827 3.3
vortex shedding (lmax = 7) 46652 12081 3.9

solution in the regions of interest. Also, Fig. 13 plots the
variation of drag and lift coefficients versus dimensionless time
for the square cylinder with D = 64 lattice nodes (lmax = 7).

Finally, one complete cycle of the von Kármán vortex street
behind the square cylinder at Re = 100 is illustrated in Fig. 14.
The interval between subsequent snapshots is one-fourth of the
vortex-shedding period. Fluctuations in the wake velocity are
clearly seen in the vorticity contours downstream of the flow.

E. Efficiency

In this section we compare the CPU time of our FDLBM
AMR code with the uniform-mesh code. All the simulations
are performed on a PC with Intel(R) Core(TM) i7 2.8 GHz
CPU and 4 GB RAM. The full optimization option is used. It
is worth noting that in all the data reported in Table IV, the
refinement-derefinement subroutine, which costs about 6% of
the computation time, is called at each time step.

As the results presented in Table IV suggest, the AMR strat-
egy is not very helpful when dealing with the flow in a confined
geometry like the cavity flow. This is due to the fact that sharp
gradients close to wall boundaries causes the mesh to be refined
in those regions. As illustrated in the cavity flow simulations
in Fig. 7, a high percentage of the computational domain
is refined to its finest level degrading the efficiency of an
AMR routine. On the other hand, thin shear layer and vortex-
shedding simulations show promising results in the speedup
factor when using the AMR routine. The efficiency of the
FDLBM-AMR increases with the maximum refinement level.

V. SUMMARY

An adaptive mesh refinement strategy in the framework of
the lattice Boltzmann method was developed in this study.
Compared to available AMR structures, the proposed AMR is
easier to code and implement mainly because the modification
of a tree-type data structure after the reconstruction step is no
longer needed. Meanwhile, there is no need to search a tree
structure [3] or look up entries in a hash table [6] to find the
neighbors of a given block because the neighboring blocks
are already known via using pointers. Also, in the absence of
a tree structure, executing the code in parallel is intrinsically
straightforward.

Using the AMR technique, a FDLBM on nonuniform
grids was presented that avoids temporal interpolations at the
borders of fine-coarse grids by invoking a unified time step
throughout the computational domain. This has two immediate
advantages: First, the second-order accuracy of the LBM in
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FIG. 14. (Color online) Vorticity contours past a square cylinder at Re = 100 with lmax = 6 for (a) t0, (b) t0 + 1
4fs

, (c) t0 + 2
4fs

, and (d)

t0 + 3
4fs

.

time is retained and second, there is no need to rescale the
distribution functions at the borders of fine-coarse grids. In
the meantime, we take advantage of the perfect shift in the
streaming process, as is the case in the conventional LBM, on
the blocks that are at the finest refinement level where the most
accurate results are demanded.

Comparison of the accuracy and efficiency of the current
FDLBM with the conventional stream-and-collide LBM on

nonuniform grids is beyond the scope of the present paper.
Also, extension of the proposed FDLBM AMR to multiphase
flows is a subject left for future work.
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