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Virtual move Monte Carlo is a Monte Carlo (MC) cluster algorithm forming clusters via local energy gradients
and approximating the collective kinetic or dynamic motion of attractive colloidal particles. We carefully describe,
analyze, and test the algorithm. To formally validate the algorithm through highlighting its symmetries, we present
alternative and compact ways of selecting and accepting clusters which illustrate the formal use of abstract
concepts in the design of biased MC techniques: the superdetailed balance and the early rejection scheme. A
brief and comprehensive summary of the algorithms is presented, which makes them accessible without needing
to understand the details of the derivation.
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I. INTRODUCTION

Virtual move Monte Carlo (VMMC) is a sequel to other
cluster algorithms [1–6] for the computer simulation of atomic
systems. Its basis is to apply a Monte Carlo (MC) move
map to all particles in a cluster. The links between particles,
defining the cluster, are created a priori by considering the
application of the same map to individual particles in the
relevant particle pairs. The moving cluster in this algorithm
can then be physically interpreted as a region of particles
to which a fluctuation propagates from an initially disturbed
particle. VMMC was designed by Whitelam and Geissler [7],
later corrected [8], and a two-step link formation was proposed
by the same authors [9]. One of its advantages is the ability to
approximate, in a coarse-grained fashion, the kinetic evolution
of the system, and hence the ability to capture physical (and
avoid nonphysical) kinetic traps. This can make it resemble
Brownian or Stokesian dynamics, if the parameters within the
method are chosen with regard to physical quantities, such as
size-dependent diffusion coefficients. Although VMMC has
begun to be used in the simulation of various aggregation
or self-assembly processes [10–17], we believe that there is
a need to present the algorithm in a completely clear form,
especially in its symmetrized version. For clarity, and for
reasons described below, the Brownian or Stokesian dynamical
aspects are not considered here. VMMC can, indeed, be used
just to investigate the thermodynamic properties [14].

Selection of a MC cluster generally proceeds via a recursive
linking of particles that are not yet part of the cluster to
the particles that are already in the cluster. As opposed to
previously designed MC cluster schemes linking particle pairs
with probability depending only on pairwise energy, VMMC
creates links with probability depending on pairwise energy
gradients corresponding to the direction of the move. This
linking approach allows us to approximate a dynamically re-
alistic cluster, but formulation of the microscopic reversibility
condition is associated with a problem, because the pairwise
energy change in the forward direction between particles in
the moving cluster is not the same as the pairwise energy
change in the reverse direction. The unsymmetrized version
of VMMC [7] solves this issue by recording the forward and
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reverse linking probabilities between all pairs to which a link
is proposed during the cluster selection, and uses them to
calculate a complex factor [8] which biases the probability with
which the cluster is accepted. A two-step symmetric linking
procedure was later proposed in a so-called symmetrized
VMMC [9], which reduced the set of pairs in the biasing factor
to only a subset of pairs in the boundary of the cluster. Both
the unsymmetrized and symmetrized versions of the VMMC
algorithm were validated through imposing the microscopic
reversibility condition on link patterns, called the realizations
of the cluster. In this paper, we use the main ideas of the
original proofs, but treat them with slightly modified algebra
and definitions. We define the realization of the cluster through
the set of all pairs to which a link is proposed, and we discuss
whether the same pattern can be selected under the reverse
move. Our definitions, basic algebraic relations between
pairwise and virtual energies together with the discussion of
the order in which the links are proposed, provide an alternative
insight into the validation of this abstract algorithm, and can
simplify its implementation.

We present three equivalent ways of selecting the cluster.
The first, general way, called the free cluster selection
(Sec. IV), attempts to include in the moving cluster all particles
of the system that are not yet part of the cluster. This selection
procedure is not efficient, and is presented only for theoretical
purposes because its cluster acceptance probability is simple,
and can be easily derived. The second way of cluster selection
(Secs. V and VI) is newly presented in this paper. As opposed
to that of Sec. IV, it only considers certain particles of the
system, and is efficient in simulations, especially if proposed
clusters are likely to be accepted. The form of the acceptance
probability is again simple, and allows us to efficiently control
the properties and distribution of proposed clusters. Finally,
Sec. VIII addresses the original way of selecting the moving
cluster [9] from an even smaller number of particles. This
version of the algorithm is still equivalent to other versions
presented here, and is particularly efficient if the acceptance
probability of proposed clusters is low.

A reader seeking to rapidly implement the VMMC may skip
the lengthy derivations of acceptance probabilities, and focus
on the definitions of pairwise and virtual energies in Sec. II,
linking probabilities in Sec. III, and use one of the algorithm
summaries presented in Secs. V, VI, or VIII. If the acceptance
probability is expected to be low, the original symmetrized
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VMMC [9] described in Sec. VIII should be fastest. If the
acceptance probability is expected to be high, the version
described in Sec. V should be simpler to implement with a
negligible difference in efficiency compared to the version of
Sec. VIII. If properties of proposed clusters are controlled
by some auxiliary variables, and if unsuitable clusters are
expected to have some chance to be accepted, the version
presented in Sec. VI may increase the overall acceptance
probability, and become more efficient than that presented in
Sec. VIII. Finally, Sec. IX distinguishes between two orders
of selecting the cluster. Random ordering is conventional and
should work well in most simulations. Isotropic ordering is
newly presented here, and may better approximate dynamical
clusters, or increase the cluster move acceptance probability,
thereby improving the efficiency.

Before implementing the VMMC, one should consider
whether the aim is to approximate a physical dynamics, or to
enhance sampling of an equilibrium distribution, also whether
collective translational moves are sufficient, and more compli-
cated collective rotational moves can be omitted. It should also
be considered whether, and at which stage of self-assembly
or aggregation, the collective motion becomes important. In
fluids, for example, single particle MC is expected to be
sufficient both for approximation of the dynamics and for
sampling the equilibrium distribution. In simulation of gelation
in quenched attractive systems, collective motion becomes
dominant only in a narrow simulation window [9,18]. If one
has a working VMMC code, some time should be allowed for
optimizing the parameters of the VMMC for a specific system.
In particular, the optimum choice of the maximum translational
or rotational displacement drastically affects the efficiency of
the algorithm [18]. If the dynamics is of interest, properties
of proposed clusters need to be controlled, and approximation
of the time step associated with a MC cycle composed of
collective moves (Appendix of Ref. [11]) also needs to be
taken into account.

Ideas and summaries presented in this paper can help with
the implementation of VMMC. We do not provide any major
efficiency enhancements compared to the previous schemes.
The aim is to formally describe the algorithm, and provide
a unification of underlying concepts which is helpful in the
generalization of this algorithm [18] to any form of pairwise
interaction.

II. DEFINITIONS AND BASIC RELATIONS

In what follows,S will denote a system of N interacting par-
ticles with states being defined by N position (and orientation)
vectors of the particles. The interaction between particles is
defined by an attractive pairwise potential −∞ < V (r) � +∞
with a cutoff distance Rc. The typical interaction is a repulsive
core and short-ranged attraction. The inverse temperature
of the system is denoted by β = 1/kBT , where kB is the
Boltzmann constant. In analogy with other cluster methods,
VMMC works with particle pairs (or links between them),
denoted by (i,j ), where i and j denote two different particles
in S. The set of all pairs in S will be denoted as A. For the
purposes of this paper, it is enough to assume that the set A
does not distinguish between (i,j ) and (j,i). We say that (i,j )
is an interacting pair, if particles i and j are separated by a

distance less than Rc. Throughout the text, μ and ν denote two
different states of S, with energies Eμ and Eν , respectively.
Since VMMC is a single-cluster algorithm [6], we shall assume
that μ and ν differ in the position of a single group of particles
called the moving cluster or simply cluster and denoted by C.
To approximate realistic kinetics, we will further assume that
the difference in the position of C is given by the application
of a small translational or rotational map applied to all the
particles in the cluster, representing a rigid motion of the
cluster. The map will be denoted as M and its inverse as
M−1. We note that the moving cluster or cluster was referred
to as a pseudocluster in the unsymmetrized formulation of
the scheme [7], which used the term physical cluster or simply
cluster not for the moving cluster but for what is conventionally
referred to as the partition. In this paper, there is no need to
distinguish between the partition and the moving cluster, and
the term pseudocluster is thus not used.

The selection of particles from the system S to the cluster
C proceeds recursively. The first particle of C is selected
randomly from S. Successive particles of C are selected by
recursive linking of those particles in S that are not yet part of
C, i.e., we check the existence of a pair (i,j ) in state μ such
that

i ∈ C, j /∈ C, (1a)

a link has not yet been proposed to (i,j ), (1b)

an optional condition imposed on (i,j ) is satisfied. (1c)

If there is no pair (i,j ) with properties (1), the cluster selection
is complete. If a pair with properties (1) exists, a link is
proposed to that pair. The link forms with a probability which
will be denoted as p

(μ)
ij and defined later. If the link forms,

j becomes a new member of C. The existence of pairs with
properties (1) is checked recursively until there are no such
pairs (the cluster is selected). If the selection of the cluster
only follows conditions (1a) and (1b), we say that the selection
is free. If there is an extra condition (1c) on top of the
conditions (1a) and (1b), we term it restricted selection. After
the cluster selection, the set of all pairs in S can then be
uniquely decomposed as

A = L(μ) ∪ F (μ) ∪ B(μ) ∪ X (μ), (2)

where L(μ) is the set of pairs to which a link was proposed
and formed, F (μ) is the set of pairs (i,j ), i ∈ C, j ∈ C, to
which a link was proposed and failed to form, B(μ) is the
set of pairs (i,j ), i ∈ C, j /∈ C, to which a link was proposed
and failed to form, and X (μ) are all other pairs in A. Set X (μ)

clearly includes pairs (i,j ), i ∈ C, j ∈ C, and depending on the
condition (1c), pairs (i,j ), i /∈ C, j /∈ C, or other pairs (i,j ),
i ∈ C, j /∈ C, to which a link was not proposed. The triple of
sets (L(μ),F (μ),B(μ)) is called the realization of the cluster C
in state μ under the map M , and is denoted as R

(μ)
C . The set

B(μ) will be called the boundary (of the cluster C). An example
situation for restricted cluster selections is illustrated in Fig. 1.

Let us now show for the case of free cluster selection
that if R

(μ)
C has a nonzero probability in state μ under M ,

then there exists a realization of C in state ν under M−1,
denoted as R

(ν)
C , such that R

(ν)
C = R

(μ)
C . This will allow us to

impose the microscopic reversibility condition on generating

033307-2



COLLECTIVE TRANSLATIONAL AND ROTATIONAL MONTE . . . PHYSICAL REVIEW E 89, 033307 (2014)

FIG. 1. The difference between the original and alternative
formulations of the symmetrized VMMC is illustrated on a 2D system
S, consisting of circular particles (disks) in a plane, in two states μ

and ν, interacting via a short-range attraction. State ν is created from
μ by applying a rotational move map M to the particles in C (dark
disks). Black full lines represent formed links L. Black dotted lines
are failed links internal to the cluster F , and failed links defining
the boundary of C. (a) Asymmetric boundary. Links are proposed
only to pairs interacting in state μ under the forward move M , and
to pairs interacting in ν under the reverse move M−1. Gray lines
connect the pairs interacting in μ and ν in the respective states μ and
ν. (b) Symmetric boundary. Links are proposed to pairs interacting
in state μ or in virtual state μi under the forward move M , and to
pairs interacting in ν or in νi under the reverse move M−1. Gray
lines connect the pairs interacting in μ or in μi and ν or in νi , in the
respective states μ and ν. Gray disks in the background are particles
in their virtual position μi in state μ, and νi in state ν. From a physical
perspective, the root particle is randomly displaced, and the cluster
represents a possible region to which this fluctuation propagates.

the realization in states μ and ν. We will need to show not only
that each pair in R

(μ)
C can form or fail in state ν, but will also

need to show that the recursive selection is such that a link is
proposed to that pair under M−1 in state ν. Recall that p

(μ)
ij

denotes the probability of forming a link between pair (i,j ) in
state μ under M . We will require that p

(μ)
ij is defined such that

0 � p
(μ)
ij < 1 ∀ (i,j ) i,j ∈ S, (3a)

p
(μ)
ij = p

(ν)
ij ∀ (i,j ) i,j ∈ C, (3b)

where p
(ν)
ij denotes the link formation probability in state ν

under M−1. Clearly, if (i,j ) ∈ L(μ), then i,j ∈ C, p
(μ)
ij > 0,

and property (3b) implies that the link between (i,j ) can also
form in state ν, and hence L(ν) such that L(ν) = L(μ) can be
generated in state ν with nonzero probability. Property (3a)
then guarantees that each link which fails to form in μ under
M can also fail in ν under M−1, and hence F (ν) such that
F (ν) = F (μ) can be generated with nonzero probability in state
ν under M−1. The fact that links are proposed to the same set of
pairs in state μ under M , and in state ν under M−1 follows from

the recursive rules (1a), (1b), and the fact that L(ν) has nonzero
probability in state ν. It is clear that recursive rules (1a), (1b)
imply that B(ν) = B(μ). We have thus shown that the recursive
rules (1a), (1b), and linking properties (3) imply that if R

(μ)
C

in the free cluster selection has nonzero probability in μ, then
R

(ν)
C such that R

(ν)
C = R

(μ)
C has nonzero probability in ν.

Conditions (1a) and (1b) are general rules for the recursive
cluster selection, and will be used for the validation of the
algorithm. From the practical point of view, considering all
pairs satisfying (1a) and (1b) is not very efficient. To speed up
the cluster selection, the pairs to which a link is proposed
to select the cluster are further restricted by the optional
condition (1c). A consequence of this restriction will be that
the set of pairs to which a link is proposed is not generally the
same in states μ and ν. More explicitly, there might be pairs
in state ν to which a link is proposed under M−1, but can not
be proposed in state μ under M; and vice versa, there might
be pairs to which a link is proposed in state μ under M , but
not in state ν under M−1. In Sec. V, the recursive selection of
the cluster considers pairs with properties (1a), (1b), restricted
by (1c) such that (i,j ) is interacting in μ or in state μ modified
by applying M to particle i. It is shown in Appendix A that
the difference between pairs to which a link is proposed does
not affect the probability of selecting or accepting the cluster,
which will serve as an argument that the acceptance probability
of Sec. IV derived for the free cluster selection can also be
used in Sec. V for the cluster selected more efficiently via
the restriction (1c). Section VIII considers an even stronger
condition (1c) restricting the pairs to which a link is proposed
to just pairs that interact in state μ. The difference between
the pairs considered in the cluster selection in μ and ν can
no longer be ignored: it must be detected after the cluster
selection and included in the bias of the acceptance probability
to preserve the exact sampling.

The link formation probability p
(μ)
ij will depend on various

pairwise energy changes due to the movement by M . It is thus
useful to have a compact notation for the energies of pairs of
particles before and after one or the other has been moved by
M . The energy of (i,j ) in state μ is denoted by ε

(μ)
ij . Clearly, if

(i,j ) is not an interacting pair in μ, then ε
(μ)
ij = 0. Given a pair

(i,j ), the move map M is said to be virtual if it is applied to a
particle only in order to determine the pairwise energy change
associated with that move or to determine the set of nearest
neighbors of the moved particle. If the system S is in state μ,
and M is applied to particle i, S is then said to be in the virtual
state μi . Virtual state μj will denote a state μ after applying
M to particle j ; νi will be S in ν after applying M−1 to i; and
νj will be S in ν after applying M−1 to j . ε

(μ)
i ′j will denote the

energy of (i,j ) in μi ; ε
(μ)
ij ′ will be the energy of (i,j ) in μj ; ε

(ν)
i ′j

will be the energy of (i,j ) in νi ; and ε
(ν)
ij ′ will be the energy of

(i,j ) in νj . We note that the Boltzmann distribution of states
implies that the pairwise energy ε

(μ)
ij is strictly different from

+∞, and with the above defined properties of the pairwise
potential V (r), we can write −∞ < ε

(μ)
ij < +∞. The virtual

energy, on the other hand, can be assumed +∞. For example,
the virtual state μi generally has −∞ < ε

(μ)
i ′j � +∞. These

inequalities will be used later. We also emphasize that the
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pairwise energy change is the energy change only between
particles i and j , not the energy change of the system. In
practice, the energy ε

(μ)
i ′j is obtained in three steps. Given a pair

(i,j ) in state μ, first, move particle i by M; second, measure
pairwise energy of (i,j ), denote it as ε

(μ)
i ′j ; third, move particle

i back (restore its original position). Energies ε
(μ)
ij ′ , ε

(ν)
i ′j , ε

(ν)
ij ′

can be obtained analogously.
Let us define the complete boundary as

B = B(μ) ∪ B(ν). (4)

Clearly, for the free cluster selection case

B = B(μ) = B(ν). (5)

The following energy identities apply to the classes of pairs
identified above. For any pair outside the complete boundary
of C in state μ and ν, it holds that

ε
(μ)
ij = ε

(ν)
ij

ε
(μ)
i ′j = ε

(ν)
ij ′

ε
(ν)
i ′j = ε

(μ)
ij ′

⎫⎪⎪⎬
⎪⎪⎭ ∀ (i,j ) /∈ B. (6)

For boundary pairs,

ε
(μ)
i ′j = ε

(ν)
ij

ε
(ν)
i ′j = ε

(μ)
ij

}
∀ (i,j ) ∈ B. (7)

It is useful to denote

�ε
(μ)
i ′j = ε

(μ)
i ′j − ε

(μ)
ij , �ε

(ν)
i ′j = ε

(ν)
i ′j − ε

(ν)
ij ,

�ε
(μ)
ij ′ = ε

(μ)
ij ′ − ε

(μ)
ij , �ε

(ν)
ij ′ = ε

(ν)
ij ′ − ε

(ν)
ij ,

(8)

which by using Eqs. (7) and (6) leads to the identity

�ε
(μ)
i ′j = −�ε

(ν)
i ′j ∀ (i,j ) ∈ B , (9)

and identities

�ε
(μ)
i ′j = �ε

(ν)
ij ′

�ε
(ν)
i ′j = �ε

(μ)
ij ′

}
∀ (i,j ) /∈ B. (10)

We will now use the above notation in order to express a trivial
fact, that by moving a cluster of particles, the energy change
of the system is given by the energy change of the boundary
of the cluster. Relation (2) implies that the total energy of the
system in state μ can then be expressed as

Eμ =
∑

(i,j )∈L(μ)

ε
(μ)
ij +

∑
(i,j )∈F (μ)

ε
(μ)
ij +

∑
(i,j )∈B(μ)

ε
(μ)
ij

+
∑

(i,j )∈X (μ)

ε
(μ)
ij . (11)

Similarly, the total energy of S in state ν is

Eν =
∑

(i,j )∈L(ν)

ε
(ν)
ij +

∑
(i,j )∈F (ν)

ε
(ν)
ij +

∑
(i,j )∈B(ν)

ε
(ν)
ij +

∑
(i,j )∈X (ν)

ε
(ν)
ij .

(12)

Since R
(μ)
C = R

(ν)
C , and ε

(μ)
ij = ε

(ν)
ij , provided (i,j ) is in any of

the sets L(μ) = L(ν), F (μ) = F (ν), or X (μ) = X (ν), by using
Eqs. (8) and (5) we can express

Eν − Eμ =
∑

(i,j )∈B
�ε

(μ)
i ′j . (13)

III. LINK FORMATION PROBABILITIES

We have briefly explained the way in which particles, or
rather pairs, are selected for consideration in the construction
of the cluster, but we have not given any expressions for the
acceptance or rejection of the link proposals, and this is the
topic of the current section. After the cluster is constructed,
we anticipate accepting or rejecting the Monte Carlo cluster
move with a certain probability. The expression for this can
be significantly simplified, if the link formation probability is
the same for the forward and reverse moves, for pairs outside
the boundary of the cluster. Let us thus express condition (3b)
imposed on the link formation probability in terms of the
complete boundary as

p
(μ)
ij = p

(ν)
ij ∀ (i,j ) /∈ B. (14)

Clearly, if (14) is satisfied, then (3b) is satisfied. The require-
ment (14) can be easily achieved in conventional (static) cluster
algorithms because p

(μ)
ij only depends on the energy of (i,j )

in state μ, and p
(ν)
ij only depends on the energy of (i,j ) in state

ν, and these energies are clearly the same for pairs outside
the boundary [see the first identity in Eq. (6) which applies for
(i,j ) /∈ B]. In contrast, p(μ)

ij in (dynamic) VMMC also depends
on the energy of (i,j ) in state ν. To satisfy relation (14) in the
dynamical linking process is not so straightforward because
it is not known whether (i,j ) belongs to the boundary of C,
during the construction of C. Hence, it is assumed that during
the cluster selection (i,j ) does not belong to the boundary,
and this assumption is corrected by a bias in the cluster move
acceptance probability for pairs which end up in the boundary.
Moreover, in order to apply the early rejection scheme [19],
which simplifies and accelerates the algorithm, the link is
formed in two link formation tests as follows.

Given a pair (i,j ) in state μ, we consider the following two
probabilities defined as

p
(μ)
i ′j = max

{
0,1 − exp

(−β�ε
(μ)
i ′j

)}
, (15a)

p
(μ)
ij ′ = max

{
0,1 − exp

(−β�ε
(μ)
ij ′

)}
. (15b)

The former represents the prelink formation probability be-
tween (i,j ) in state μ under the map M . The latter represents
the prelink formation probability in ν under M−1; note, we
assume that particles are linked in the forward move, and this
interpretation formally uses the equality (10). The link between
(i,j ) then forms in two random tests. The success probability
of the first test is merely given by p

(μ)
i ′j , and that of the second

is given by min{1,p
(μ)
ij ′ /p

(μ)
i ′j }. The link between (i,j ) forms

only if both tests are successful. Hence, the link formation
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probability can be defined as the joint probability

p
(μ)
ij = Prob

{
X1 < p

(μ)
i ′j ; X2 < min

(
1,p

(μ)
ij ′

/
p

(μ)
i ′j

)}
, (16)

where (X1,X2) are two independent random numbers drawn
from a uniform distribution U(0,1). If the first test fails, then
(i,j ) is marked as an outright failed link (or pair) independently
of the outcome of the second test. If the first test succeeds and
the second test fails, then (i,j ) is marked as a frustrated link
(or pair). Note that, if p

(μ)
i ′j = 0, we do not need to consider

the ill-defined fraction p
(μ)
ij ′ /p

(μ)
i ′j , as (i,j ) is always outright

failed.
The link failure probability is defined as

q
(μ)
ij = 1 − p

(μ)
ij . (17)

It is useful to define the prelink failure probability as

q
(μ)
i ′j = 1 − p

(μ)
i ′j , (18)

and express it as

q
(μ)
i ′j = exp

(−β max
{
0,�ε

(μ)
i ′j

})
. (19)

We point out that, in the wider context of recursive cluster
selection, the link formation probability defined in this way
is conditional upon μ, and upon a set of auxiliary variables
{b} comprising M , and (optionally) a limit specifying the
maximum size of the cluster. We will later discuss the case
where p

(μ)
i ′j explicitly depends upon the current number of

particles in the cluster. Note also that definitions (15a), (15b),
and (18) use a notation which is slightly different (but more
accurate) than that used in the original papers [9]. It shows that
the prelink probability is not only conditional upon M (through
the appearance of i ′ and j ′ in the above expressions) but, more
importantly, it also shows that the probability is conditional
upon the state μ itself.

Finally, let us show that the link formation probability
defined in Eq. (16) does satisfy the desired equality (14). First,
the equalities (10) imply that

p
(μ)
i ′j = p

(ν)
ij ′

p
(μ)
ij ′ = p

(ν)
i ′j

}
∀ (i,j ) /∈ B. (20)

Hence, if both p
(μ)
i ′j > 0 and p

(μ)
ij ′ > 0, then both p

(ν)
i ′j > 0

and p
(ν)
ij ′ > 0, and the link formation probability (16) can be

expressed as

p
(μ)
ij = p

(μ)
i ′j min

{
1,

p
(μ)
ij ′

p
(μ)
i ′j

}
= min

{
p

(μ)
ij ′ ,p

(μ)
i ′j

}

= min
{
p

(ν)
i ′j ,p

(ν)
ij ′

} = p
(ν)
i ′j min

{
1,

p
(ν)
ij ′

p
(ν)
i ′j

}
= p

(ν)
ij (21)

for ∀ (i,j ) /∈ B, where equality (20) was used again. Similarly,
if p

(μ)
i ′j = 0 or p

(μ)
ij ′ = 0, then p

(ν)
i ′j = 0 or p

(ν)
ij ′ = 0, and p

(μ)
ij =

p
(ν)
ij = 0. This completes the proof that the definition (16) of

p
(μ)
ij satisfies Eq. (14) or (3b).

For the sake of clarity, let us express the probability that
a link between (i,j ) does not form. This probability is given
by the probability that (i,j ) is outright failed or that (i,j ) is
frustrated which reads as

q
(μ)
i ′j + p

(μ)
i ′j

(
1 − min

{
1,p

(μ)
ij ′ /p

(μ)
i ′j

})
= q

(μ)
i ′j + p

(μ)
i ′j − min

{
p

(μ)
i ′j ,p

(μ)
ij ′

}
= 1 − min

{
p

(μ)
i ′j ,p

(μ)
ij ′

} = 1 − p
(μ)
ij = q

(μ)
ij .

IV. FREE CLUSTER SELECTION

In this section, we derive a cluster move acceptance
probability for the algorithm, which proceeds through the free
cluster selection. Selecting the cluster in this general way is
inefficient, but the corresponding acceptance probability can
be easily derived because the set of pairs to which a link is
proposed during the cluster selection does not differ in the
old and in the new state. We will thus refer to the realization
of the cluster to have both a symmetric core (L(μ) = L(ν),
F (μ) = F (ν)) and a symmetric boundary (B(μ) = B(ν)). The
other significantly more efficient ways of selecting the cluster
through asymmetric realizations are presented later in the
paper. In what follows, we will assume that the cluster is
selected freely, i.e., by considering all pairs (i,j ) satisfying
Eqs. (1a) and (1b). We will use the two-step link formation
probability defined in the previous section to link particles to
the cluster, which allows us to define an early rejection scheme
simplifying the cluster move acceptance probability.

Let us only consider those R
(μ)
C such that B(μ) consists

entirely of outright failed links. We anticipate imposing
the condition that all realizations of C with at least one
frustrated link in the boundary are rejected, and it is shown
in Appendix C 1 that the scheme samples from the Boltzmann
distribution, subject to this condition.

Since the linking probability p
(μ)
ij defined in the previous

section satisfies conditions (3), for each L(μ) and F (μ), there
is a nonzero chance to recursively obtain L(ν) and F (ν), with
L(μ) = L(ν) and F (μ) = F (ν). Let us now show that if B(μ) is
a corresponding boundary with outright failed links in state
μ under M , then B(ν) can also be a boundary with outright
failed pairs in state ν under M−1. Indeed, −∞ < ε

(μ)
ij = ε

(ν)
i ′j <

+∞, and the fact that p
(μ)
i ′j < 1 implies that p

(ν)
i ′j < 1, and an

outright failed pair in μ under M can become an outright failed
boundary pair in ν under M−1. We can thus expect that if R

(μ)
C

is such that B(μ) only has outright failed pairs, a realization
R

(ν)
C with B(ν) having outright failed pairs can be constructed

with nonzero probability in ν under M−1. In total, we have
that for each R

(μ)
C with outright failed boundary pairs, there

is a nonzero chance to construct an R
(ν)
C with outright failed

boundary pairs such that R
(μ)
C = R

(ν)
C . This will be used to

simplify the following.
Let us impose the microscopic reversibility condition on

generating the realizations R
(μ)
C and R

(ν)
C with outright failed

boundary pairs. This condition can also be seen as the
superdetailed balance (SDB) condition [19,20] imposed on
the realization of the cluster in states μ and ν. The condition
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reads as

exp(−βEμ) p(μ)({b})
∏

(i,j )∈L(μ)

p
(μ)
ij

∏
(i,j )∈F (μ)

q
(μ)
ij

∏
(i,j )∈B(μ)

q
(μ)
i ′j W (μ→ν|R)

acc

= exp(−βEν) p(ν)({b})
∏

(i,j )∈L(ν)

p
(ν)
ij

∏
(i,j )∈F (ν)

q
(ν)
ij

∏
(i,j )∈B(ν)

q
(ν)
i ′j W (ν→μ|R)

acc . (22)

The leftmost terms on each side are the Boltzmann weights
of states μ and ν. The term p(μ)({b}) is the probability of
generating auxiliary variables {b} in state μ, and it is a product
of three components

p(μ)({b}) = p(μ)(M)p(μ)(i)p(μ)(NC), (23)

specifically the probability of selecting the move map M ,
the root particle i, and the maximum cluster size NC in
state μ. The term p(ν)({b}) on the right represents a similar
product in state ν. The explicit products over links on the left
of Eq. (22) combine to give the probability of constructing
the specific realization R

(μ)
C , which is conditional upon {b}.

Analogous terms for state ν appear on the right. Finally, the
terms W

(μ→ν|R)
acc and W

(ν→μ|R)
acc are the cluster move acceptance

probabilities that we seek.
We note that the set of all pairs satisfying conditions (1a)

and (1b) generally changes during the cluster selection, and
that even if we proceed through the free cluster selection, the
SDB condition in Eq. (22) may be seen not to express exactly
what the algorithm is doing. In Sec. X, we will take the change
of set with (1a) and (1b) into account, and we will distinguish
between the probability with which a pair (i,j ) is selected,
and the probability with which a link between (i,j ) is formed.
This will allow us to formulate the SDB condition in a slightly
more explicit way than in Eq. (22).

Let us simplify the SDB condition (22). We suppose being
able to ensure that p(μ)({b}) = p(ν)({b}) > 0, so that these
terms cancel out. The products over linked pairs L(μ), L(ν), and
unlinked pairs F (μ), F (ν) also cancel because of Eq. (14), the
fact that these sets are the same in states μ and ν, and the fact
that the probability of generating R

(ν)
C such that R

(ν)
C = R

(μ)
C is

strictly positive. Hence, Eq. (22) thus involves only products
over boundary pairs

∏
B(μ) and

∏
B(ν) on each side. The reduced

form of the SDB condition then reads as

exp(−βEμ)
∏

(i,j )∈B(μ)

q
(μ)
i ′j W (μ→ν|R)

acc

= exp(−βEν)
∏

(i,j )∈B(ν)

q
(ν)
i ′j W (ν→μ|R)

acc , (24)

with a Metropolis (Rosenbluth factor) type of solution

W (μ→ν|R)
acc = min

{
1, exp[−β(Eν − Eμ)]

∏
(i,j )∈B(ν) q

(ν)
i ′j∏

(i,j )∈B(μ) q
(μ)
i ′j

}
.

(25)

This expression can be simplified as follows. Let us separate
the products over pairs into those for which �ε

(μ)
i ′j > 0, denoted

by a superscript +, and those for which �ε
(μ)
i ′j � 0, denoted

by −. Using expression (19), and relations (5), (9), and (13),

the ratio of products in Eq. (25) can be expressed as∏
(i,j )∈B(ν) q

(ν)
i ′j∏

(i,j )∈B(μ) q
(μ)
i ′j

=
∏+

(i,j )∈B exp
(−β�ε

(ν)
i ′j

)
∏+

(i,j )∈B exp
(−β�ε

(μ)
i ′j

)
=

−∏
(i,j )∈B

exp
(
β�ε

(μ)
i ′j

) +∏
(i,j )∈B

exp
(
β�ε

(μ)
i ′j

)

=
∏

(i,j )∈B
exp

(
β�ε

(μ)
i ′j

) = exp[β(Eν − Eμ)], (26)

and the cluster move acceptance probability (25) can be
simplified to

W (μ→ν|R)
acc = 1, (27a)

provided all pairs in the boundary B are outright failed, and as

W (μ→ν|R)
acc = 0, (27b)

if there is a frustrated pair in B. This means that the cluster is
accepted whenever the boundary only contains outright failed
links and is rejected otherwise. This form of the acceptance
probability is similar to the original rejection-free cluster
algorithms [3,5], and represents an example where the early
rejection scheme is useful when applied to many-particle
moves [19].

V. SELECTION OF THE CLUSTER UNDER
HIGH ACCEPTANCE PROBABILITY

This section formulates the version of symmetrized
VMMC, which has a very simple form of the cluster accep-
tance probability, and which is efficient, in particular, if we
expect the cluster acceptance probability to be high. Section VI
will show that this simpler formulation forms a basis for a
further alteration of the algorithm which allows us to control
properties of proposed clusters, without rejecting them in situ.
Compared to the free cluster selection presented in Sec. IV,
the speed is gained by restricting the pairs to which a link
is proposed, from the set of pairs satisfying conditions (1a)
and (1b) to the set of pairs satisfying conditions (1a), (1b),
and (1c), where (1c) requires that (i,j ) is interacting in μ or in
μi . This is a natural restriction because if (i,j ) is not interacting
in μ and in μi , then ε

(ν)
ij = ε

(μ)
i ′j = 0, and the definition of

linking probability (15a) implies that a link proposed to (i,j )
is outright failed in states μ under M . If (i,j ) ends up outside
the boundary, Eqs. (20) and (21) imply that (i,j ) fails to form
in state ν under M−1. If (i,j ) ends up in the boundary, Eqs. (7)
imply that p

(ν)
i ′j = 0, and that (i,j ) is outright failed in state ν.

There is thus no reason to propose a link to that pair in the free
cluster selection.
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As discussed earlier for the SDB condition, the set of
pairs to which a link is proposed in states μ and ν must be
guaranteed to be the same to ensure the existence of R

(ν)
C such

that R
(ν)
C = R

(μ)
C . It is shown in Appendix A that although

these sets are not the same under the restriction (1c) of this
section, nothing changes in the algorithm if we assume that
the sets are identical, and we can thus use the simple form
of the acceptance cluster probability (27) for the free cluster
selection. Since generally F (μ) �= F (ν) and B(μ) = B(ν), we
say that the realization of the cluster has asymmetric core and
symmetric boundary.

The cluster move derived in Sec. IV and accelerated by
condition (1c) defined in this section can be summarized as
follows:

(1) Pick a random particle, and use it as the first (root)
particle of the cluster C.

(2) Perform the recursive loop selecting all other particles
to C.

(a) Pick randomly a pair (i,j ), i ∈ C, j /∈ C, which
interacts in state μ or in virtual state μi , and to which a
link has not yet been proposed. If no such pair exists, finish
the cluster selection by exiting the recursive loop.

(b) Attempt to create a link between (i,j ) as follows.
(i) Form a prelink with probability

p
(μ)
i ′j = max

{
0,1 − exp

[−β
(
ε

(μ)
i ′j − ε

(μ)
ij

)]}
.

(ii) If the prelink does not form, label (i,j ) as outright
failed, go to (a).

(iii) If the prelink forms, calculate the reverse link
formation probability

p
(μ)
ij ′ = max

{
0,1 − exp

[−β
(
ε

(μ)
ij ′ − ε

(μ)
ij

)]}
,

where ε
(μ)
ij ′ denotes the energy of (i,j ) in μ after applying

the move map M only to j , and form the link with
probability

min
{
1,p

(μ)
ij ′

/
p

(μ)
i ′j

}
.

(c) If the link does not form, label (i,j ) as frustrated, go
to (a).

(d) If the link forms, include j into C, go to (a).
(3) Identify the boundaryB of cluster C as those pairs (i,j ),

i ∈ C, j /∈ C, to which a link was proposed but failed to form,
i.e., is either outright failed or frustrated.

(4) Accept the cluster move, provided the boundary B only
contains outright failed links. If B contains a frustrated link,
the move of C is rejected.

VI. CONTROLLING THE CLUSTER SIZE

Cluster size control can be useful when generating small
rotational Monte Carlo cluster moves, intended to preserve
kinetic evolution of the system, or to represent the dynamics
of Stokesian or Brownian particle motion [21], or in conditions
of high particle density, where the moving cluster might
otherwise span the entire system [6]. The original symmetrized
or unsymmetrized VMMC schemes control the size distri-
bution of the moving clusters simply by rejecting any move
reaching a certain limit (number of particles in the cluster
is an example of such a limit). In the symmetrized version

of VMMC, this leads to a combination of two early rejection
schemes: one by frustrated links in the boundary, the other by a
maximum cluster size. Here, we present a way of accepting the
clusters which would otherwise have been rejected by the latter
scheme. This makes this approach potentially more efficient
than the original symmetrized VMMC [9] summarized in
Sec. VIII.

Let us assume that the auxiliary conditions {b}, chosen at
the beginning of the cluster construction, include a number NC
determining the maximum number of particles in the chosen
cluster. We now redefine the prelink formation probabilities in
state μ as

p
(μ)
i ′j = max

[
0,1 − exp

(−β�ε
(μ)
i ′j

)]
p

(μ)
ij ′ = max

[
0,1 − exp

(−β�ε
(μ)
ij ′

)]
⎫⎬
⎭ if nC < NC , (28a)

where nC denotes the number of particles in C, and

p
(μ)
i ′j = 0 if nC = NC . (28b)

The link again forms as a result of two random tests, and the
realization R

(μ)
C is constructed recursively from the root as

described above. Hence, when the NC th particle is linked to
the cluster, the selection is finished, and all pairs (i,j ), i ∈ C,
j /∈ C, interacting in one of the states μ or μi , and to which
a link has not yet been proposed, will become boundary pairs
with probability q

(μ)
ij = 1.

To derive the acceptance probability, let NC be a random
integer 1 � NC � N , and let R

(μ)
C = (L(μ),F (μ),B(μ)) be a

realization after selecting C via the free cluster selection
following the recursive rules (1a) and (1b), and using the
probability defined in Eq. (28). The boundary can be uniquely
decomposed as

B(μ) = B∗(μ) ∪ B†(μ), (29)

where B∗(μ) denotes pairs in B(μ) which failed by defini-
tion (28a), i.e., failed probabilistically, and B†(μ) denotes pairs
which failed by definition (28b), i.e., were forced to fail
because the cluster reached its maximum size. Since p

(μ)
ij

defined in Eqs. (28) satisfies conditions (3a) and (3b), one
can construct R

(ν)
C such that R

(ν)
C = R

(μ)
C . Moreover, if the

notation (29) is used in state ν, it is clear R
(ν)
C can be such

that

B∗ = B∗(μ) = B∗(ν), (30a)

B† = B†(μ) = B†(ν), (30b)

where sets B∗ and B† have been defined.
We again use the SDB condition (22) to express the

acceptance probability as in Eq. (27). Equation (27) can then
be further simplified by considering relations (13) and (29)
which imply

Eν − Eμ =
∑

(i,j )∈B
�ε

(μ)
i ′j =

∑
(i,j )∈B∗

�ε
(μ)
i ′j +

∑
(i,j )∈B†

�ε
(μ)
i ′j .

(31)

In a similar way to Sec. IV, we further decompose the sums and
products over pairs in the boundary B∗ into those for which
�ε

(μ)
i ′j > 0 (denoted by +) and those for which �ε

(μ)
i ′j � 0
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(denoted by −). The Boltzmann factor of the energy difference
in Eq. (25) can be expressed as

exp[−β(Eν − Eμ)]

=
∏+

(i,j )∈B∗ exp
(
β�ε

(ν)
i ′j

)
∏+

(i,j )∈B∗ exp
(
β�ε

(μ)
i ′j

) ∏
(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)
. (32)

Using definitions (29), (28), and relation (9), the product in
Eq. (25) can then be expressed as

∏
(i,j )∈B

q
(ν)
i ′j

q
(μ)
i ′j

=
∏

(i,j )∈B∗

q
(ν)
i ′j

q
(μ)
i ′j

=
∏+

(i,j )∈B∗ exp
(−β�ε

(ν)
i ′j

)
∏+

(i,j )∈B∗ exp
(−β�ε

(μ)
i ′j

) . (33)

Combining Eqs. (33) and (32) gives the cluster move accep-
tance probability

W (μ→ν|R)
acc = min

⎧⎨
⎩1,

∏
(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)⎫⎬⎭ , (34a)

provided B∗ only contains outright failed links, and

W (μ→ν|R)
acc = 0 (34b)

if B∗ contains a frustrated link. Note that, if the cluster is not
restricted by NC or other conditions, then B∗ = B, B† = ∅,
and the acceptance probability reduces to Eqs. (27). Also,
in the derivation of the acceptance probability, we assumed
that C was selected by free cluster selection, proposing links
to all pairs satisfying (1a) and (1b). By using the results of
Sec. V, it is easily seen that, in practice, it is enough to
propose links to pairs satisfying (1a) and (1b), and interacting
in one of the states μ or μi while still using Eqs. (34) to
accept the cluster. The early rejection scheme is validated in
Appendix C 2.

VII. COLLECTIVE ROTATIONAL MONTE CARLO MOVE

The move map for a rotation operation is specified by the
position of the center of rotation, the direction of the axis about
which the rotation is performed, and the angle (magnitude)
of the rotation. Although it is generally not problematic to
choose these variables such that their probabilities are the
same in the original and in the final state, collective rotation
operations may involve several hidden issues. First, rotating
the cluster in periodic boundaries makes sense only if the
cluster is smaller than half the minimum dimension L of the
simulation box. A possible way of restricting the cluster size,
to avoid this problem, is to extend the auxiliary conditions
{b} such that if (i,j ), i ∈ C, j /∈ C, is a pair to which a
link is to be proposed, with the distance of j from the
root particle larger than L/4, then the link is forced to fail,
i.e., included in B†. Second, since the size of the particle
displacement increases with its distance from the center of
rotation, any physically reasonable dynamics is approximated
only if the displacement is restricted by a maximum distance
specified again in {b}. Pairs (i,j ), i ∈ C, j /∈ C, interacting
in μ or in μi , which have a single-particle displacement
j larger than some maximum (typically σ ), are then again
included in B†. (Instead of using B†, one can also reject the
cluster without any chance of being accepted as was originally

proposed by Whitelam and Geissler [8].) Third, we observed
that collective rotational moves require double floating point
precision, especially in systems with discontinuous potentials.
Although single floating point precision is usually sufficient
for MC simulation, random collective rotation operations with
single floating point precision can systematically decrease or
increase interparticle distances, and bring pairs of particles in C
from nonoverlapping to overlapping positions. In fact, overlaps
can occasionally occur even when using double floating point
precision, and translational moves. For hard-core systems or
generally for systems with discontinuous potentials, we thus
advise to check for the overlaps between particles of the moved
cluster.

Let us now summarize the rotational move while applying
the bias via forced failed links described in the previous
section. The rotational move can be implemented as follows.

(1) Pick a random particle, and use it as the first (root)
particle of the cluster C. Let �ro denote the position vector (the
center of mass) of the root particle.

(2) Pick the center of rotation as a point with position
vector �rc defined as �rc = �ro + a�u, where �u is a random unit
vector, a ∈ U(0,amax) is a random number selected from a
uniform distribution, and amax is a constant (typically amax ≈
σ ).

(3) Pick another random unit vector �uo defining the orien-
tation of rotation, and a random angle with size θ ∈ U(0,θmax),
where θmax is a suitable constant. (Typically, θmax ≈ δ/σ , with
δ being the maximum size of the translational displacement.)
Define the rotation matrix A corresponding to �uo and θ . Let �ri

denote the position vector of particle i. The position vector of
particle i after applying the Monte Carlo move is expressed as
M�ri = A(�ri − �rc) + �rc.

(4) Perform the recursive loop selecting all other particles
to C.

(a) Pick randomly a pair (i,j ), i ∈ C, j /∈ C, which
interacts in state μ or in virtual state μi , and to which a
link has not yet been proposed. If no such pair exists, finish
the cluster selection by exiting the recursive loop.

(b) Test the maximum displacement size: If the size of
M�rj − �rj is larger than σ , label (i,j ) as forced failed, and go
to (a). Carry on, otherwise. (For small θ , this is equivalent
to the test that �rj − �rc is larger than σ/θ .)

(c) Test periodic boundaries: If the size of �rj − �rc is
larger than L/4, label (i,j ) as forced failed, and go to (a).
Carry on, otherwise.

(d) Attempt to create a link between (i,j ) as follows.
(i) Form a prelink with probability

p
(μ)
i ′j = max

{
0,1 − exp

[−β
(
ε

(μ)
i ′j − ε

(μ)
ij

)]}
.

(ii) If the prelink does not form, label (i,j ) as outright
failed, go to (a).

(iii) If the prelink forms, calculate the reverse link
formation probability

p
(μ)
ij ′ = max

{
0,1 − exp

[−β
(
ε

(μ)
ij ′ − ε

(μ)
ij

)]}
,

where ε
(μ)
ij ′ denotes the energy of (i,j ) in μ after applying

the move map M only to j , and form the link with
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probability

min
{
1,p

(μ)
ij ′ /p

(μ)
i ′j

}
.

(e) If the link does not form, label (i,j ) as frustrated, go
to (a).

(f) If the link forms, include j into C, go to (a).
(5) Identify the boundaryB of cluster C as those pairs (i,j ),

i ∈ C, j /∈ C, to which a link was proposed but failed to form,
i.e., is outright failed, forced failed, or frustrated.

(6) Divide B into forced failed pairs B†, and all other
pairs B∗.

(7) Accept the cluster move with probability

W (μ→ν|R)
acc = min

⎧⎨
⎩1,

∏
(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)⎫⎬⎭ , (35)

provided B∗ only contains outright failed links. If B∗ contains
a frustrated link, the move of C is rejected.

VIII. SELECTION OF THE CLUSTER UNDER
LOW ACCEPTANCE PROBABILITY

In this section, we present a version of the symmetrized
VMMC algorithm, which is suitable for situations where the
cluster acceptance probability is expected to be low. Low ac-
ceptance can be caused naturally by, for example, high density
and large moves, or artificially by accepting only clusters with
some specific properties. This version of the algorithm has
been described before [9,21], but the following description is
more detailed. Compared to Secs. IV and V, the algorithm
works with a cluster selection, which is further speeded up by
proposing links only to pairs satisfying (1a), (1b), and (1c),
where (1c) requires that (i,j ) is interacting in state μ. This
restriction again leads to an asymmetry of realizations of C
because the boundary of the clusters in state μ and ν can not
be required to be the same. In contrast to Sec. V, the difference
between the realizations can not be ignored, and needs to be
corrected with a bias in the acceptance probability (36). The
bias is derived in Appendix B and the corresponding early
rejection scheme validated in Appendix C 3. SinceL(μ) = L(ν),
F (μ) = F (ν), but generally B(μ) �= B(ν), the realizations of
clusters are said to have symmetric core and asymmetric
boundary.

The algorithm can be summarized as follows.
(1) Pick a random particle, and use it as the first (root)

particle of the cluster C.
(2) Perform the recursive loop selecting all other particles

to C.
(a) Pick a pair (i,j ), i ∈ C, j /∈ C, which interacts in

state μ, and to which a link has not yet been proposed. If
no such pair exists, finish the cluster selection by exiting
the recursive loop.

(b) Attempt to create a link between (i,j ) as follows:
(i) Form a prelink with probability

p
(μ)
i ′j = max

{
0,1 − exp

[−β
(
ε

(μ)
i ′j − ε

(μ)
ij

)]}
.

(ii) If the prelink does not form, label (i,j ) as outright
failed, go to (a).

(iii) If the prelink forms, calculate the reverse link
formation probability

p
(μ)
ij ′ = max

{
0,1 − exp

[−β
(
ε

(μ)
ij ′ − ε

(μ)
ij

)]}
,

and form the link with probability min{1,p
(μ)
ij ′ /p

(μ)
i ′j }.

(c) If the link does not form, label (i,j ) as frustrated, go
to (a).

(d) If the link forms, include j into C, go to (a).
(3) Identify the boundary B(μ) of cluster C as those pairs

(i,j ), i ∈ C, j /∈ C, to which a link was proposed, but not
formed, i.e., is either outright failed or frustrated.

(4) If B(μ) contains a frustrated link, reject the move of C.
(5) If B(μ) only contains outright failed links, proceed as

follows:
(a) Identify those pairs in B(μ) that are interacting in

the original state μ but not interacting in the final state ν.
Denote these pairs B(μν).

(b) Identify pairs (i,j ), i ∈ C, j /∈ C, that are outside the
interaction region in the original state μ, but end up in the
interaction region in the final state ν. Denote these pairs
B(μν).

(c) Accept the cluster move with probability

min

{
1,

∏+
(i,j )∈B(μν) exp

(−βε
(ν)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
}

, (36)

where the plus sign above the product in the numerator says
that the product runs only over those pairs in B(μν) such that
ε

(ν)
ij > 0. Similarly, the product in the denominator runs over

pairs in B(μν) such that ε
(μ)
ij > 0.

IX. RECURSIVE SELECTION OF THE CLUSTER

Cluster algorithms generally select the cluster under the
implicit assumption that pairs to which a link is proposed
are taken randomly from all pairs satisfying conditions (1).
Since we use the SDB condition to validate the algorithm,
we discuss the rules of the cluster selection more carefully,
and we distinguish between a random and an isotropic way
of selecting the cluster. This will be used in the next section
to formulate the SDB condition such that it takes the pair
selection probabilities into account.

The general selection of the cluster (a random tree in graph
theory) starts with a random choice of auxiliary variables,
usually denoted by {b}, specifying the properties of C, and the
selection rules. We will consider a case where the definition of
auxiliary variables {b} consists of

(1) random selection of the first (root) particle of C;
(2) random selection of the maximum number of particles

in the cluster, denoted by NC ; and
(3) random selection of the move map M .
The cluster C ⊂ S will again be selected in a recursive loop

by linking particles of S to C. Let us define the queue as the set
of pairs satisfying conditions (1). A link is proposed to a ran-
domly chosen pair in the queue. If the link between (i,j ) forms,
j becomes a new member of C, all pairs (k,l) such that l = j

are erased from the queue, and all pairs (j,l) satisfying (1) that
are not yet part of the queue are added to the queue. If the link
does not form, the pair is erased from the queue.
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RŮŽIČKA AND ALLEN PHYSICAL REVIEW E 89, 033307 (2014)

Selecting pairs from the queue randomly like this is
simple, intuitive, and common to most papers treating the
single-cluster Monte Carlo algorithms [3–5,22]. We call this
rule random ordering; the resulting sequence of proposed links
is called random link order; and the outcome is a randomly
ordered cluster. An example of a randomly ordered cluster,
and the corresponding random link order of C, are illustrated
in Fig. 2(a).

Random ordering may not be the best choice, depending
on the objectives of the simulation. There may be physical
reasons, which make it desirable to produce a cluster which is,
for example, spatially distributed in a more isotropic fashion
about the root than a typical randomly ordered cluster. This
could mimic a physical fluctuation, propagating isotropically
in all directions from the root, out to some typical distance,
which resulted in the coherent motion of a group of particles.
Also, in the Brownian/Stokesian interpretation, it might be
more justifiable to relate diffusion coefficients to cluster
size, if the clusters are generated in this way. Alternatively,
more isotropic or more compact clusters might be found
(empirically) to generate more efficient simulations, in some
circumstances.

Let us now illustrate how such a different rule for cluster
selection might be formulated. We rely on the unique definition
of distance between any two particles (vertices) in a tree, as
the number of links (edges) joining them. Each particle in
the growing cluster C has a unique distance from the root,
determined (once and for all) when it is added to the cluster. It
is convenient to define a generation of particles in C as the set
of particles at the same distance from the root, measured in this
way; the terminology is intentionally reminiscent of a family
tree. A living generation is one such that there exists at least
one pair (k,l) in the queue with k belonging to that generation,
in other words, one which still has a chance to connect further
particles l to the cluster. The oldest living generation is then
the living generation with the shortest distance from the root
(as defined above). The cluster selection then proceeds as
above, but the links are proposed only to randomly selected
pairs in the oldest living generation. A consequence of this
selection rule is that there can be no more than two living
generations at any stage. By analogy with the random case, we
use the terminology isotropic ordering, isotropic link order,
and isotropically ordered cluster (although this does not imply
that the above rule is the only way of achieving similar results).
An example is illustrated in Fig. 2(b). It might be possible to
derive another kind of deterministic selection sequence by
considering spiral ordering [23].

It is easy to see that every isotropic link order is also a
possible random link order, but not vice versa. This implies
that the number of random link orders is higher than the
number of isotropic link orders for a given C, and hence that the
probability of selecting an isotropic link order or isotropically
ordered cluster is lower in random ordering than in isotropic
ordering. If the cluster size is then restricted by an upper limit,
say five particles in the cluster of Fig. 2, then the cluster has
a higher chance of isotropic topology if isotropic ordering is
used than if random ordering is used. Isotropic ordering is
thus an example of a cluster selection rule which affects the
distribution of the moving cluster topologies.
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FIG. 2. Diagrams showing two different orders in which the
particles become members of the cluster, along with the order in
which the links are proposed in a restricted cluster selection. Black
numbered disks are particles in the cluster; small white disks are
particles outside the cluster; thick black lines are formed links; thin
black lines connect pairs interacting in μ (or in μi depending on the
choice of the algorithm); numbered gray circles determine the link
order. (In the next section, the link order is denoted as S

(μ)
R for the free

cluster selection.) Large concentric circles identify particles within
the same generation. (a) Random ordering. (b) Isotropic ordering.

X. EXPLICIT FORMULATION OF THE SUPERDETAILED
BALANCE CONDITION

The SDB condition presented in Sec. IV is implicit in that
it does not take into account that the link formation probability
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p
(μ)
ij is conditional upon the probability of selecting a pair to

which the link is proposed. In what follows, we will take the
pair selection probabilities into account, and we will formulate
the SDB condition explicitly.

We will again consider the free cluster selection, and we
will denote the sequence of pairs to which a link was proposed
during the recursive selection of R

(μ)
C as

S
(μ)
R = {(i,j |r (μ))}, (37)

where (i,j |r (μ)) denotes the r (μ)th pair to which a link was
proposed. This sequence can be uniquely decomposed into
subsequences{(

i,j
∣∣r (μ)

l

)}
;

{(
i,j

∣∣r (μ)
f

)}
;

{(
i,j

∣∣r (μ)
b

)}
, (38)

running over linked pairs L(μ), pairs in F (ν), and boundary
pairs B(μ), respectively. Clearly, there is, in general, more than
one recursive sequence S

(μ)
R leading to the realization R

(μ)
C . We

shall denote the set of all possible sequences leading to R
(μ)
C as

{S(μ)
R }. Also, there is generally more than one realization R

(μ)
C

selecting particles to C. The set of all possible realizations of
C in state μ will be denoted as {R(μ)

C }.
Let L(r (μ)) denote the number of pairs in the queue before

the r (μ)th iterative step is applied. In random ordering, the
probability of selecting a specific pair in the rth iterative step
is thus given by 1/L(r (μ)).

For the free cluster selection, it is easily seen that{
S

(μ)
R

} = {
S

(ν)
R

}
and

{
R

(μ)
C

} = {
R

(ν)
C

}
, (39)

and also that for each S
(μ)
R and S

(ν)
R such that S

(μ)
R = S

(ν)
R , it

holds that

L
(
r

(μ)
l

) = L
(
r

(ν)
l

)
,

L
(
r

(μ)
f

) = L
(
r

(ν)
f

)
,

L
(
r

(μ)
b

) = L
(
r

(ν)
b

)
,

(40)

which means that pair selection probabilities 1/L(r (μ)) are
the same in the old and in the new states at each step of the
recursive cluster selection. We shall also denote

p(i,j |r (μ)) = p
(μ)
ij ,

q(i,j
∣∣r (μ)) = q

(μ)
ij ,

q(i,′j |r (μ)) = q
(μ)
i ′j

for a pair (i,j ), which is the rth member of sequence S
(μ)
R . The

probability of selecting S
(μ)
R can then be expressed as

Wsel
(
S

(μ)
R

) =
∏

{(i,j |r (μ)
l )}

1

L
(
r

(μ)
l

)p
(
i,j

∣∣r (μ)
l

)

×
∏

{(i,j |r (μ)
f )}

1

L
(
r

(μ)
f

)q
(
i,j

∣∣r (μ)
f

)

×
∏

{(i,j |r (μ)
b )}

1

L
(
r

(μ)
b

)q
(
i ′,j

∣∣r (μ)
b

)
, (41)

and the SDB condition imposed on {S(μ)
R } and {S(ν)

R } such that
{S(ν)

R } = {S(μ)
R } can be written as

exp(−βEμ) p(μ)({b})W (μ)
sel

(
S

(μ)
R

)
W (μ→ν|S)

acc

= exp(−βEν) p(ν)({b})W (ν)
sel

(
S

(ν)
R

)
W (ν→μ|S)

acc (42)

with terms having a similar meaning in Eq. (22). By using
a reasoning analogous to that in Sec. IV, and by using
relations (39) and (40), the explicit SDB condition (42) can be
simplified into the form (25), and further into the form (27).
We note that auxiliary conditions in the SDB condition
were originally defined such that {b} should also include the
probability of generating S

(μ)
R . Since 1/L(r (μ)) is conditional

upon the set of already formed links, we do not adhere to this
definition, and express 1/L(r (μ)) separately from p(μ)({b}).

One can also proceed slightly differently, and express the
probability of selecting a realization as

Wsel
(
R

(μ)
C

) =
∑
{S(μ)

R }
Wsel

(
S

(μ)
R

)
. (43)

The SDB condition imposed on R
(μ)
C and R

(ν)
C such that

R
(μ)
C = R

(ν)
C then reads as

exp(−βEμ)p(μ)({b})W (μ)
sel

(
R

(μ)
C

)
W (μ→ν|R)

acc

= exp(−βEν) p(ν)({b})W (ν)
sel

(
R

(ν)
C

)
W (ν→μ|R)

acc , (44)

and can again be simplified into Eq. (25) or (27). Equation (44)
is, in fact, equivalent to the implicit formulation of the SDB
condition in Eq. (22) or to the previous formulations of the
detailed balance conditions [2,4,22] validating the cluster
algorithms, where the realization of the cluster is understood
as a “static pattern” of pairs rather than a “dynamic sequence”
of pairs. The SDB condition applied to sequences of pairs
offers an alternative insight into the validity of the algorithms
described above, both for random and isotropic ordering. Note
that there are alternative ways [24] to see that the selection of
a specific pattern of pairs in the old and in the new state has
the same probability.

XI. RESULTS

We first test the VMMC method on a system of N = 2000
particles interacting via a short-ranged attractive generalized
Lennard-Jones [25] potential given by

V (r) = 4ε

[(
σ

r

)2α

−
(

σ

r

)α]
− Vc, (45)

with α = 18, σ = 1.0, ε = 1.0, in reduced units. The potential
was truncated and shifted [19] at a cutoff distance rc = 1.8, with
the constant Vc chosen such that V (rc) = 0. The simulations
were carried out in the constant NV T ensemble. We took
the critical packing fraction φ = π/6 · N/V = 0.225, and
temperature T = 0.6 corresponding to the fluid phase [25].
We use the version of VMMC described in Sec. V, and the
isotropic ordering. A Monte Carlo cycle consists of N virtual
translational or rotational moves. The rotational moves were
performed in the same way as described in Sec. VII. The
decision about performing a translation or a rotation is random,
with on average 50% translations and 50% rotations. The size
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FIG. 3. (Color online) Simulations comparing single-particle MC (blue) and collective VMMC moves (green). Radial distribution functions
in a fluid state of the system at T = 0.6 and φ = 0.225. Inset: Magnification of the first minimum in g(r). Mean square displacement versus time
measured in 1000 MC sweeps for the fluid at T = 0.6 and φ = 0.225. VMMC either contains only rotations (ROT) or only translations (TRA),
and simulations are either not scaled (N) or scaled (S) by NC = 1/x. MSD for the fluid at φ = 0.01 measured from the quench to T = 0.25.
MSD for short-range attractive and long-range repulsive fluid at φ = 0.01 measured from the same quench. All error bars are estimated from
10 independent simulations.

of the translational displacement was chosen randomly from
the interval (−δ,δ). The maximum sizes of translational and
rotational displacements were taken as δ/σ = θmax = 0.10,
amax = σ . The size of δ can drastically affect the efficiency
of the algorithm, and our optimum choice will be discussed
elsewhere. We compare the radial distribution functions g(r)
generated both with single-particle Monte Carlo (SPMC) and
VMMC only. For each case, the g(r) is averaged over 10
independent simulations. The results are depicted in Fig. 3(a)
and show that g(r) are within the error range of each other.
Similar tests were performed for fluid phases of similar short-
ranged attractive systems at different temperatures, densities,
and also in the constant NpT ensemble. The VMMC method
described in Sec. VIII was tested elsewhere [24].

Figure 3(b) compares the mean square displacement (MSD)
of SPMC with the MSD of VMMC. The SPMC has the same
maximum displacement as the VMMC, equal to 0.1σ . The
VMMC is tested with four different setups. A MC sweep either
includes 100% of rotational or 100% of translational moves,
and the cluster selection is or is not scaled by condition (28).
By scaled or not scaled dynamics we understand that the
limit on the maximum cluster size in Eq. (28) is, or is not,
applied. We use NC = 1/x, with x being a random number

from the uniform distribution U(0,1). The scaling of the
cluster selection can be used to approximate the Brownian
dynamics by collective MC moves [9,26]. Although the time
is nonphysical, the gradient of the MSD is constant, defining a
diffusion coefficient for each simulation in Fig. 3(b). Diffusion
by the nonscaled and scaled translational VMMC is higher than
in SPMC by 44% and 26%, respectively. This corresponds
to the fact that more particles are moved in an average
VMMC cycle. Indeed, the number of displaced particles in
the respective VMMC simulations was higher, by 28% and
16%, than in SPMC. Diffusion by rotations is lower than by
translations, despite the fact that the total number of displaced
particles in the rotational VMMC is higher, by 22%, than
in the translational VMMC. The rotational geometry of the
displacements and the potentials is a plausible reason for this
result.

Figure 3(c) shows the evolution of the MSD in the Lennard-
Jones system of Eq. (45), with a low packing fraction φ = 0.01,
quenched to the temperature T = 0.25, corresponding to the
fluid-solid metastable region where clustering occurs [27]. The
VMMC is scaled by NC = 1/x, and contains 50% of rotations
and 50% of translations. The maximum displacements were
chosen as δ/σ = θmax = 0.30. The initial configuration is a
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high temperature fluid conformation. The MSD is measured
immediately from the start of the simulation, with no averaging
over time origins. It can be seen that in the SPMC simulation
of this system, particles get trapped by their neighbors in
isolated aggregates, which do not move, meaning that the
growth of the mean square displacement is extremely slow
at later times. VMMC, on the other hand moves, both single
particles and particles with their neighbors, thus producing a
gel-like structure spanning most particles in the system, which
itself moves as a single large cluster. The MSD in VMMC is
thus several orders of magnitude larger than in SPMC, and the
situation displayed in Fig. 3(b) is an example where VMMC
is significantly more efficient than SPMC (at least on a certain
time scale).

Figure 3(d) shows the results from quenches with parame-
ters identical to those presented in Fig. 3(c), except that δ/σ =
θmax = 0.20 and the potential (45) has an additional long-range
repulsive term of the Yukawa form A exp(r/ξ )/(r/ξ ), where
A = 0.08 and ξ = 2.0. The potential is cut off and shifted at
rc = 3.0. The long-range repulsion can stabilize droplets [28],
and the system phase separates after the quench into 2–3 large
and long-living aggregates. Figure 3(d) shows that the MSD
in VMMC evolves at about the same pace as in the purely
attractive system, whereas the MSD in SPMC grows about
an order of magnitude faster. This is likely to be caused by
a single-particle exchange between the isolated aggregates.
From the MSD point of view, the VMMC would thus not
significantly outperform the SPMC. However, contrary to
SPMC, the VMMC moves these isolated structures, preserving
their integrity, and can confirm their temporal stability against
aggregation into a single domain. A detailed account of the
interplay between the single-particle and collective motion
will be published elsewhere [18].

XII. DISCUSSION

We have derived an alternative formulation of the sym-
metrized VMMC. Let us now discuss its efficiency. Proposing
links to pairs interacting not only in μ but also in μi may
seem to impact the speed, compared to the VMMC selecting
clusters via realizations with symmetric core and asymmetric
boundary, where links are proposed only to pairs interacting in
state μ. However, one must take into account that determining
the boundary of the cluster in the new state, in the latter version
of VMMC, requires detection of the interacting neighbors
of every particle in C, in the new state. A similar reasoning
applies to the static cluster algorithm [22]. Without testing,
we anticipate that the speeds of both versions of VMMC are
comparable in the limit of high acceptance probability. If the
cluster acceptance probability is low, selecting clusters via
realizations with symmetric core and asymmetric boundary
should be faster because nearest neighbors in the new state
do not need to be detected, provided the boundary contains a
frustrated failed link. An advantage of the alternative version
of the algorithm is that it may be simpler to implement,
and allows us to simply accept clusters, which would have
otherwise been rejected, through the scheme derived in
Sec. VI. The efficiency generally depends on system properties
and simulation parameters. For example, if the maximum size
of displacement in M is smaller than the attractive range,

and (i,j ) is not interacting in μ but does so in μi , then also
p

(μ)
i ′j = 0 and the proposed link is outright failed. This means

that links can only be proposed to the pairs interacting in μ,
while still using the simplified acceptance probability (27).
(Under the assumption of small displacements, proposing
links to pairs interacting in μi does not affect the validity
of the algorithm, but would slow it down.) Another example
is a one-dimensional (1D) system with short-range attractions,
where the boundary of the cluster is given by at most two pairs
(corresponding to two border particles of C). The set B(μν)

thus only includes neighbors of these two particles; neighbors
of other particles in C can be omitted, and we can therefore
expect the original version being faster than the reformulated
version.

An alternative version and the original version of the
symmetrized VMMC algorithm were again proved via the use
of the SDB condition, but with realization of the cluster defined
as the set of all pairs to which a link is proposed during the
cluster selection. It was shown that translational and rotational
cluster moves, with clusters selected by the recursive stochastic
linking proposed to nearest neighbor pairs, can not generally
possess a unique realization because the set of pairs to which
a link is proposed under the forward move is not the same as
the set of pairs to which a link is proposed under the reverse
move. This problem, which can be related to the unsolved task
of enumerating the number of independent graphs in Monte
Carlo cluster algorithms [29], was described here in terms of
the asymmetric core or boundary of the cluster (Sec. I) and can
be briefly summarized as follows. If links are proposed only
to pairs interacting in the original state, the set of proposed
links internal to the cluster is the same in the old and in the
new state, but the sets of pairs to which a link is proposed
and which end up in the boundary are generally different. The
realization has a symmetric core but an asymmetric boundary
in this case. If links are proposed to pairs interacting in the
original or in the virtual state, the set of pairs in the boundary
of the cluster is the same, however, the sets of pairs internal to
the cluster are generally different. The realization then has a
symmetric boundary but an asymmetric core. These iterative
selection rules thus do not generally yield realizations which
would have symmetric core and boundary at the same time.
The SDB condition, imposed on the realization of the cluster,
was thus formulated differently in terms of the free cluster
selection, where links were proposed to all pairs satisfying
conditions (1a) and (1b). Realizations are then guaranteed to
have both symmetric boundary and symmetric core, and the
SDB condition can be formulated exactly. It is then shown
that under certain assumptions, not proposing pairs to all (1a)
and (1b), but only to certain pairs, does not affect the validity
of the algorithm.

Let us relate the notion of symmetric boundary and
symmetric core to other cluster algorithms [3,4,22]. In the
Wolff cluster algorithm, the realization of the cluster has both
symmetric core and symmetric boundary. The SDB condition
can thus be imposed on the realization of C without any
ambiguity. The symmetry of the core and boundary in the
Wolff cluster algorithm follows from the fact that spins are
flipped and stay at one lattice position, rather than being
moved from one lattice position to another. The symmetry
of the realization is also preserved in the translational cluster
algorithm for charged lattice spin systems [4]. This is because
the spins are linked with probability one, if they are close
enough, and fail to form otherwise. A consequence of this
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deterministic linking is that there are no such spins (particles)
j outside the cluster to which a link would be proposed
in one state and not in another state, and the requirement
about equal chances of selecting the pairs at each step of the
recursive selection is naturally satisfied by the definition of this
linking probability. We note that the same authors proposed a
possible extension of their theory to stochastic linking, without
further specifying the exact rules of the cluster selection. If
the selection of the cluster was recursive following random
or isotropic ordering, the stochastic linking would lead to
realizations of clusters having asymmetric boundaries, and
considerations similar to those presented in this paper would
be needed to validate the algorithm. In the algorithm of Troisi
and Bhattacharyay [22,30], the links are not proposed in a
recursive way, but to all pairs of the system. For each state μ

this leads to the definition of a square matrix with elements
given by p

(μ)
ij , i,j = 1, . . . ,N . The cluster is then detected as

those particles which are at least singly joined by links. This
selection leads to a cluster acceptance probability which is,
indeed, biased exactly by the energy change on the boundary
of the cluster. In practice, the authors do not consider the
entire matrix p

(μ)
ij , but only a part of it by a recursive process

described above in this paper. In fact, restriction of the whole
matrix to only a part of it, used to validate their algorithm, is
very similar to the restriction of pair selection by condition (1c)
used to derive the acceptance probability in the VMMC.

We will now point out a weak point in our tests performed
to numerically validate the VMMC. Figure 3(a) shows that
the radial distribution function of a generalized Lennard-Jones
fluid is within the error range of the radial distribution function
obtained by a single-particle MC. We have thus verified that
the VMMC samples the fluid phase within the accuracy of
the single-particle MC. Although we performed these tests
for square-well and 36-18 LJ fluids at different conditions,
we emphasize that the probability of generating or accepting
a cluster decreases exponentially with cluster size, and that
the dominant moving cluster size is one or two particles.
The contribution of larger clusters to the total number of
accepted clusters is thus negligible, and large cluster moves
are likely to have only a very little effect on generating an
equilibrium MC chain. It would thus be appropriate to perform
tests on an equilibrium (ergodic) system where the dominant
moving cluster size is significantly higher than one particle.
The simplest example of such systems might be particles
with short-range attractions and long-range repulsions at a
suitable ε/kBT . Those systems were proved to form stable
cluster phases [28,31], and we have observed that a suitably
chosen displacement can indeed lead to a dominant moving
cluster size larger than 1 (and smaller than N ). We have
not compared the radial distribution function with a radial
distribution function of a single-particle MC because we know
that the latter equilibrates those systems too slowly. Another
nonlocal algorithm such as aggregation volume bias MC [32]
would be needed in order to sample the configurational space
of an equilibrium cluster phase. At sufficiently low densities
such that structural arrest does not take place [31], this might
then be used in a very long simulation, to verify that the
cluster algorithm samples from the Boltzmann distribution
even when the dominant clusters are large. These tests were

not performed here. In addition to the 3D tests, we did 1D
continuum model tests similar to the 1D lattice model tests of
Ref. [22]. Our continuum model tests matched the analytical
result [33] exactly. We emphasize that one-dimensional tests
are necessary but not sufficient to validate the SDB condition
because there is only one realization or one sequence of
proposed links selecting the one-dimensional moving cluster.
We thus conclude that although our tests confirm the validity
of VMMC in the limit of small clusters, they do not provide
strong numerical evidence that the algorithm is valid for
large moving clusters, and in that limit we can only rely
on analytical considerations deriving the VMMC. We stress
that other unpublished tests [24] have been performed [14]
comparing VMMC with molecular dynamics simulations in
systems where collective motion is important.

We will now address a more general aspect of the algorithm.
The form of the linking probability in Eq. (16) implies that no
links and hence no clusters are formed as a result of a repulsive
interaction (ε(μ)

ij = 0, ε(μ)
i ′j > 0). In our future publication [18],

we will show a general way of linking the particles and
accepting the relevant collective translational and rotational
MC moves, which is applicable to any form of pairwise
interaction, including hard-core repulsion. Although this can
also be done by fictitious potentials [21], the general linking
is different in that it proposes links to pairs interacting in
the virtual state corresponding to ε

(μ)
ij ′ , and defines general

properties of the linking function. We also mention that new
event-based rejection-free MC algorithms have recently been
formulated for general potentials. First, event-chain Monte
Carlo [34,35] displaces chains of particles in an efficient
way. Second, event-driven Monte Carlo [36] displaces single
particles, but selects and accepts them in a way which is
dynamic. It would be interesting to see how these algorithms
complement the VMMC methods in capturing the kinetic and
thermodynamic crossover in glassy systems [26,37].

This paper aimed to clarify the way of creating collective
translational and rotational Monte Carlo moves, based on
local pairwise energy changes, and to shed more light on the
technical details, as well as to provide a clear validation of the
algorithm. Apart from the tests of the MSD in Fig. 3, Stokesian
or Brownian scaling was not considered here because it
requires us to approximate a MC sweep composed of collective
rotations and translations with a time step. Presentation and
tests of these approximations are outside the scope of this
paper. Nevertheless, it is worth mentioning that one of the
main reasons for the asymmetric boundary in the original
version of the symmetrized VMMC was to speed up the
generation of proposed clusters because a large fraction
of them are rejected immediately without any chance of
being accepted. This is done for clusters exceeding a certain
size in order to approximate the real dynamics. Section VI
provides a scheme controlling the cluster size, the advantage
of which is that its acceptance rate is potentially higher than
in the case of purely rejecting the clusters. Approximation
of the dynamics by this scheme is an example situation
where the alternative formulation of the VMMC algorithm
(Secs. V and VI) might naturally outperform the original
scheme (Sec. VIII and Ref. [9]) because more generated
clusters can be accepted. Higher acceptance rate is, indeed,
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desirable in MC schemes approximating Brownian or other
dynamics [38]. Moreover, the size distribution of proposed
clusters is strongly correlated with the maximum size of the
Monte Carlo map M . We can speculate that to generate a
realistic distribution of moving accepted clusters might be
additionally tweaked, for example, by drawing the size of the
Monte Carlo map M not from a uniform but from an optimized
(possibly Gaussian) distribution such that the distribution of
proposed and accepted cluster sizes ends up being closer to
the distribution in a real dynamics.

XIII. CONCLUSION

We have formally described and analyzed the symmetric
version of the VMMC algorithm and made additional numeri-
cal tests. The early-rejection scheme is explicitly used to show
that the algorithm samples from the Boltzmann distribution,
while treating the superdetailed balance condition in another
way. To clarify the theory behind the algorithm, we have
presented an alternative formulation of the VMMC algorithm
which has a simple acceptance form. The main advantage of
this reformulated scheme is that it provides an easy way of
accepting clusters which would otherwise be rejected. This
may find its use in controlling the cluster size distribution, but
also in the implementation of kinetically realistic rotational
moves. We anticipate that the original formulation of the
symmetrized VMMC is still the fastest, but system- and
simulation-dependent exceptions might exist.

We close by briefly mentioning an application of interest,
which constitutes work in progress. Similarly to what was
originally reported [9], our preliminary results show that the
VMMC algorithm is particularly useful in predicting the
gelation boundary of low- and intermediate-density short-
ranged attractive systems below the critical point [27], where
the density fluctuations [39], phase separation [40], or spinodal
decomposition [41] lead to the formation of metastable
droplets, fractal aggregates, or even stable clusters [28,31].
The cluster moves enhance the mobility of those structures
which can kinetically slow down (arrest) and form glasses
or gels. Our preliminary results, which will be published
elsewhere, or results of Ref. [9] which report the effect of
collective motion on gelation, are restricted to a narrow range
of system parameters (ρ,ε/kBT ,α), determining the onset of
gelation. Other simulation parameters, including the optimum
displacement size, the simulation ensemble, particle shape, or
the quench or compression (crunch) rate [42], may also affect
the structure of the gel. One can thus imagine a whole class
of possible studies examining the affect of collective motion
on gel formation, or crystallization, in attractive colloidal or
molecular systems, making use of cluster algorithms of this
kind.
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APPENDIX A: INCONSEQUENTIAL NATURE
OF THE ASYMMETRIC CORE IN SEC. V

In this appendix, we show why the asymmetric core of the
realization of the cluster, in the algorithm of Sec. V, does not
matter. Let us now assume that R

(μ)
C , with L(μ), F (μ), B(μ),

is the realization of C, generated by the restricted recursive
selection of Sec. V.

Let (i,j ) be a pair from L(μ). Any such pair is interacting
in μ or in μi , and it must hold that i ∈ C, j ∈ C, p

(μ)
ij > 0. We

start with the trivial case: if (i,j ) is interacting in μ, then (i,j )
is interacting in ν, and a link is, indeed, proposed to that pair
in ν. If (i,j ) is not interacting in μ, but interacting in μi , then,
with the aid of Eq. (21), we can write

p
(μ)
ij = min

{
p

(μ)
i ′j ,p

(μ)
ij ′

} = p
(ν)
ij > 0. (A1)

Equations (6), (15a), and (15b) then imply that ε
(ν)
i ′j > 0 [(i,j )

is interacting in νi], and hence that a link can also be proposed
to (i,j ) in state ν. Hence, given L(μ) in R

(μ)
C , we can assume

the existence of L(ν) such that L(ν) = L(μ).
Let (i,j ) be a pair from F (μ). We distinguish between two

cases, and decompose F (μ) as

F (μ) = F∗(μ) ∪ F†(μ), (A2)

where F†(μ) denotes pairs (i,j ) not interacting in μ but
interacting in μi such that p(μ)

ij = 0. The setF∗(μ) then denotes
all other pairs in F (μ), and is thus composed either from pairs
which interact in μ, or from pairs which do not interact in μ,
but interact in μi such that p

(μ)
ij > 0. Considerations, similar

to those done for L(μ), imply that there exists F∗(ν) such that
F∗(ν) = F∗(μ). However, it is generally not guaranteed that
if (i,j ) is from F†(μ), then (i,j ) (i,j ∈ C) is also interacting
in νi .

The fact that for each B(μ) there exists B(ν) such that
B(ν) = B(μ) follows from the properties of the cluster selection
conditions (1), from the existence of L(ν) = L(μ), and from the
fact that if a boundary pair is interacting in μ or in μi , it is
also interacting in ν or in νi . We have thus shown that it is
only due to F†(μ) that pairs to which a link is proposed in
states μ can not be guaranteed to be the same in ν, and we
can not ensure the existence of R

(ν)
C such that R

(ν)
C = R

(μ)
C .

Nevertheless, identity (14) implies that any pair proposed to
F†(μ) has no chance to form in state ν, and we can assume
that a link was proposed to that pair although it was actually
not. Hence, the set of pairs to which a link is proposed in the
recursive selection of the cluster can in practice be assumed
to be the same. The restricted cluster selection can be seen
to be equivalent to the free cluster selection, in other words,
the cluster can be accepted with probability given by Eq. (27),
even if the links are only proposed to pairs interacting in μ or
in μi , and not to all pairs satisfying (1a) and (1b).

APPENDIX B: DERIVATION OF THE ACCEPTANCE
PROBABILITY OF THE ALGORITHM OF SEC. VIII

To derive the bias in the cluster acceptance probability
needed to correct the asymmetry of the realization of a cluster
selected by the procedure described in Sec. VIII, we define the
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linking probabilities as

P
(μ)
i ′j = I

(μ)
ij p

(μ)
i ′j , Q

(μ)
i ′j = 1 − P

(μ)
i ′j , (B1)

where I
(μ)
ij = 1, if (i,j ) is interacting in μ, and I

(μ)
ij = 0, if

(i,j ) is not interacting in μ.
For simplicity, we assume again that R

(μ)
C is a realization

resulting from the free recursive selection of C, but using the
linking probabilities (B1). Since the probabilities (B1) satisfy
relations (3a) and (3b), one can assume the existence of R

(ν)
C

such that R
(ν)
C = R

(μ)
C , allowing us to require the SDB between

R
(μ)
C and R

(ν)
C , and then simplify the acceptance probability, in

a similar way as in Sec. IV, into the form

W (μ→ν|R)
acc = min

{
1, exp[−β(Eν − Eμ)]

∏
(i,j )∈B(ν) Q

(ν)
i ′j∏

(i,j )∈B(μ) Q
(μ)
i ′j

}
.

(B2)

The Rosenbluth factor in Eq. (B2) can be simplified as follows.
Let us decompose the boundary of C into

B(μ) = B(μν) ∪ B(μν) ∪ B(μν) ∪ B(μν), (B3)

where B(μν) are pairs from B which interact both in states μ

and ν, B(μν) are boundary pairs which do not interact in μ but
interact in ν, B(μν) are boundary pairs which interact in μ but
not in ν, and B(μν) are boundary pairs which do not interact
both in μ and in ν. BoundaryB(ν) in state ν can be decomposed
similarly. Equation (7) and definition (8) then imply that

�ε
(μ)
i ′j = −�ε

(ν)
i ′j ∀ (i,j ) ∈ B(μν), (B4a)

�ε
(ν)
i ′j = −ε

(ν)
ij ∀ (i,j ) ∈ B(μν), (B4b)

�ε
(μ)
i ′j = −ε

(μ)
ij ∀ (i,j ) ∈ B(μν). (B4c)

Using Eq. (2), the total energy of the system in state μ can
then be expressed as

Eμ =
∑

(i,j )∈L(μ)

ε
(μ)
ij +

∑
(i,j )∈F (μ)

ε
(μ)
ij +

∑
(i,j )∈B(μν)

ε
(μ)
ij +

∑
(i,j )∈B(μν)

ε
(μ)
ij +

∑
(i,j )∈B(μν)

ε
(μ)
ij +

∑
(i,j )∈B(μν)

ε
(μ)
ij +

∑
(i,j )∈X (μ)

ε
(μ)
ij . (B5)

Similarly, the total energy of S in state ν is

Eν =
∑

(i,j )∈L(ν)

ε
(ν)
ij +

∑
(i,j )∈F (ν)

ε
(ν)
ij +

∑
(i,j )∈B(μν)

ε
(ν)
ij +

∑
(i,j )∈B(μν)

ε
(ν)
ij +

∑
(i,j )∈B(μν)

ε
(ν)
ij +

∑
(i,j )∈B(μν)

ε
(ν)
ij +

∑
(i,j )∈X (ν)

ε
(ν)
ij . (B6)

Since L(μ) = L(ν), F (μ) = F (ν), X (μ) = X (ν), and ε
(μ)
ij = ε

(ν)
ij , for pairs (i,j ) from these sets, we can express the energy difference

as

Eν − Eμ =
∑

(i,j )∈B(μν)

ε
(ν)
ij −

∑
(i,j )∈B(μν)

ε
(μ)
ij +

∑
(i,j )∈B(μν)

ε
(ν)
ij −

∑
(i,j )∈B(μν)

ε
(μ)
ij , (B7)

where we have also used the fact that∑
(i,j )∈B(μν)

ε
(μ)
ij =

∑
(i,j )∈B(μν)

ε
(μ)
ij =

∑
(i,j )∈B(μν)

ε
(ν)
ij =

∑
(i,j )∈B(μν)

ε
(ν)
ij = 0.

Let us separate the terms in Eq. (B7) for which εij > 0 from those for which εij � 0, and identify the corresponding partial sums
with + and −, respectively, so that

Eν − Eμ =
∑

(i,j )∈B(μν)

ε
(ν)
ij −

∑
(i,j )∈B(μν)

ε
(μ)
ij +

+∑
(i,j )∈B(μν)

ε
(ν)
ij +

−∑
(i,j )∈B(μν)

ε
(ν)
ij −

+∑
(i,j )∈B(μν)

ε
(μ)
ij −

−∑
(i,j )∈B(μν)

ε
(μ)
ij . (B8)

Hence,

exp[−β(Eν − Eμ)] =
∏

(i,j )∈B(μν) exp
(−βε

(ν)
ij

)
∏

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(ν)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
∏−

(i,j )∈B(μν) exp
(−βε

(ν)
ij

)
∏−

(i,j )∈B(μν) exp
(−βε

(μ)
ij

) , (B9)

where the + and − symbols have a meaning analogous to that in Eq. (B8). The next step is to decompose the products of link
failure probabilities in (B2), in a similar way. Using Eq. (19), the ratio of products can be expressed as∏

(i,j )∈B(ν) Q
(ν)
i ′j∏

(i,j )∈B(μ) Q
(μ)
i ′j

=
∏+

(i,j )∈B(ν) exp
(−β�ε

(ν)
i ′j

)
∏+

(i,j )∈B(μ) exp
(−β�ε

(μ)
i ′j

) =
∏+

(i,j )∈B(μν) exp
(−β�ε

(ν)
i ′j

)
∏+

(i,j )∈B(μν) exp
(−β�ε

(μ)
i ′j

)
∏+

(i,j )∈B(μν) exp
(−β�ε

(ν)
i ′j

)
∏+

(i,j )∈B(μν) exp
(−β�ε

(μ)
i ′j

) . (B10)

Similar to the above, + denotes products over those boundary pairs (i,j ) for which the corresponding energy differences are
positive, i.e., for which �ε

(ν)
i ′j > 0 or �ε

(μ)
i ′j > 0. An analogous notation is also used in what follows. By using Eq. (B4a), the first

fraction in (B10) can be expressed as

+∏
(i,j )∈B(μν)

exp
(−β�ε

(ν)
i ′j

) −∏
(i,j )∈B(μν)

exp
(−β�ε

(ν)
i ′j

) =
∏

(i,j )∈B(μν)

exp
(−β�ε

(ν)
i ′j

) =
∏

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
∏

(i,j )∈B(μν) exp
(−βε

(ν)
ij

) , (B11)
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and the second fraction in (B10) can be expressed as∏+
(i,j )∈B(μν) exp

(−β�ε
(ν)
i ′j

)
∏+

(i,j )∈B(μν) exp
(−β�ε

(μ)
i ′j

) =
∏−

(i,j )∈B(μν) exp
(
βε

(ν)
ij

)
∏−

(i,j )∈B(μν) exp
(
βε

(μ)
ij

) . (B12)

Hence, ∏
(i,j )∈B(ν) Q

(ν)
i ′j∏

(i,j )∈B(μ) Q
(μ)
i ′j

=
∏

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
∏

(i,j )∈B(μν) exp
(−βε

(ν)
ij

)
∏−

(i,j )∈B(μν) exp
(
βε

(ν)
ij

)
∏−

(i,j )∈B(μν) exp
(
βε

(μ)
ij

) . (B13)

By combining expressions (B9) and (B13), the acceptance
probability (B2) reduces to

W (μ→ν|R)
acc = min

{
1,

∏+
(i,j )∈B(μν) exp

(−βε
(ν)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
}

, (B14a)

provided there is no frustrated link in the boundary B(μ).
If B(μ) contains a frustrated link, the cluster is rejected,
i.e.,

W (μ→ν|R)
acc = 0. (B14b)

Expressions (B14) are identical to the original expression
for the cluster move acceptance probability [9], although
the notation here is slightly different. The notation here is
more explicit, in that the product in the numerator runs only
over those pairs in the boundary of C that are outside the
interaction region in the original state, but end up in the
interaction region in the final state. Again, this set of pairs
is denoted by B(μν). Moreover, the notation also explicitly
restricts the product to run only over those pairs in B(μν)

such that ε
(ν)
ij > 0. Similarly, the product in the denominator

runs over boundary pairs (i,j ) which are interacting in the
original state but not interacting in the final state, and have
ε

(μ)
ij > 0.

Recall that Eq. (B14) was derived under the assumption
of free cluster selection. Let us now restrict the class of
pairs to which a link is proposed in the recursive selection
of C. If links are proposed only to pairs interacting in state
μ, and R

(μ)
C is the corresponding realization of C, then it is

clear that there exists a realization R
(ν)
C such that L(ν) = L(μ)

and F (ν) = F (μ); however, one can not expect B(ν) equal
to B(μ). Since links proposed to pairs B(ν) \ B(μ) or more
generally to the corresponding subset of pairs A \ B(μ) are
doomed to fail by definition (B1), it is practical not to propose
links to those pairs, i.e., to the pairs that do not interact
in state μ. We can thus assume that links were proposed
to all pairs (i,j ), i ∈ C, j �∈ C, although they were not, and
we can still use the acceptance probability (B14). Note that
to evaluate the denominator in Eq. (B14a), the set of pairs
B(ν) \ B(μ) still needs to be detected. Since B(ν) \ B(μ) consists
of pairs (i,j ), i ∈ C, j /∈ C, such that (i,j ) is not interacting
in μ but interacting in μi , the computational cost of this
algorithm is comparable to the cost of the algorithm generating
realizations of clusters with symmetric boundary and asym-
metric core (Sec. V) in the limit of high cluster acceptance
probability.

APPENDIX C: VALIDATION OF THE EARLY
REJECTION SCHEMES

In what follows, we validate the early rejection schemes
used in this paper in a way which is similar to that derived in
Ref. [19] for a single-particle move.

1. Algorithm of Sec. IV

Here, we attempt to clarify why rejection of clusters
selected via the free cluster selection, and having frustrated
links in the boundary, does not violate sampling from the
Boltzmann distribution. Let us first explain why clusters
with frustrated boundary pairs are rejected. If a boundary
pair is frustrated in μ under M , then p

(μ)
i ′j > 0, and Eq. (9)

implies that p
(ν)
i ′j = 0, which means that (i,j ) is necessarily

outright failed in state ν under M−1. It is thus impossible
to construct the realization of C in state ν with the same
boundary pair, which would be frustrated, and the cluster
must be rejected. Now, pair (i,j ) is frustrated in μ with
probability lower than 1, and it might not be completely
obvious why rejection of clusters with frustrated links in the
boundary preserves the correct sampling. To demonstrate this
more clearly, let us compare the cluster move acceptance
probabilities for the early rejection scheme in a way which
is analogous to Ref. [19]. It can be easily seen that the
cluster move acceptance probability (27) is equivalent to the
probability

W (μ→ν|R)
acc =

∏
(i,j )∈B(μ)

q
(μ)
i ′j , (C1)

which can be understood as the probability of not having
any frustrated link in the boundary. Similarly, the acceptance
probability for the reverse move can be written as

W (μ→ν|R)
acc =

∏
(i,j )∈B(ν)

q
(ν)
i ′j . (C2)

Since links between (i,j ), i,j ∈ C, can be seen to be selected
to C with the same probability in states μ and ν, relation (26)
implies that

W
(μ→ν|R)
acc

W
(ν→μ|R)
acc

= exp[−β(Eν − Eμ)], (C3)

which is what is expected in a valid early rejection scheme.
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2. Algorithm of Sec. VI

We will show that rejecting the proposed clusters with frustrated links in the boundary, selected by the procedure described
in Sec. VI, still leads to the correct sampling. We define the probability of accepting a realization R

(μ)
C in a different way than in

Eqs. (22) and (34) as

W (μ→ν|R)
acc =

+∏
(i,j )∈B∗

exp
(−β�ε

(μ)
i ′j

)
min

⎧⎨
⎩1,

∏
(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)⎫⎬⎭ , (C4)

which is easily seen to be equivalent to Eq. (34a). Indeed, the first product determines the probability of generating a boundary
formed of outright failed links, and the second term (conditional upon the first) is the acceptance probability, provided B∗ is
without frustrated links. By using relation (8) we can express similarly the acceptance probability for the reverse move as

W (ν→μ|R)
acc =

−∏
(i,j )∈B∗

exp
(
β�ε

(μ)
i ′j

)
min

⎧⎨
⎩1,

∏
(i,j )∈B†

exp
(−β�ε

(ν)
i ′j

)⎫⎬⎭ . (C5)

Now, it follows from Eq. (9) that

if
∏

(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)
< 1, then

∏
(i,j )∈B†

exp
(−β�ε

(ν)
i ′j

)
> 1, (C6)

and if
∏

(i,j )∈B†

exp
(−β�ε

(μ)
i ′j

)
> 1, then

∏
(i,j )∈B†

exp
(−β�ε

(ν)
i ′j

)
< 1. (C7)

Let us consider the case (C6); then Eqs. (C4), (C5), (29), and (31) imply that

W
(μ→ν|R)
acc

W
(ν→μ|R)
acc

=
∏+

(i,j )∈B∗ exp
(−β�ε

(μ)
i ′j

) ∏
(i,j )∈B† exp

(−β�ε
(μ)
i ′j

)
∏−

(i,j )∈B∗ exp
(
β�ε

(μ)
i ′j

) =
∏

(i,j )∈B
exp

(−β�ε
(μ)
i ′j

) = exp[−β(Eν − Eμ)], (C8)

which is what must be valid in a correct early rejection scheme. One can show the same for the case (C7). This guarantees that
the scheme samples from the Boltzmann distribution.

3. Algorithm of Sec. VIII

We now verify the validity of the early rejection scheme of the algorithm in Sec. VIII. It can be seen that the cluster move
acceptance probability (B14) is equivalent to the probability

W (μ→ν|R)
acc =

∏
(i,j )∈B(μ)

Q
(μ)
i ′j min

{
1,

∏+
(i,j )∈B(μν) exp

(−βε
(ν)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(μ)
ij

)
}

, (C9)

which can be understood as the probability of accepting a cluster move, conditional upon not having any frustrated link in the
boundary. Similarly, the acceptance probability for the reverse move can be written as

W (ν→μ|R)
acc =

∏
(i,j )∈B(ν)

Q
(ν)
i ′j min

{
1,

∏+
(i,j )∈B(μν) exp

(−βε
(μ)
ij

)
∏+

(i,j )∈B(μν) exp
(−βε

(ν)
ij

)
}

. (C10)

By using Eqs. (B13) and (B9), and distinguishing between the two cases

+∏
(i,j )∈B(μν)

exp
(−βε

(μ)
ij

)
�

+∏
(i,j )∈B(μν)

exp
(−βε

(ν)
ij

)
,

+∏
(i,j )∈B(μν)

exp
(−βε

(μ)
ij

)
>

+∏
(i,j )∈B(μν)

exp
(−βε

(ν)
ij

)
,

one can show that

W
(μ→ν|R)
acc

W
(ν→μ|R)
acc

= exp[−β(Eν − Eμ)], (C11)

as desired.

033307-18



COLLECTIVE TRANSLATIONAL AND ROTATIONAL MONTE . . . PHYSICAL REVIEW E 89, 033307 (2014)

[1] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
[2] F. Niedermayer, Phys. Rev. Lett. 61, 2026 (1988).
[3] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[4] D. Wu, D. Chandler, and B. Smit, J. Phys. Chem. 96, 4077

(1992).
[5] J. W. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004).
[6] J. W. Liu and E. Luijten, Phys. Rev. E 71, 066701 (2005).
[7] S. Whitelam and P. L. Geissler, J. Chem. Phys. 127, 154101

(2007).
[8] S. Whitelam and P. L. Geissler, J. Chem. Phys. 128, 219901

(2008).
[9] S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler,

Soft Matter 5, 1251 (2009).
[10] S. Whitelam, I. Tamblyn, P. H. Beton, and J. P. Garrahan,

Phys. Rev. Lett. 108, 035702 (2012).
[11] T. K. Haxton and S. Whitelam, Soft Matter 8, 3558 (2012).
[12] J. Grant, R. L. Jack, and S. Whitelam, J. Chem. Phys. 135,

214505 (2011).
[13] J. Russo, P. Tartaglia, and F. Sciortino, Soft Matter 6, 4229

(2010).
[14] F. Romano, A. Hudson, J. Doye, T. E. Ouldridge, and A. A.

Louis, J. Chem. Phys. 136, 215102 (2012).
[15] N. S. Bieler, T. Knowles, D. Frenkel, and R. Vácha,
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