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Currently the Boltzmann equation and its model equations are widely used in numerical predictions for dilute
gas flows. The nonlinear integro-differential Boltzmann equation is the fundamental equation in the kinetic theory
of dilute monatomic gases. By replacing the nonlinear fivefold collision integral term by a nonlinear relaxation
term, its model equations such as the famous Bhatnagar-Gross-Krook (BGK) equation are mathematically simple.
Since the computational cost of solving model equations is much less than that of solving the full Boltzmann
equation, the model equations are widely used in predicting rarefied flows, multiphase flows, chemical flows,
and turbulent flows although their predictions are only qualitatively right for highly nonequilibrium flows in
transitional regime. In this paper the differences between the Boltzmann equation and its model equations
are investigated aiming at giving guidelines for the further development of kinetic models. By comparing the
Boltzmann equation and its model equations using test cases with different nonequilibrium types, two factors (the
information held by nonequilibrium moments and the different relaxation rates of high- and low-speed molecules)
are found useful for adjusting the behaviors of modeled collision terms in kinetic regime. The usefulness of these
two factors are confirmed by a generalized model collision term derived from a mathematical relation between
the Boltzmann equation and BGK equation that is also derived in this paper. After the analysis of the difference
between the Boltzmann equation and the BGK equation, an attempt at approximating the collision term is
proposed.
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I. INTRODUCTION

Currently the Boltzmann equation and its model equations
are widely used in the numerical prediction of dilute gas
flows. The Boltzmann equation is the fundamental equation
in the kinetic theory of dilute monatomic gases [1–4]. It
is mathematically a nonlinear integro-differential equation.
By replacing the nonlinear fivefold integral collision term
by a modeled relaxation term, its model equations such as
the famous Bhatnagar-Gross-Krook (BGK) equation [5,6]
are mathematically simple. The collision term of Boltzmann
equation is based on microscopic molecule collisions, while
the model collision term is based on the result of all collisions
that the distribution has the trend towards equilibrium. Since
the computational cost of solving model equations is much
less than that of solving the full Boltzmann equation, the
model equations are widely used in predicting rarefied flows
[7–11], multiphase flows [12–16], chemically reacting flows
[17–20], and turbulent flows [21–25] although their predictions
for highly nonequilibrium flows are only qualitatively right
in transitional regime since they filter out the information of
detailed collision process.

At the present stage, two classes of numerical methods
based on gas kinetic theory are used for predicting the dilute
gas flows, i.e., statistical and deterministic. The statistical
method, represented by the direct simulation Monte Carlo
(DSMC) method [26–30], uses probabilistic simulation to
solve the Boltzmann equation for finite Knudsen number
dilute gas flows. The deterministic method, represented by the
so-called discrete velocity methods (DVM) or discrete ordinate
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method (DOM) [31–35], solves the governing equation by
using regular discretization of particle velocity. Besides the
above approaches, many other methods, such as the finite
difference [36], spectral [37–39], lattice-gas automata [40,41],
and lattice Boltzmann method [13,14], have been developed
as well. In order to simplify the numerical schemes for the
Boltzmann equation, both statistical and deterministic methods
use an operator splitting approach, such as decoupling the
transport and collision process into a collisionless free trans-
port and particle collision. Due to the decoupled processes,
the cell size and time step in the operator splitting methods are
generally limited by the mean free path and the mean collision
time, respectively, which makes these methods prohibitively
expensive in the transition and continuum flow regimes. The
operator splitting is originally used to avoid the mathematical
difficulty in dealing with the nonlinear integro-differential
Boltzmann equation. When using the kinetic collision models
instead of the quadratic collision integral of the Boltzmann
equation, there is no need to use the operator splitting method
and consequently be limited by the mean free path and collision
time. With the coupled transport and collision process, a
unified gas kinetic scheme (UGKS) has been developed
and achieved successes from the continuum flow regime to
the rarefied flow regime [7–9,11,42]. For the calculation of
numerical flux, the coupled transport and collision process is
more physical and more precise than the upwind scheme used
in the original DVM [11]. After necessary modification, the
UGKS is used as a numerical solver in this paper.

In this paper the differences between the Boltzmann
equation and its model equations are investigated aiming
at giving guidelines for improving the accuracy of model
equations in a kinetic regime. First, the kinetic model equations
and the Boltzmann equation are compared numerically in a
plane shock structure test case and a homogenous relaxation
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test case in kinetic regime, where the distribution functions
are far from equilibrium and the deviations of kinetic model
equations are expected to be large. From these tests, the
information held by nonequilibrium moments and the different
relaxation rates of high- and low-speed molecules are found
useful in adjusting the behaviors of model collision terms.
Then a mathematical relationship between the BGK equation
and the Boltzmann equation is derived, in which the Boltzmann
collision integral is split into a BGK relaxation term and a
non-BGK deviation. By using this relationship, a generalized
relaxation term can be also constructed. The usefulness of
the information of nonequilibrium moments and the different
relaxation rate is confirmed by the generalized relaxation term.
Finally, after the analysis of non-BGK deviation, an attempt
at calculating the collision integral is proposed where the
integrals are constructed using simple patterns.

This paper is organized as follows. The Boltzmann equation
and the kinetic model equations are introduced in Sec. II. Sec-
tion III is a brief introduction of a unified gas kinetic scheme.
Section IV is the numerical comparisons of kinetic model
equations and Boltzmann equation along with the analysis of
them. Section V includes the derivation of the relationship
between the BGK equation and Boltzmann equation and the
construction of the generalized relaxation term. Section VI
includes the analysis of the deviation integral and a method
for approximating the collision integral. The discussion and
concluding remarks are drawn in the final section.

II. BOLTZMANN EQUATION AND KINETIC MODEL
EQUATIONS

A. Boltzmann equation

In the kinetic theory of dilute gases, the state of a system
of particles is determined by a distribution function f (x,ξ ,t),
which depends on the location x, the particle velocity ξ , and
time t . The distribution function defines the possibility density
that a particle presents at (x,ξ ) in phase space at time t . The
time evolution of the distribution function is governed by the
Boltzmann equation

∂f

∂t
+ ξ · ∇xf = I (f,f ). (1)

The left-hand side (LHS) of Eq. (1) is the transport term, which
is the time derivative of f in the Lagrangian coordinate system
and is also called a substantial derivative in the field of fluid
dynamics. The right-hand side (RHS) of Eq. (1) is the collision
term, which describes the binary collision between particles.
For elastic collisions of monatomic dilute gases, it has the form

I (ξ ) =
∫

R3

∫
S2

[f (ξ ′
1)f (ξ ′)

− f (ξ 1)f (ξ ])B(v,�)d� dξ 1, (2)

where v = |ξ − ξ 1| is the relative velocity of colliding parti-
cles, B(v,ξ ) is the collision kernel, and � is the solid angle.
The postcollision velocities ξ ′

1 and ξ ′ are determined by the
precollision velocities ξ and ξ 1 with the aid of classical
conservation laws and the geometric information of solid
angle �.

The collision integral can be split into two integrals called
the depleting term and the replenishment term representing the
rate of losing and regaining molecules, respectively:

I (ξ ) = −
∫

R3

∫
S2

f (ξ 1)f (ξ )B(v,�)d�dξ 1

+
∫

R3

∫
S2

f (ξ ′
1)f (ξ ′)B(v,�)d� dξ 1. (3)

In the depleting term, f (ξ ) can be written on the outside of the
integral, and the rest of the collision integral is the collision
frequency ν, which is defined as

ν =
∫

R3

∫
S2

f (ξ 1)B(v,�)d� dξ 1. (4)

Denote the inverse collision integral by R for replenishment,
and the Boltzmann equation can be written as

∂f

∂t
+ ξ · ∇xf = R − ν(ξ )f (ξ ). (5)

B. The kinetic model equations

As a model equation of the fundamental Boltzmann
equation, the BGK equation [5] has a relaxation collision term
and is robust for a wide range of numerical schemes. The BGK
equation is in the form

∂f

∂t
+ ξ · ∇xf = νBGK(ξ )[g(ξ ) − f (ξ )], (6)

where νBGK is the relaxation rate, which is determined by
the viscosity and is on the same order of a mean collision
frequency. g is the local equilibrium state given as

g(ξ ) = n
( m

2πkT

)3/2
exp

(
− m

2kT
|ξ − u|2

)
, (7)

where k is the Boltzmann constant, m is the particle mass,
and n, u, and T are the particle number, macroscopic velocity,
and temperature, respectively. These macroscopic variables
depend on the local distribution function:

n =
∫

R3
f (ξ )dξ ,

u = 1

n

∫
R3

ξf (ξ )dξ , (8)

T = 1

nk

∫
R3

|ξ − u|2f (ξ )dξ .

The collision term of the BGK equation describes the trend
of distribution toward equilibrium. Compared with the Boltz-
mann collision term, the BGK collision term filters out the
detailed information of the collision process.

According to gas kinetic theory, the BGK model corre-
sponds to an unchangeable unit Prandtl number [6], but the
Prandtl number for monatomic gases is about 2/3. To get
a right Prandtl number, many statistical models have been
proposed, such as the ES-BGK model [43], the Shakhov model
[44], and the ν(c)-BGK model [45,46]. The ES-BGK and
Shakhov models replace the Maxwellian state in the BGK
collision term with new ones: the ES-BGK model holds that the
molecules which emerge from collisions have some memory
of their original states, and a new state is constructed by a
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weighted average of the original state and equilibrium state; in
the Shakhov model, the new equilibrium state is represented
by a third order Hermitian expansion whose zero order term is
a Maxwellian state. Being different from the ES-BGK and the
Shakhov models, the ν(c)-BGK model replaced the relaxation
rate, which is independent of velocity in the BGK relaxation
term, with a velocity-dependent one which better fits the
physical reality. Although the ideas of these models are totally
different, they all give a right Prandtl number, while, due to
different ways of approximating the Boltzmann collision term,
their relaxation behaviors are different.

1. ES-BGK model

In ES-BGK model [43], the Maxwellian equilibrium
distribution g is replaced by a Gaussian distribution ges.
The temperature T in the BGK equation, which is a second
order moment of the distribution function, is extended to
a second order moment tensor T es

ij . The tensor leads to
a anisotropic temperature which introduces certain amount
of nonequilibrium into the new equilibrium state ges. The
Gaussian equilibrium state is written as

ges = n
( m

2πk

)3/2
√

1

det(T es
ij )

exp
(
− m

2k
ciT

es
ij

−1
cj

)
, (9)

where c is the peculiar velocity c = ξ − u, and the temperature
tensor is defined as

T es
ij = 1

nk

∫
R3

cicj [(1 − b)g + bf ] dξ

= (1 − b)

nk
δijP + b

nk
pij , (10)

where P is the pressure and pij is the stress tensor. It should
be noted that relaxation rate of ES-BGK is different from that
of the BGK. When applying a second order Chapman-Enskog
expansion to the ES-BGK model, it has two free parameters
b and ν to make the obtained viscosity coefficient and heat
conduction coefficient coincide with the real ones. So b is set
to be 1 − 1/Pr, and νes is set to be Pr p/ν = Pr νBGK.

The νBGKg term in the BGK relaxation term can be
related to the replenishment term R in the full Boltzmann
equation by replacing f , the integrand of the quadratic integral,
by g. When the replenishment term is written as νBGKg,
it means that the distribution of particles emerging from
collisions is Maxwellian, or after collision, the distribution
of particles changes from nonequilibrium to equilibrium
accidently. Obviously the physical reality is that after 10 or
even more mean collision times, a high nonequilibrium state
can approach its equilibrium. This reality will also be shown
phenomenally in Sec. IV. In Holway’s paper [43], it is believed
that postcollision particles should have some memories of
their precollision states. One of the important and apparent
features of the nonequilibrium precollision state is its spherical
asymmetry in the shape of the distribution function.

2. Shakhov model

In the Shakhov model [44] for pseudo-Maxwell molecules,
a new equilibrium state is constructed by using a mul-
tidimensional Hermitian expansion around the Maxwellian

equilibrium state, which was first used by the moment method
solution of the Boltzmann equation [47]. The Hermitian series
are truncated at the third order aiming to restore the third
order moment, which is the heat flux. Then the coefficients of
Hermitian series are chosen by making the Shakhov collision
term fulfill the mass, momentum, and energy conservation
laws, along with the right relaxation rate of heat flux. The new
equilibrium state gShakhov has the following form:

gShakhov = n
( m

2πkT

)3/2
exp

(
−mc2

2kT

)

×
[

1 + 1 − Pr

5

mqici

kT P

(
mc2

kT
− 5

)]
, (11)

where the heat flux qi can be expressed in the form of

qi = m

2

∫
R3

cic
2f dξ . (12)

The Shakhov collision term approximates the Boltzmann
collision term in a way that makes its relaxation rates of low
order moments coincide to that of the Boltzmann collision
term. Theoretically, for a pseudo-Maxwell molecule, a higher
order Hermitian series could be used, which may make the
collision term more accurate.

3. ν(c)-BGK model

The ν(c)-BGK model uses a velocity-dependent collision
frequency, which is based on the observation of particle
collisions. This collision frequency can be assumed to be any
function with two free parameters which can be determined
by experimental values of viscosity and thermal conductivity.
In Refs. [45,46], these functions are expressed in the form of
polynomials of C, which is a nondimensional peculiar velocity
|c|/√2RT . A possible expression of ν(c) is formulated as

ν = a(1 + γC2)
P

μ
, (13)

with two coefficients a = 0.0268351 and γ = 14.2724. More
polynomials can be found in Ref. [45]. Though the velocity-
dependent collision frequency yields a correct Prandtl number,
the relaxation process of the ν(c)-BGK model differs signif-
icantly from that of the BGK model. This difference will be
illustrated in Sec. IV. So the function of the velocity-dependent
collision frequency should be chosen carefully in order to
approximate the Boltzmann collision term well.

III. THE UNIFIED GAS KINETIC SCHEME

The kinetic model equations are solved by the unified
gas kinetic scheme in this paper. The UGKS is a multiscale
method with coupled transport and collision processes [7].
The mathematical realization of coupled processes is through
the integral solution of the kinetic model equation, which is
used as a gas evolution model at the cell interface. Since the
integral solution includes both kinetic scale and hydrodynamic
scale mechanisms, it leads to an automate recovering of kinetic
scale and hydrodynamic scale solutions. Due to the coupled
evolution process, the cell size and time step are not limited by
the mean free path and the mean collision time, respectively.
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The UGKS can be classified into a finite volume method.
The physical space is divided into finite control volume Vi,j,k .
The temporal discretization is denoted by tn for the nth time
step. After integrating the kinetic model equation over a certain
control volume and time interval, the finite volume form can
be written as

f n+1
i,j,k = f n + 1

V

∫ tn+1

tn

∮
∂V

ξfcf · dS dt

+ 1

V

∫ tn+1

tn

g+
i,j,k − fi,j,k

τ
dt, (14)

where fi,j,k is a cell-averaged value in Vi,j,k , g+, and τ is the
equilibrium state and mean relaxation time, fcf = f (xcf ,ξ ,t)
is the evolution of distribution at the cell interface, and xcf is
the center of the cell interface. The most important feature of
UGKS is the construction of fcf in the following form:

fcf (ξ ,t) = 1

τ

∫ t

tn
g+(x′,ξ ,t ′)e−(t−t ′)/τ dt ′

+ e−(t−tn)/τ f (x0,ξ ,tn), (15)

where x′ = xcf − ξ · (t − t ′) is the particle trajectory varying
with time t ′ from tn to t , and x0 = xcf − ξ · (t − tn) is the
original position (at tn) of the particle that arrives at xcf at t .

The analytical solution describes the traveling of a cluster
of molecules. When traveling on the route, νf (x′,ξ ,t ′)dt

molecules among them collide with other molecules and leave
the route, while [νg+(x′,ξ ,t ′)dt] molecules, which are not
on the route originally, replenish this cluster of molecules
through certain intermolecular collisions. At the final time t ,
there are e−(t−tn)/τ of the original amount of molecules that are
left over, and 1

τ

∫ t

tn
g+(x′,ξ ,t ′)e−(t−t ′)/τ dt ′ molecules replenish

this cluster from other routes. The integral solution is actually
a gas evolution model which describes coupled transportation
and collision. Compared with the upwind treatment used in
the operator splitting method where only the transportation

is considered, the integral solution is more physical and
is without the extra viscosity associated with the upwind
treatment [11].

Multiply Eq. (14) by ψ = (1,ξ ,|ξ |2) and integrate it over
the whole velocity space; then the corresponding evolution
functions for macroscopic properties W = (ρ,ρu,ρe) can be
obtained in the form

Wn+1
i,j,k = Wn

i,j,k + 1

V

∫ tn+1

tn

∮
∂V

F · dS dt + , (16)

where the flux term F is defined as

F =
∫

R3
ξψfcf dξ . (17)

To obtain the detailed distribution functions, which is
important for the prediction of rarefied gas flows, a discrete
particle velocity space is used in UGKS. The discrete distri-
bution function fi,j,k,l,m,n is defined as the average value in
certain discrete subspace:

f n
i,j,k,l,m,n = 1


ξl
ξm
ξnVi,j,k

∫
Vi,j,k

∫
Wl,m,n

f (x,ξ ,tn) dξ dV ,

(18)
where the velocity space is divided into cubic elements
centered at ξl,ξm,ξn with span 
ξl,
ξm,
ξn.

To discrete the collision term efficiently, the implicit form
is used as


t

2

(
gn+1

i,j,k,l,m,n − f n+1
i,j,k,l,m,n

τ n+1
i,j,k

+ gn
i,j,k,l,m,n − f n

i,j,k,l,m,n

τ n
i,j,k

)
.

(19)

To determine the equilibrium distribution gn+1 in this implicit
form of collision term, the conservative macroscopic proper-
ties at the (n + 1)-th time step should be updated using Eq. (16)
first. For Shakhov and ES-BGK equations, nonconservative
macroscopic properties, such as the stress tensor and heat flux,
should also be updated. In this paper, the stress tensor pαβ and
heat flux qα are updated using

pαβ
n+1
i,j,k

= pαβ
n
i,j,k

+ 1

V

∫ tn+1

tn

∮
∂V

∫
R3

ξcαcβfcf dξ · dS dt + 1

Vi,j,k


t

2

(
pαβ

n+1
i,j,k − P n+1

i,j,k δαβ

τ n+1
i,j,k

+
pαβ

n
i,j,k

− P n
i,j,kδαβ

τ n
i,j,k

)
,

qα
n+1
i,j,k = qα

n
i,j,k + 1

2V

∫ tn+1

tn

∮
∂V

∫
R3

ξcαc2fcf dξ · dS dt + 1

Vi,j,k


t

2

(
qα

n+1
i,j,k

τ n+1
i,j,k

+ qα
n
i,j,k

τ n
i,j,k

)
. (20)

With the information on macrovariables at the (n + 1)-th time step, the collision time τ can be calculated using τ = μ(T )/P .
Thus the final numerical governing equation of UGKS is

f n+1
i,j,k,l,m,n = f n

i,j,k + 1

V

∫ tn+1

tn

∮
∂V

∫
R3

ξfcf dξ · dS dt+ 1

Vi,j,k


t

2

(
gn+1

i,j,k,l,m,n − f n+1
i,j,k,l,m,n

τ n+1
i,j,k

+ gn
i,j,k,l,m,n − f n

i,j,k,l,m,n

τ n
i,j,k

)
. (21)

IV. COMPARISON OF BOLTZMANN EQUATION AND
KINETIC MODEL EQUATIONS

In the scope of numerical predictions, the validity of the
kinetic model equation can be described as follows. In the
continuum regime, the distribution functions are often not

far from equilibrium, and the shock wave is treated as a
discontinuity from the macroperspective. Since the deviation
of the model collision term is very small in this situation, the
model equations can be used. In a free molecule regime, since
the weight of an interparticle collision is much lower than that
of the collision between the particle and a solid wall, choosing
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FIG. 1. (Color online) The distribution function in the shock.

the model collision term or the Boltzmann collision term
for numerical prediction makes no great difference. Thus the
model equation can also be used, although the model collision
term may deviate significantly from the Boltzmann collision
term in this situation. In a transitional regime, the deviation of
the model collision term cannot be avoided since the weight of
the interparticle collision is equivalent to that of the collision
between the particle and solid wall. Thus the model equation
can only give qualitatively right results in this regime. In
this section a shock wave structure case and a homogenous
relaxation case are carried out trying to find the qualitative
difference between the model equations and the Boltzmann
equation along with some practical principles for improving
the accuracy of model equations in the transition flow regime.

A. The shock wave structure case

The normal shock wave, when measured using macroscopic
instruments, is a discontinuity where the physical properties
change accidently before and after the shock wave. On
the other hand, from the view of microscopic scale, the
profiles of physical properties in the discontinuous shock are
actually smooth. Molecules in the shock are mixed with the
molecules before the shock (supersonic and hypersonic, low
temperature) and after the shock (subsonic, high temperature).
Thus when the Mach number is high, the distribution function

is approximately bimodal, with a low speed and wide stretched
part and a high speed and narrow part. Figure 1 illustrates
the distribution function in the Mach 8 shock wave on a
ξ‖ξ⊥ plane, where ‖ represents the stream direction and ⊥
represents the perpendicular direction. Since the equilibrium
Maxwellian state is monocentric, the bimodal distribution
shows great nonequilibrium, especially in the hypersonic case.
Hence, predicting the high Mach number shock wave structure
will be a challenging test for the accuracy of the kinetic model
equations that work well in and near the continuum regime.

In this case the BGK, Shakhov, ES-BGK, and ν(c)-BGK
models are used in the UGKS for predicting the shock struc-
ture. Their results are compared with the DSMC result [28],
which is accepted as a benchmark solution of the Boltzmann
equation. This comparison aims at finding the reasons for
the advantages and disadvantages of existing kinetic model
equations. First, the physical properties predicted by these
model equations are compared with DSMC, in order to show
the advantages and disadvantages of the modification made
by these model equations. Then the model collision terms
are qualitatively compared with the Boltzmann collision term
using a distribution function in the shock to show the reasons
for their advantages and disadvantages.

The upstream and downstream conditions are deter-
mined by the Rankine-Hugoniot relation. The density and
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FIG. 2. (Color online) Profile of shock structure with Mach = 1.4.

temperature are normalized by

ρ̂ = ρ − ρup

ρdown − ρup
, T̂ = T − Tup

Tdown − Tup
. (22)

In this case, both the UGKS and the DSMC solutions use a
variable soft sphere (VSS) model, whose the mean free path
can be written in terms of νBGK:

lmfp = 4α(5 − 2ω)(7 − 2ω)

5(α + 1)(α + 2)

√
kT

2πm

1

νBGK
, (23)

where α and ω are scattering parameter and heat index,
respectively. For argon gas, α = 1.40 and ω = 1.78.

Figures 2 and 3 illustrate the density and temperature
profiles in the Mach 1.4 and 8 shock waves, respectively. In the
case of a Mach 1.4 shock wave, the density and temperature
profiles predicted by the BGK, Shakhov, ES-BGK, and ν(c)-
BGK equations match well the benchmark DSMC.

In the case of a Mach 8 shock wave, the results predicted
by the kinetic model equations become different from each
other and deviate from the benchmark solution. Fig. 3(a)

illustrates the density profile in the Mach 8 shock wave
structure. The density profile predicted by the Shakhov model
matches well that predicted by DSMC, while the ES-BGK and
BGK results are steeper and the ν(c)-BGK result displays a
kink. Fig. 3(b) illustrates the temperature profiles in the Mach
8 shock wave. Compared with the density profile in Fig. 3(a),
the temperature profiles predicted by kinetic model equations
deviate much more from the benchmark solution. The result
of the Shakhov model deviates from DSMC at the front of
the shock, while, in other areas, it matches well the DSMC
results. The Shakhov model predicts an overshoot at about
x = 0, which is phenomenally the same with the DSMC. The
ν(c)-BGK predicts a kink again in the temperature profile.
Though the results of ES-BGK and BGK are smooth, they
deviate from the DSMC results.

The particle distribution functions in ξ‖ direction of the
Mach 1.4 and Mach 8 shock waves are illustrated in Fig. 4,
where the distribution functions at different locations in the x‖
direction are presented. In the case of Mach 1.4, the differences
between physical properties before and after the shock are
small see Fig. 4(a). Due to these small differences, the distance
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FIG. 3. (Color online) Profile of shock structure with Mach = 8.
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FIG. 4. (Color online) Distribution functions in the shock.

in the velocity space between two clusters of molecules
is small (less than

√
γRT , where γ = 5/3 is the ratio of

specific heat for monatomic gas) compared with
√

3RTup,
which is the radius of the effect area of upstream distribution.
Hence, the distribution in the Mach 1.4 shock wave is nearly
monocentric and can even be expressed in a second order
Chapman-Enskog expansion. As the Mach number increases,
such as in the Mach 8 case illustrated in Fig. 4(b), the distance
between two distribution centers in velocity space becomes
7
√

γRTup, which is greatly larger than
√

3RTin. Hence the
distribution function is bimodal and cannot be approximated
by the Chapman-Enskog expansion.

The features of kinetic model equations are analyzed in the
rest of this subsection in order to illustrate their difference and
their degrees of approximation to the Boltzmann equation.
There are two aspects of the nonequilibrium effects: the
first aspect comes from the nonequilibrium distribution, and
the second comes from the collision term. To determine the
nonequilibrium distribution precisely, many methods have
been proposed [1,7,26,31,47–49]. When the distribution
function is far from equilibrium, such as the distribution in
Fig. 4(b), it is difficult to be described by expansion methods
[1,47], and the discrete ordinate method (DOM) or discrete
velocity method (DVM) should be used, such as in the direct
solution of the Boltzmann equiation [31,49] and in the UGKS
[7–9,11,42]. Since the kinetic model equations are solved
numerically using UGKS, the nonequilibrium distribution
function is described precisely, and the deviations of the
obtained results are caused mainly by the second aspect
associated with the deviations of collision terms.

At the front of the Mach 8 shock wave in Fig. 3, the density
is almost the same with the upstream density. Since the mass
flux is constant, the velocity at the front of the shock wave
is almost the same with the upstream velocity too. In this
position, high-speed molecules mix with a small number of
low-speed molecules; see the line x = −2.0 m.f.p. in Fig. 4(b).
The temperature at the front of the shock is much higher than
the upstream one.

For the Shakhov collision term in Eq. (11), there is a critical
sphere in physical space defined as |c| = √

5RT which divides
the velocity space into two subspaces. The properties of the
Shakhov model in these subspaces and on the critical sphere
are shown in Table I.

To analyze the modification made by Shakhov, the collision
terms of the Boltzmann equation at the front of the shock
are investigated qualitatively and are compared with that of
the model collision terms. Before mixing with the low-speed
molecules, the distribution of the high-speed molecules is
Maxwellian, and it is symmetrical about the face ξ = u‖ in ve-
locity space, here u‖ = uup. After mixing with a small amount
of low-speed molecules, the averaged velocity u‖ decreases a
little. Since the averaged velocity is near uup, the peculiar ve-
locities of low-speed molecules are high and contribute signifi-
cantly to the thermal energy. Thus the temperature rises a large
amount.

To simplify the analysis, the two clusters of molecules are
supposed to be concentrated at (uup,0,0) and (udown,0,0) in
velocity space, without losing the main feature of distribution
function. Thus the distribution function is actually represented
by a weighted sum of two δ functions.

TABLE I. The property of the Shakhov model.

|c| <
√

5RT |c| = √
5RT |c| >

√
5RT

Direction c · q < 0 c · q > 0 c · q < 0 c · q > 0 c · q < 0 c · q > 0
Peculiar energy Low Low Critical Critical High High
Sign of gShakhov − gmaxwell + − 0 0 − +
Possibility of negative distribution No Yes No No Yes No
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The geometrical integration of Boltzmann collision term of
the VHS model can be written as∫

S2
B(v,�)d�

= −dref
2vref

2ω−1

4

∫ 2π

0

∫ π

0
v2−2ω sin χ dχ dε, (24)

where ω is the heat index of molecules, dref is the reference
molecular diameter, and vref is the reference relative speed.
After the collision of ξ = (udown,0,0) and ξ1 = (uup,0,0),
ξ ′‖, the component of the postcollision velocity in the axial
direction is in the form of

ξ ′
‖ = 2 cos χ

v
+ uup + udown

2
. (25)

Thus the geometrical integration can be written in terms of
ξ ′‖ as

dref
2vref

2ω−1

2

∫ 2π

0

∫ v/2

−v/2
v1−2ω dξ ′

‖ dε. (26)

Since v = uup − udown is a constant in the collision of
ξ = (udown,0,0) and ξ1 = (uup,0,0) molecules, postcollision
molecules with different ξ ′‖ are uniformly distributed in a
closed interval [udown,uup].

The distribution of postcollision molecules predicted by the
BGK model and the Shakhov model are

g‖BGK = n
( m

2πkT

)1/2
exp

(
−mc‖2

2kT

)
,

(27)

g‖Shakhov = g‖BGK

[
1 + 1 − Pr

5

mq‖c‖
kT P

(
mc‖2

kT
− 3

)]
.

The g‖BGK is a Maxwellian distribution centered at u‖ with a
narrow effective area (

√
3RT ). This distribution is obviously

far from the uniform distribution. By multiplying g‖BGK by
a polynomial, the Shakhov model can adjust the distribution
of postcollision molecules. Since {ξ‖|c‖ < 0} covers most part
of the interval [udown,uup], the distribution of postcollision
molecules in {ξ‖|c‖ < 0} should be investigated. When c‖ >

−√
3RT , the Shakhov modification depresses the overes-

timated Maxwellian distribution. When c‖ < −√
3RT , the

Shakhov modification increases the Maxwellian distribution,
which is far less than the uniform distribution. Although this
adjustment is rough, it achieves success in this test.

In the ES-BGK model, the temperature is expressed as a
tensor. Given Pr = 2/3, the ES-BGK temperature tensor can
be expressed as

T es
ij = 3

2T δij − 1
2Tij . (28)

The distribution function in the shock wave is axisymmetric,
hence Tij = 0 when i �= j . The ES-BGK equilibrium distri-
bution can be written as

ges = n

(
m

2πkT es
‖

)1/2

exp

(
− m

2kT es
‖

|ξi − ui |2
)

×
(

m

2πkT es
⊥

)1/2

exp

(
− m

2kT es
⊥

|ξj |2
) (

m

2πkT es
⊥

)1/2

× exp

(
− m

2kT es
⊥

|ξk|2
)

, (29)

where the distribution function is the product of three
Maxwellian distributions defined in every three directions;
here T es

‖ = T + 1/2(T − T‖) is less than T es
⊥ = T + 1/2(T −

T⊥), since T‖ is larger than T⊥. This ES-BGK equilibrium
functions as a feedback regulation: if inputting a big T‖, the
output relaxation rate is a large in the ξ‖ direction, which
will decrease T‖ consequently. When the shape of distribution
is similar to a ellipsoid, the big T‖ means that the shape of
distribution stretches significantly in the ξ‖ direction, and the
portion of high-speed molecules in this direction is larger
than that in the ξ⊥ direction with a small temperature T‖.
Since the high-speed molecules collide more often, the high
energy associated with the big T‖ will transport to the other
directions quickly and consequently decrease T‖ to a large
degree. So when the shape of distribution is similar to a
ellipsoid (Fig.4(a)), the ES-BGK model fits the physical reality
well (Fig. 2).

In the ν(c)-BGK model, the relaxation rate is velocity
dependent. Though ν(c)-BGK kinks in both density and
temperature profiles and deviate significantly from the DSMC
results, the model predicts a lower temperature in the front of
the shock, which is important for the Shakhov model, BGK,
and ES-BGK model whose relaxation rates are independent
on velocity. The relation between the molecular velocity and
the relaxation rate in the ν(c)-BGK model is defined as a
polynomial of molecular velocity. It qualitatively describes
the reality that high-speed molecules collide more often,
while the qualitative value of the relaxation rate may deviate
significantly from the Boltzmann one in certain cases, which
will be illustrated in the next subsection. The success of
ν(c)-BGK in depressing the temperature at the front of
the shock implies that the relaxation rate of high-speed
molecules predicted by the other models may be lower than
the reality, while the modification of ν(c)-BGK rises it too
much.

In this subsection, a shock wave structure case is carried out,
where the nonequilibrium is mainly caused by the separated
distributions of high- and low-speed molecules. From the
above analysis, it can be seen that although these modified
models all give a correct Prandtl number, their relaxation
processes are largely different from each other. The relaxation
process of the Shakhov model fits the Boltzmann relaxation
process well by using the information of nonequilibrium
heat flux well for indicating the modification of relaxation
rates in the velocity space. Although the Shakhov did best
among these kinetic models, it should still face a deficiency
in that it predicts a early rise at the front of the shock
wave in the temperature profile shown in Fig. 3(b). Since the
ν(c)-BGK model successfully depresses the temperature at this
point, and its velocity-dependent relaxation rate relates to the
high-speed molecules closely, the effects of the high-speed and
energetic molecules will be carefully examined in the next test
case.

B. The homogenous relaxation case

The exact solution of the nonlinear Boltzmann equation
for spatially homogeneous problems has been well studied
in Refs. [37–39,50]. Their studies are originally motivated
by the quantitative calculation of certain gas-phase reactions
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and chemical reactions in the case of a highly nonequilibrium
initial distribution. These gas-phase and chemical reactions
relate mostly to the collision between high-speed molecules,
which is also important for highly nonequilibrium gas flows
without these reactions.

Since the spacial homogeneous assumption is used in the
solution process, ξ · ∇xf in the Boltzmann equation is zero.
Then the Boltzmann equation is simplified as

∂f

∂t
= I (f,f ). (30)

The relaxation processes of the Boltzmann equation and
kinetic model equations are carefully examined in this case.
Since both the initial condition and the relaxation process
are spherically symmetrical, the heat flux is zero, and the
temperatures are isotropic. Thus both the Shakhov model
and the ES-BGK model are reduced to the BGK model. The
highly nonequilibrium is mainly due to the non-Maxwellian
distribution in the radial direction. In this special case in a
purely kinetic regime, the phenomenal difference between the
Boltzmann collision term and the BGK collision term is that
the relaxation rate of the BGK collision term is a local constant
which is independent of velocity and is obviously unphysical.
The aim of carrying out this test case is to investigate to what
extent the unphysical relaxation rate can affect the accuracy,
in order to determine whether it needs to be modified or not in
the scope of the numerical prediction.

An isotropic scattering Maxwell model is used in this case,
whose collision kernel is defined as

B(v,g) = gσ (g,χ ), (31)

where σ (g,χ ) is the differential cross section of this model:

σ (g,χ ) = κφ(χ )/g, (32)

and the below equation holds:∫ π

0
φ(χ ) sin χ dχ = 2. (33)

Given the expression of d�,

d� = sin χ dχ dε, (34)

where ε is the azimuth angle which varies form 0 to 2π , χ

is the scattering angle which varies from 0 to π , the collision
term can be written as

I (ξ ) =
∫

R3

∫ 2π

0

∫ π

0
f (ξ ′

1)f (ξ ′)κφ(χ ) sin χ dχ dε dξ 1

−
∫

R3

∫ 2π

0

∫ π

0
f (ξ 1)f (ξ )κφ(χ ) sin χ dχ dε du1,

(35)

and simplified as

I (v) = R − 4πnκf (ξ ), (36)

where 4πnκ is the collision frequency independent of velocity
and is constant in the whole velocity space. This collision
frequency equals two times of the relaxation rate of BGK
model.

In this subsection, it is supposed that the Boltzmann
collision term can be split into a BGK collision term and a
residual 
 in the following form:

I (ξ ) = IBGK(ξ ) + 
. (37)

The following part of this subsection is a detailed comparison
of the Boltzmann and the BGK equations.

Normalize the time τ and the peculiar velocity c with
reference time 4nπκ and reference velocity

√
kT , respec-

tively; then the analytical solution process can be written as
[39]

f (c,τ ) =
exp

[ −c2

2α(τ )

]
[2πα(τ )]3/2

[
5α(τ ) − 3

2α(τ )
+ 1 − α(τ )

2α(τ )2
c2

]
, (38)

where α(τ ) = 1 − exp(−τ/6), while the analytical solution of
relaxation BGK equation has the following form:

f (c,τ ) = g(c) + exp
(τν

2

)
[f (c,0) − g(c)]. (39)

Given the analytical solution, the value of the Boltzmann
operator can also be obtained; it is written as

IBoltzmann(u)

= 15 + 10eτ/6(−3 + c2) + eτ/3(15 − 10c2 + c4)

12(−1 + eτ/6)2[5 + 2eτ/3 + eτ/6(−7 + c2)]
f (c,τ ).

(40)

Since the distribution function is symmetrical in this case,
the odd order moments are zero, and the even order moment
at random time is

m(2n,τ ) =
∫

R3
c2nf (c,τ ) dc. (41)

For convenience, the moments are normalized by their final
equilibrium value when τ → ∞. Thus the normalized even
moments are defined as

M(2n,τ ) = m(2n,τ )/m(2n,∞). (42)

Calculating the even order moments of the solution of
Boltzmann equation (38) and BGK equation (39), the analyti-
cal time evolution of the normalized moments can be obtained
as

M(2n,τ ) = α(τ )2n−1[2n − (2n − 1)α(τ )], (43)

and the BGK’s moment evolution is

M(2n,t) = 1 + e− t
τ [M(2n,0) − 1]. (44)

The initial distribution and the final equilibrium distribution
of this case are illustrated in Fig. 5 on a random plane
which passes through the origin (0,0,0) in velocity space.
The time evolutions of distribution functions, which are
obtained using the Boltzmann equation and the BGK model
equation, respectively, are illustrated in Fig. 6(a). The BGK
solution matches the Boltzmann solution well in whole
velocity space, except in a small interval around v = 0,
where the deviation is obvious when τ ∈ (0,3), since the
nonequilibrium effect plays a dominant role in such a time
interval. Different from the Shakhov and the ES-BGK models,
the ν(c)-BGK model cannot be reduced to BGK in this
case. The time evolution of distribution functions predicted
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FIG. 5. (Color online) The initial and final distribution of the
homogenous relaxation problem.

by the ν(c)-BGK model are shown in Fig. 7. The below
velocity-dependent relaxation rates, which were suggested in
Ref. [45], are used in this test and are illustrated in Fig. 7(a) to
Fig. 7(d):

ν = νBGK(0.431587c1.791288),

ν = νBGK[0.0268351(1 + 14.2724c2)],
(45)

ν = νBGK(0.0365643[1 + 10c2.081754)],

ν = νBGK(0.1503991[1 + 0.92897c4)].

Each of these relaxation rates in Eq. (45) can give a correct
Prandtl number, while their relaxation processes are largely
different and deviate significantly from both the Boltzmann
process and BGK process. In the rest of this subsection, this
paper focuses on examining the Boltzmann process and the
BGK process.

Though the evolution of distribution predicted by BGK
matches the Boltzmann one well in Fig. 6(a), its evolution of
high order moments deviates significantly from the Boltzmann
one in Fig. 6(b). To find the reason for the large deviation of
high order moments predicted by the BGK equation, the values
of the Boltzmann operator and BGK operator at different times
are compared in Fig. 8. From Fig. 8(a) it can be seen that before
three mean collision times, the deviations are mainly in the cen-
tral interval around c = 0, and the two operators start to match
well with each other after three mean collision times when
the shape of distribution function approaches equilibrium and
the nonequilibrium effect becomes weak. However, the infor-
mation illustrated in Fig. 8(a) is not sufficient for finding the
reason for the large deviation of high order moments. To better
illustrate the difference between the two operators, Fig. 8(b)
illustrates the value of rate(c) = IBGK(c)/IBoltzmann(c) at dif-
ferent times. The presence of large values of rate(c) at about
c = 1 and c = 2 in Fig. 8(b) is due to the BGK and Boltzmann
operators having different zero points, which are illustrated
in Fig. 8(a). The ratio approaches unity in the whole velocity
space as the distribution function approaches Maxwellian. At
the time t = 0, in c ∈ (0,2), whether positive or negative, the
absolute value of the BGK collision term is less than the Boltz-
mann one, and the ratio is near 0.8; in c ∈ (2,∞) for high-speed
molecules, the collision terms are positive, and as c increases,
the ratio increases quickly. One may think that the deviation
and the fast convergence of the high order moments illustrated
in Fig. 6(b) may occur because of the large value of rate(c)
for high-speed molecules in Fig. 8(b). Let us multiply 
, the
difference of the BGK and Boltzmann operators, by 1 and c8;
the results are plotted in Fig. 9. The difference of operators
are enormous in c ∈ (0,1), as illustrated in Fig. 9(a), but, when
multiplied by c8, the values become small, as illustrated in
Fig. 9(b). For high-speed molecules located in c ∈ (3,∞), due
to their values of the distribution function being small, the
difference between the two operators is also small and can
be ignored which is shown in Fig. 9(a), but when multiplied
by high order cn, they contribute significantly and become
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FIG. 7. (Color online) Time evolution of distribution function predicted using different ν-BGK models.
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more and more important when n becomes larger, such as in
Fig. 9(b).

From the above analysis, it can be seen that though the
value of the BGK operator matches well that of the Boltz-
mann operator in Fig. 6(a), due to its velocity-independent
relaxation rate, the relaxation rate of high-speed molecules are
overestimated in the BGK model. As n becomes large, the
overestimated relaxation rate becomes important and leads to
an overestimated high relaxation rate of moments illustrated in
Fig. 6(b). The BGK, the ES-BGK, and the Shakhov equations
ignore the velocity-dependent relaxation rate, while the ν(c)-
BGK equation adopts an unphysical one. To predict this
case precisely using kinetic models, the velocity-dependent
relaxation rate should be taken into consideration carefully in
later kinetic models.

V. THE RELATIONSHIP BETWEEN THE BOLTZMANN
EQUATION AND BGK EQUATION

In Sec. IV the difference between the kinetic model
equations and the Boltzmann equation were investigated.
We conclude that the asymmetrical distribution and the
velocity-dependent collision frequency are the reasons for the
deviations in two cases. To reveal the difference explicitly
and quantitatively, a relationship between the BGK equation
and the Boltzmann equation should be derived. To derive
such a relationship, the distribution function f is decomposed
into an equilibrium distribution g and a deviation h from
the equilibrium state. Submit f = g + h into Eq. (2), and it

becomes

I (ξ ) =
∫

R3

∫
S2

[g(ξ ′
1)g(ξ ′) − g(ξ 1)g(ξ )]B(v,�)d� dξ 1

+
∫

R3

∫
S2

[h(ξ ′
1)h(ξ ′) − h(ξ 1)h(ξ )]B(v,�)d� dξ 1

+
∫

R3

∫
S2

[g(ξ ′
1)h(ξ ′) − g(ξ 1)h(ξ )]B(v,�)d� dξ 1

+
∫

R3

∫
S2

[h(ξ ′
1)g(ξ ′) − h(ξ 1)g(ξ )]B(v,�)d� dξ 1.

(46)

With more detailed information of particle collisions,
Eq. (46) can be simplified. The postcollision velocities can
be specified by the precollision ones and the solid angle � in
the form

ξ ′ = ξ 1 + ξ

2
+ |ξ 1 − ξ |

2
�,

(47)

ξ ′
1 = ξ 1 + ξ

2
− |ξ 1 − ξ |

2
�.

The expression of the isotropic scattering collision kernel
is Cdv

(d−5)/(d−1). When d → ∞, it represents the hard sphere
model. When d is finite, it represents the widely used variable
hard sphere model, where d relies on the heat index of real
molecules.

The third term on the RHS of Eq. (46) can be written as

∫
R3

∫
S2

g(ξ ′
1)h(ξ ′)B(v,�)d� dξ 1

=
∫

R3

∫ 2π

0

∫ π

0
g

(
ξ 1 + ξ

2
− |ξ 1 − ξ |

2
�

)
h

(
ξ 1 + ξ

2
+ |ξ 1 − ξ |

2
�

)
Cdv

(d−5)/(d−1) sin(χ )dχ dε dξ 1. (48)

Replace � by −�1, so χ is replaced by π − χ1, and ε is replaced by π + ε1; the integral can be further written as∫
R3

∫ 3π

π

∫ π

0
g

(
ξ 1 + ξ

2
+ |ξ 1 − ξ |

2
�1

)
h

(
ξ 1 + ξ

2
− |ξ 1 − ξ |

2
�1

)
Cdv

(d−5)/(d−1) sin(χ1)dχ1 dε1 dξ 1. (49)
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The starting angle of ε can be randomly chosen. After removing the “1” subscript of �1, χ1, and ε1, the integral is finally written as∫
R3

∫ 2π

0

∫ π

0
g

(
ξ 1 + ξ

2
− |ξ 1 − ξ |

2
�

)
h

(
ξ 1 + ξ

2
+ |ξ 1 − ξ |

2
�

)
Cdv

(d−5)/(d−1) sin(χ )dχ dε dξ 1

=
∫

R3

∫
S2

h(ξ ′
1)g(ξ ′)B(v,�)d� dξ 1. (50)

Thus the following equation can be obtained:∫
R3

∫
S2

g(ξ ′
1)h(ξ ′)B(v,�)d� dξ 1

=
∫

R3

∫
S2

h(ξ ′
1)g(ξ ′)B(v,�)d� dξ 1. (51)

The equilibrium states lead to the zero value collision terms,
hence∫

R3

∫
S2

[g(ξ ′
1)g(ξ ′) − g(ξ 1)g(ξ )]vσ (v,χ ) d� dξ 1 ≡ 0. (52)

Submit Eq. (50) and Eq. (52) into Eq. (46), and it can be
further arranged as

I (ξ ) =
∫

R3

∫
S2

[h(ξ ′
1) + 2g(ξ ′

1)]h(ξ ′)B(v,�)d� dξ 1

−
∫

R3

∫
S2

[g(ξ )h(ξ 1) + h(ξ )f (ξ 1)]B(v,�)d� dξ 1.

(53)

The collision frequency, the equilibrium collision frequency,
and the deviation collision frequency are defined by the
following integrals, respectively:

ν =
∫

R3

∫
S2

f (ξ 1)B(v,�)d� dξ 1,

νeq =
∫

R3

∫
S2

g(ξ 1)B(v,�)d� dξ 1, (54)

νdev =
∫

R3

∫
S2

h(ξ 1)B(v,�)d� dξ 1.

Given Eq. (54), the last term in Eq. (53) can be written in the
form

ν(g(ξ ) − f (ξ )) − νdevg(ξ ). (55)

Thus, the Boltzmann collision term is finally simplified as

I (ξ ) = ν(g(ξ ) − f (ξ )) − νdevg(ξ ) +
∫

R3

∫
S2

[2g(ξ ′
1)

+h(ξ ′
1)]h(ξ ′)B(v,�)d� dξ 1. (56)

Here the collision term is split into two parts, a BGK relaxation
part along with a non-BGK residual which includes νdevg(ξ )
and an inverse collision-related integral which is temporally
named the deviation integral and denoted by Idev in this paper.

Equation (56) is a relationship between the original BGK
equation [5] and the Boltzmann equation. Their difference is
written as νdevg(ξ ) + Idev. The BGK part in Eq. (56) describes
the impacts of local deviation, while the non-BGK residual
describes the impacts of global deviations since the deviations
in the rest of the velocity space determine the values of νdev

and Idev.

The BGK collision term used in Eq. (56) is the original
one proposed by Bhatnagar, Gross, and Krook in Ref. [5].
When applying a second order Chapman-Enskog expansion
to this BGK equation and integrating the resulting equation
with respect to ξ over the whole velocity space, Navier-Stokes
(N-S) equations can be obtained [6]. However, the viscosity
coefficient μ in the obtained N-S equations does not match the
one obtained by the Boltzmann equation in Ref. [1]. In order
to yield a precise viscosity coefficient, the later BGK models
replace the collision frequency ν with a free parameter νBGK.
Using the same expansion and integration, Navier-Stokes
equations with a viscosity coefficient p/νBGK are obtained.
So the free parameter νBGK is set to be p/μ.

There exits a relationship between νBGK and the average
equilibrium collision frequency ν̄eq in the form [26]

ν̄eq = MνBGK = 30

α(5 − 2ω)(7 − 2ω)

p

μ
, (57)

where the heat index ω are properties of a molecular model
which depends on d. Thus M is a molecular model-dependent
factor. The average equilibrium collision frequency is

ν̄eq = 1

n

∫
R3

∫
R3

∫
S2

g(ξ 1)g(ξ )B(v,�)d� dξ 1 dξ

= 8
√

πCdn

(
4kT

m

) d−5
2(d−1)

�

(
2d − 4

d − 1

)
, (58)

where � is the gamma function. ν̄eq is independent on particle
velocity, and it depends only on the macroscopic physical
properties n, T and the type of molecular models d.

The equilibrium collision depends on the particle velocity:

νeq =
∫

R3

∫
S2

g(ξ 1)B(v,�)d� dξ 1

=
∫

R3

∫ 2π

0

∫ π

0
g(ξ 1)Cdv

(d−5)/(d−1) sin(χ )dχ dε dξ 1

= 4πCd

∫
R3

g(ξ 1)v(d−5)/(d−1) dξ 1; (59)

for Maxwell molecules the integral can be directly integrated,
and νeq = ν̄eq, while, for other molecules, it needs extra
treatments. Write ξ in terms of peculiar velocity c and mean
velocity u as ξ = c + u and use the normalized peculiar veloc-
ities C1 = c1/

√
2kT /m and C = c/

√
2kT /m; then Eq. (59)

becomes

νeq = 4π−1/2Cdn

(
2kT

m

) (d−5)
2(d−1)

×
∫

R3
e−C1

2 |C1 − C|(d−5)/(d−1)dC1. (60)
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Since the integral in Eq. (60) is spherically symmetrical, the
value of this integral depends only on scalar variable |C|. Thus
the integral can be easily obtained using numerical methods.

Given the relation between ν̄eq and νBGK in Eq. (57), Eq. (55)
can be rewritten as

Mνeq

ν̄eq
IBGK − νdevf (ξ ). (61)

Submit Eq. (57) and Eq. (61) into Eq. (56) and denote
(Mνeq(ξ ))/ν̄eq by F (ξ ); then a relationship between the
common form of BGK operator and the Boltzmann operator
can be obtained in the form

I (ξ ) = F (ξ )IBGK − νdev(ξ )f (ξ ) + Idev(ξ ). (62)

An investigation of the modification made by kinetic
models can be carried out now with the aid of Eq. (62). First, the
Boltzmann collision term in the form of Eq. (62) is rewritten
in a relaxation form for comparison:

I (ξ ) = F (ξ )νBGK

{[
g(ξ ) − νdev(ξ )

F (ξ )νBGK
f

+ 1

F (ξ )νBGK
Idev(ξ )

]
− f (ξ )

}
. (63)

Expand deviation distribution h(ξ ) around the equilibrium
distribution g(ξ ) using Hermite expansion, and it can be
written as

h(ξ ) = g(ξ )S(ξ ), (64)

where S(ξ ) is a linear combination of Hermite polynomials.
Using Eq. (64), Idev is written as

Idev =
∫

R3

∫
S2

[2 + S(ξ ′
1)]S(ξ ′)g(ξ ′

1)g(ξ ′)B(v,�)d� dξ 1

= g(ξ )
∫

R3

∫
S2

[2 + S(ξ ′
1)]S(ξ ′)g(ξ 1)B(v,�)d� dξ 1

= g(ξ )νIdev (ξ ). (65)

Thus, the collision integral can be expressed in the following
relaxation form, which can also be viewed as a general form
of the relaxation terms :

I (ξ ) = F (ξ )νBGK

(
g(ξ )

{
1 − νdev(ξ )[1 + S(ξ )]

F (ξ )νBGK

+ νIdev (ξ )

F (ξ )νBGK

}
− f (ξ )

)
= F (ξ )νBGK{g(ξ )[1 + A(ξ )] − f (ξ )}. (66)

In this generalized relaxation term, A(ξ ) represents the modi-
fication of equilibrium state, and F (ξ ) represents the modifica-
tion of relaxation rate. In the shock structure case, the limited
success is achieved by the utilization of the information held
by nonequilibrium moments, such as the stress and the heat
flux, in approximating A(ξ ). In the homogenous relaxation
case, the importance of a velocity-dependent relaxation rate is
illustrated.

Compared with Eq. (66), the BGK collision term re-
tains the impacts of local deviation, while the impacts of
global deviations A(ξ ) and the velocity-dependent collision
frequency F (ξ ) are ignored. The ν(c)-BGK model improves

the BGK model with a velocity-dependent collision frequency
by multiplying IBGK by a function of ξ , while A(ξ ) is left
unimproved. The Shakhov and the ES-BGK models try to
introduce the information held by nonequilibrium moments to
new equilibrium states. The new equilibrium state in the ES-
BGK model is in the form of an anisotropic Gaussian, while an
asymmetrical Hermite expansion around a Maxwellian is used
for the Shakhov model. Both the new equilibrium states can be
written in the form g[1 + E(ξ )]. For the ES-BGK model, E(ξ )
can be obtained by using Taylor expansion around Maxwellian
equilibrium. For the Shakhov model, E(ξ ) is expressed in
terms of Hermite polynomials. Their modifications can be
viewed as using E(ξ ) to approximate A(ξ ). The existing
modified models can predict the continuum gas flows precisely
due to the right Prandtl number, while further modification
needs to be made to predict the rarefied gas flows precisely.
From Eq. (66), it can be seen that the νIdev (ξ ) term in A(ξ )
is the main difficulty. Since the other terms such as F (ξ ) and
νdev(ξ ) can be directly obtained, one should focus on modeling
the νIdev (ξ ) term to construct a new improved model.

The BGK collision term describes that the particle system
has the trend towards its local equilibrium. It can be viewed
as another description of the second law of thermodynamics.
Since using only the second law of thermodynamics is not ade-
quate for governing the detailed relaxation process, additional
information is needed. The information can be obtained from
the Boltzmann collision term or the patterns of its behavior.
Also, the modification of equilibrium and the relaxation rate
should be taken into consideration in the later models.

VI. THE ANALYSIS AND TREATMENT OF THE
DEVIATION INTEGRAL

Some important features of the deviation integral Idev(ξ ) are
analyzed in this section. First, the mechanism of the influence
of a deviation at certain velocity point on another point’s
evolution of the distribution function is investigated. Here
a weak form of the global deviations’ impacts is used for
convenience:∫

R3
(Df (η)/Dt)deviationδ(η − ξ )dη

=
∫

R3
Idevδ(η − ξ )dη

=
∫

R3

∫
S2

δ(η − ξ )[f (η′
1) + g(η′

1)]h(η′)B(v,�)d�dη1 dη

=
∫

R3

∫
S2

δ(η′ − ξ )[f (η1) + g(η1)]h(η)B(v,�)d� dη1dη,

(67)

where δ is a test function, and it is a δ function here.
By changing the integral variables from the postcollision
velocities to precollision velocities, Eq. (67) is easier to
handle. The distribution functions g and f are definitely
nonnegative, while the deviation h can be either negative
or nonnegative. So the deviation integral can be of either
depletion or replenishment. The deviation distribution with
velocity η can affect the evolution of distribution at ξ through
the collision with certain particles at η1. Confined by the
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geometry of collision, these η1 particles should lie on a plane
which passes through velocity ξ and is perpendicular to ξ − η1.
This plane is temporally called the reception plane. Move η1
on the reception plane, along the radial direction centered at
point ξ , and the radius r = |η1 − ξ | varies from 0 to infinity.

Define r0 = |η − ξ | and the relative velocity v =
√

r2 + r2
0 .

Since sin(χ ) = 2 sin(χ/2) cos(χ/2) = 2r0r

r2+r2
0
, then B(v,�)d�

can be written in terms of r and r0:

B(v,�)d� = (
r2 + r2

0

) d+3
2−2d 2r0rdχdε = p dχ dε, (68)

where the factor p is a weight which has limitations:

lim
r→0

p = 0, lim
r→∞ p =

{
0,d > 1,

2r0,d → ∞.
(69)

For finite d � 5, p has a maximum value at rmax =
r0

√
d − 1/2, which is some r0. Since the value of p is different

on the reception plane, this deviation impact is determined by
the scattering of f + g on the reception plane. Let the moving
r be fixed and let r0 move along the line of ξ − η1. Assume the
distribution of f + g is concentrated at (r,ε), and the impact is
maximum at r

√
d − 1/2. It decreases slowly with increasing

r0, while it decreases quickly with decreasing r0. When r0

moves into a small interval around 0, the impact of h(η) is
small and is not so important.

Before modeling the deviation integral, a linear integral can
first be split from it and leaves a quadratic nonlinear one:

Ilinear + Inonlinear =
∫

R3

∫
S2

2g(ξ ′
1)h(ξ ′)B(v,�)d� dξ 1dξ

+
∫

R3

∫
S2

h(ξ ′
1)h(ξ ′)B(v,�)d� dξ 1 dξ .

(70)

The linear term Ilinear describes the impact of h through
the equilibrium state g, while, in a nonlinear term Inonlinear,
the impact is through the deviation itself. Confined by the
non-negativity of the distribution function, h is in the interval
(−g, + ∞) and confined by the integral∫

R3
ψh(ξ ) dξ ≡ 0, (71)

where ψ = (1,ξ ,|ξ |2). Thus Inonlinear plays an important role
when the deviation is large, while it can be neglected when the
distribution function is near equilibrium and the deviation is
small. The effect of Ilinear is always stable no matter the change
of the degree of nonequilibrium.

Here we propose a method for modeling the deviation inte-
gral Idev. Due to the linearity of Ilinear with respect to h, one can
describe h as series and investigate the impact of each element
in this series separately. For example, h can be expanded
using the multidimensional Hermite expansion, which is first
introduced by Grad for deriving 13 moment equations [47].
The deviation h can also be described by an infinite series of
δ functions. When this infinite series is truncated into finite, it
is substantially a velocity space discretization and is the same
as treating f in the DOM [31,33,34]. For the Inonlinear term,
the Hermite expansion can simplify the form only in terms of
moments rather the distribution function, and the DOM will

be not efficient for cases with large Mach number and large
temperature difference. Inspired by the work of calculating the
shock thickness by Mott-Smith [51], where the distribution
function in the shock is assumed to be a weighted sum of the
Maxwellian distribution from before and after the shock, a
method for modeling the Idev term is proposed in this paper.
First the distribution function is constructed by using a series
of Maxwellian functions. More precisely, the distribution func-
tion is described in a function space whose basis functions are
the Maxwellian distributions with different locations, heights,
and widths. Each Maxwellian distribution represents a cluster
of molecules with its own mean velocity and temperature. Due
to the flexibility of these Maxwellian functions, the feature of
deviation distribution can be captured efficiently, especially
for the cases where the distance (in velocity space) between
molecule clusters is large, which often occurs in case of
high Mach number, and for the cases where the temperature
difference is so large that the shape of distribution function
of low temperature cluster is almost a spike. Then a standard
pattern with only two free parameters will be derived, using
which the Ilinear and Inonlinear can be reconstructed.

Submit the reconstructed deviation distribution,

h =
∞∑

n=1

Aαg(u,Tα), (72)

where Aα is the weight, into Ilinear, and normalize ξ as
C = (ξ − u)/

√
kT /m, and v as V = v/

√
kT /m; after rear-

rangements, Ilinear becomes

n

(
kT

m

) 1+d
1−d

∞∑
α=0

AαDα(C), (73)

where

Dα(C) =
∫

S2
G(C ′

1)Gα(C ′)B(V,�)d�dC1. (74)

Here G is a standard multidimensional normal distribution,
and Gα is a also a normal distribution in the form

Gα(C ′) =
(

1

2πT̂

)3/2

exp

(
− 1

2T̂
|C ′ − Û |2

)
, (75)

where T̂ = Tα/T , Û = (uα − u)/
√

kT /m. Using Eq. (73),
the Iliner can be reconstructed with Dn(C).

Using the same methodology, submit Eq. (72) into Inonlinear;
consequently Inonlinear can be reconstructed as

n

∞∑
β=0

Aβ

(
kTβ

m

) 1+d
1−d

∞∑
α=0

AαDβα(C), (76)

where

Dβα(C) =
∫

S2
G(C ′

1)Gβα(C ′)B(V,�)d�dC1. (77)

Here Gβα has the same form with Gα in Eq. (75) except
that T̂ = Tα/Tβ , Û = (uα − uβ)/

√
kTβ/m. Compare Dβα and

Dα , and it can be seen that Dα is a special case of Dβα when
the β state is the local equilibrium state. Thus using Dβα , both
Ilinear and Inonliner can be reconstructed.

In Dβα(C), G and Gβα are two normal distribution func-
tions, and G is in a standard form. Physically speaking G and
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Gβα represent two clusters of normal distributed molecules,
and Dβα(C) describes the replenishment to the molecules
with peculiar velocity C through the binary collisions of
these two molecule clusters. So Dβα(C) can be viewed as
a standard replenishment term and can be used as a pattern
for the reconstruction of the deviation integral Idev. Since
G is a standard normal distribution, Dβα(C) depends only
on the temperature ratio T̂ and the velocity difference Û .
Moreover, Dβα(C) has spherical symmetry, and thus the
dependence on Û is reduced to a dependence on |Û |. So the
pattern Dβα(C) has only two free parameters. When the α

and β states are given, the two parameters of Dβα(C) are
directly obtained, and the replenishment to the molecules with
velocity ξ = √

kTβ/mC + uβ can be obtained by multiplying
the Dβα(C) pattern with nAβAα(kTβ/m)(1+d)/(1−d), which is
shown in Eq. (76). Sum the replenishment terms of all related
α and β states, and Idev can be obtained. Thus Idev is modeled
by the reconstruction of D patterns. The investigation of the
properties of D patterns with varying parameters could be
helpful to understand the physics of deviation of integrals, and
it should be precomputed for numerical computation.

VII. DISCUSSION AND CONCLUDING REMARKS

Motivated by improving kinetic model equations for the
kinetic methods such as a unified gas kinetic scheme and lattice
Boltzmann method, this paper investigated the difference
between the kinetic model equations and the fundamental
Boltzmann equation in a kinetic regime. First, a shock wave

structure case and a homogenous relaxation case are carried out
to investigate these differences. The asymmetrical distribution
and the velocity-dependent collision frequency are concluded
to be the reasons for the deviations in the two cases, and
limited success is achieved by using the information held by
nonequilibrium moments and a velocity-dependent relaxation
rate for adjusting the relaxation processes of kinetic model
equations. After these comparisons, a relationship between
the Boltzmann equation and the BGK equation are derived
explicitly, where the Boltzmann collision term has been split
into a BGK collision term and a residual. The BGK-based
term represents the impacts of local, deviation and the residual
represents the impacts of the global one. A generalized
relaxation term is derived from this relation where the two
factors for adjusting the model collision term are confirmed.
After the analysis of the features of the deviation integral,
which is an important part of the residual, an attempt at
approximating the collision integral is also proposed in which
the collision integral is approximated using simple patterns.
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