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Calculation of space localized properties in correlated quantum Monte Carlo methods
with reweighting: The nonlocality of statistical uncertainties
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We study the efficiency of quantum Monte Carlo (QMC) methods in computing space localized ground state
properties (properties which do not depend on distant degrees of freedom) as a function of the system size N .
We prove that for the commonly used correlated sampling with reweighting method, the statistical fluctuations
σ 2(N ) do not obey the locality property. σ 2(N ) grow at least linearly with N and with a slope that is related to
the fluctuations of the reweighting factors. We provide numerical illustrations of these tendencies in the form of
QMC calculations on linear chains of hydrogen atoms.
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I. INTRODUCTION

Many important quantities of chemical or physical interest
are localized in space; that is, they do not depend on spatially
distant degrees of freedom. For example, the forces exerted
on any particular nucleus in a molecule are barely influenced
by the presence of neutral molecules that are very far away
from the molecule of interest. One would expect that the
distant neutral molecules would represent irrelevant degrees
of freedom in computation of the force experienced by
the nucleus and could be eliminated in the computation of
such property. Quantum chemistry exploits locality in many
different ways, for example, the Lewis description of covalent
bonding [1] and the closely related valence bond theory [2,3].
Deterministic computational methods often exploit locality to
tackle large systems. The most obvious strategy would be to
study a fragment (for example, in a protein) and rely on the
transferability of the results to a larger system. This would also
be the idea behind coarse graining and hybrid methods. [4,5]

However, calculations on the full system are more robust
since they do not depend on this transferability hypothesis.
Exploiting the locality property to lower the cost of a
calculation on the entire system is the strategy involved, for
example, in local electronic structure methods [6–9]. The
latter scale down the computational cost as a function of the
system size N (number of particles for a rather homogeneous
system at a given scale, or a collection of identical systems).
In such methods, molecular orbitals can be localized on single
or spatially adjacent atoms according to a variety of criteria
[10–12]. For large molecular systems, locality enables local
correlation methods to reduce the computational scaling up to
a linear dependence with N [13,14].

Quantum Monte Carlo (QMC) methods [15–20], a powerful
set of stochastic techniques for solving the Schrödinger
equation, are increasingly used for electronic structure cal-
culations on molecular systems. This is primarily because
of the moderate computational scaling [O(N3−4)] and the
perceived high accuracy to compute total energies. In the past
decade there has been a similar drive to formulate and program
linear-scaling QMC algorithms [21–27]. The focus of such
works was to generate Monte Carlo sample configurations and
evaluate energies with a reduced computational cost. However,
another important factor in the numerical efficiency of a

Monte Carlo method is the size of the statistical fluctuations
in a calculated property. The purpose of this paper is to
understand the behavior of QMC statistical fluctuations of
spatially localized properties as a function of N . We show that
conventional methods (correlated sampling methods) do not
have the locality property regarding the statistical fluctuations.

Many properties, such as the force on a nucleus, dipole
moment, or substitution energy, can be written as a difference
of two ground state energies Eλ − E0. E0 and Eλ are,
respectively, the ground state energies of the Hamiltonians
H0 and Hλ. Hλ is a small perturbation of H0 and λ is a small
perturbation parameter,

Hλ = H + λO. (1)

When considering a localized property, O depends mainly
on the positions of particles lying in a small region of the
space. We then have to compute a small difference in energies
Eλ − E0 or the energy derivative,

〈O〉 = dEλ

dλ

∣∣∣∣
λ=0

� Eλ − E0

λ
. (2)

Computing these differences (2) from independent energy
calculations is particularly inefficient in QMC. Since energy is
size extensive, the statistical uncertainty on the energy usually
behaves as

√
N . Consequently, the statistical uncertainty on

such a calculation of (2) is

σi(λ,N,M) ∝ 1

λ

√
N

M
. (3)

This formula is valid asymptotically, for small λ, large system
size N , and large sample size M . It is obvious from (3)
that the smaller λ is the less efficient independent energy
calculations are. The so-called correlated sampling with
reweighting methods [28–31], which are popular strategies
to compute small differences of energies or properties, seem
to be much more suitable methods. As we show later these
methods encompass improved estimators which are built using
the Hellmann-Feynman theorem [28,32–37]. We prove in this
paper that the statistical uncertainty in correlated sampling
with reweighting methods behaves as

σc(λ,N,M) ∝
√

N

M
. (4)
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These methods are obviously better for small λ and can
provide derivatives with finite variances (see the section on
zero-variance, zero-bias estimators in this paper). However,
they have the same large N behavior as independent energy
calculations. Both σ 2

c and σ 2
i grow linearly with the system

size. In other words, neither σc nor σi satisfy the locality
property; they depend not only on the environment of the
perturbation but also on irrelevant and distant degrees of
freedom. The slope of the function σ 2

c (N ), however, can be
lowered (using, for example, warped coordinates [31,33]).

The outline of this paper is as follows. In the first section we
go through the basics of correlated sampling with reweighting
method in the variational Monte Carlo (VMC) variant of QMC.
We show that Hellmann-Feynman and improved estimators
for observables [33] can be considered as a particular case
with λ → 0. We restrict our study to VMC since it allows
for direct comparison with ab initio basis set calculations
while it does not suffer from issues such as the fixed-node
error or small time-step restrictions due to the Suzuki-Trotter
expansion. Then we prove the nonlocality property of the
statistical uncertainty (4) in the correlated sampling with
reweighting method. It is shown that this nonlocal behavior
comes from the weights which are introduced in the estimators.
When considering Hellmann-Feynman estimators with the so-
called zero-variance, zero-bias property, the nonlocality also
comes from weights, the latter arising in the so-called Pulay
correction. In the subsequent section simulations on hydrogen
chains illustrate the size dependence of these methods for
forces on a nucleus.

II. CORRELATED SAMPLING IN VARIATIONAL
MONTE CARLO

A. Variational Monte Carlo

Given a Hamiltonian H and a space of configurations R
representing the coordinates of the particles (in our case the
electrons), the VMC method computes the variational energy,

EV [�] = 〈�|H |�〉
〈�|�〉 , (5)

where � is a trial wave function depending on some varia-
tionally optimized parameters. The basic idea of the method is
to rewrite the expression (5) in a form that has a probabilistic
interpretation, the average of the so-called local energy, over
the normalized probability distribution �2,

EV [�] =
∫

�2(R)H�
�

(R)dR∫
�2(R)dR

=
〈
H�

�
(R)

〉
�2

= 〈e〉�2 . (6)

Note that VMC energies have become significantly more
accurate during the last decade due to the development of
efficient methods for optimizing the parameters of the wave
function in Monte Carlo [38].

B. The correlated sampling with reweighting method

We want to compute the difference in ground state energies
of two systems described by the Hamiltonians H and Hλ, the
latter related to the first by small perturbation as in Eq. (1).
We can introduce, respectively, two trial functions, �, �λ,
and two local energies, e, eλ. The difference in the variational

energies is

EV
λ − EV = 〈eλ〉�2

λ
− 〈e〉�2 . (7)

The latter expression can be computed either by independent
energy calculations or by correlated sampling. The energy
difference (7) is of order λ and is usually asymptotically
independent on the system size N (for large N ), when the
perturbation is space localized. If EV

λ and EV are computed
independently, the relative numerical precision of the differ-
ence EV

λ − EV decreases with the system size. The numerical

precision scales like
√

N
λ

, because the statistical uncertainty on
the energy scales as

√
N . Usual correlated methods consist of

sampling only one density, for example, �2, and correcting
the expectation value by inserting weights in the estimators,

EV
λ − EV =

〈
eλ

�2
λ

�2 (R)
〉
�2〈�2

λ

�2 (R)
〉
�2

− 〈e(R)〉�2 , (8)

which can be rewritten as

EV
λ − EV = 〈eλ − e〉�2 + cov

(
eλ,

�2
λ

�2

)
〈�2

λ

�2

〉
�2

. (9)

In expression (9) we dropped the R dependence, and the
covariance is defined on the �2 distribution. We underline here
that the zero-variance, zero-bias estimators [33] of observables
can be included in the same category of correlated sampling
methods with reweighting (9). Indeed, the so-called zero-
variance, zero-bias estimator of the energy derivative is no
more than Eq. (9), with an additional factor 1

λ
and in the limit

λ → 0. This estimator reads

dEV
λ

dλ
= 〈e′

λ〉�2 + 2cov

(
e,

� ′
λ

�

)
, (10)

where the derivatives are taken with respect to λ. The first
term of Eq. (10) is the so-called “zero-variance” estimator
of the expectation value of the observable O on the density
�2; its main effect is to lower the statistical fluctuations
[32,39]. The second is often called a “Pulay correction.” It
has the effect of lowering the bias coming from the variational
approximation [33].

Expression (9) has the same quadratic zero-variance, zero-
bias (ZVZB) property as expression (10): If φ and φλ are,
respectively, the exact ground state of H and Hλ, both the
variance and the bias are of order 2 in the differences (�λ −
φλ,� − φ).

That means that the statistical uncertainty can be in
principle lowered arbitrarily (for a given sample) by appro-
priately choosing (�,�λ) in Eq. (9). However, as we show
in a few sections, despite the usefulness of this variance
reduction, the method suffers from analogous deficiencies
as independent energy calculations when computing space
localized properties for large systems.

C. Generalization to correlated sampling
with warped coordinates

The idea behind correlated sampling using warped coor-
dinates is to compute the integrals in the expression of the
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variational energy,

EV
λ =

∫
�2

λ(R)Hλ�λ

�λ
(R)dR∫

�2
λ(R)dR

, (11)

by a substitution method. For that purpose one introduces
warped coordinates,

Rλ = Tλ(R) = R + λv(R) + o(λ2), (12)

where Tλ(R) is a well behaved (bijection and continuously
differentiable) transformation, with the Jacobian Jλ(R). Intro-
ducing the weight

wλ(R) = �2
λ

�2
(Tλ[R])Jλ(R), (13)

one obtains the similar expression as Eq. (9),

EV
λ − EV = 〈eλ(Rλ) − e(R)〉�2 + cov(eλ,wλ)

〈wλ〉�2
, (14)

for which Eq. (9) is a particular case with Rλ = R and
Jλ(R) = 1.

The derivative of the last expression leads to one of the
most general ZVZB estimator of O proposed in Ref. [33]
[Eq. (83)]. This can be written in a similar way as Eq. (10)
except that, the λ dependence of Rλ has also to be included,
i.e.,

dEV
λ

dλ

∣∣∣∣
λ=0

= 〈(eλ[Rλ])′λ=0〉ψ2 + cov{e,(wλ[Rλ])′λ=0}. (15)

The two terms arising in the right-hand side of Eq. (15) have
exactly the same nature as in Eq. (10); only the value of the
weight is different. Introducing ψ̃ , the derivative of ψ with
respect to λ at λ = 0,

ψλ = ψ + λψ̃ + o(λ), (16)

the two terms of the right-hand side of Eq. (15), will be
respectively written as

dEV
λ

dλ
= 〈e′(ψ̃,v)〉 + cov[e,w′(ψ̃,v)] (17)

= ZV (ψ̃,v) + P (ψ̃,v). (18)

Note that with these conventions, ZV (ψ̃,v) [first term of
the right-hand side of Eq. (15)] might differ from the bare
estimator expectation value [ZV (ψ̃ = 0,v = 0)], if warped
coordinates are used (v 	= 0). The term P (ψ̃,v) is the co-
variance between the weight and the local energy. It is a
generalized Pulay correction (Pulay correction when v = 0).
It includes the dependence on the weight. Having written
improved estimators and correlated sampling estimators in
the same way [expressions (10),(14),(15)], the subsequent
discussion is applicable to both techniques.

D. Fully separated model

We consider the limit where the system is composed
of two independent subsystems. Mathematically, the total
Hamiltonian is the direct sum of two Hamiltonians,

Hλ = Hl
λ + Hu. (19)

The Hamiltonian Hl
λ acts on a space of particle coordinates Rl ,

for example, representing the electron positions of an isolated
molecule in space. The Hamiltonian Hu would represent
an operator acting on a space of coordinates Ru of distant
electrons from those treated by Hl

λ. The λ dependence of the
Hamiltonian is purely brought by the first term in Eq. (19),
to take into account the spatial locality of the perturbation.
In this context, a good variational wave function �λ for the
Hamiltonian Hλ should obey the same separation property as
the exact solution, namely,

�λ(R) = �λ(Rl ,Ru) = �l
λ(Rl)�u(Ru), (20)

where �l
λ and �u are respectively variational solutions for

the Hamiltonians Hl
λ and Hu. The local energy of the system

becomes

eλ(R) = el
λ(Rl) + eu(Ru). (21)

When introducing local warped coordinates, only the coordi-
nates Rl

λ are transformed:

Rλ = (
Rl

λ,R
u
) = [Tλ(Rl),Ru].

In the following sections, we omit the dependencies on
the electron coordinates; they will be implicit: �λ = �λ(Rλ),
�l

λ = �l
λ(Rl

λ), �u = �u(Ru), el
λ = el

λ(Rl
λ), eu = eu(Ru).

E. Statistical fluctuations in a correlated sampling
method with reweighting

Given the previous separability hypothesis [Eqs. (19) and
(20)], formula (9) can be written as

EV
λ − EV = 〈

el
λ − el

0

〉 + cov(eλ,w
l)

〈wl〉 (22)

= 〈
el
λ − el

0

〉 + cov
(
el
λ,w

l
)

〈wl〉 + cov(eu,wl)

〈wl〉 , (23)

where the weight is defined as in (13):

wl ≡ �l
λ

2

�l
0

2

(
Rl

λ

)
Jλ(Rl). (24)

In expressions (22) and (23), all expectation values are
computed over the sampled distribution (�2 = �2

0 ). Let us
now evaluate the statistical fluctuations of (23) to analyze
how they depend on the system size. The first two terms
of the right-hand side of (23) are local, depending only on
the positions Rl of the particles of the isolated fragment.
As a consequence, the expectation values and the statistical
fluctuations of their estimators do not depend on the system
size.

We can now focus on the third term of the right-hand side
of Eq. (23), which is nonlocal since it depends on eu. We
now evaluate the bias and the statistical fluctuations of this
estimator, as a function of the system size.

F. Estimator of the nonlocal contribution

The nonlocal contribution of Eq. (23) can be written in a
simpler notation (we drop the subscripts for readability),

P = cov(e,w)

E(w)
, (25)
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where w is positive and e and w are independent (since e = eu

and w = wl depend on independent particle coordinates Ru

and Rl). Furthermore, we assume that e, w have finite variance.
Consider a sample of M independent realizations of the triplet
(e,w,ew), namely a set {(ei,wi,eiwi),i ∈ [1, . . . ,M]}. For any
set of M independent random variables Xi distributed as X

(here X = e, X = w, or W = ew), the mean which is an
unbiased expectation value of E(X) is written as

X̄ = 1

M

M∑
i=1

Xi. (26)

P is a function of expectation values,

P = f (E(ew),E(e),E(w)),
(27)

where f (X,Y,Z) = X − YZ

Z
.

The usual estimator of P is the same function f applied on
the estimators of the expectation values,

P̄ ≡ f (ew,ē,w̄) = ew − ēw̄

w̄
. (28)

Now we prove that the bias is zero (for a finite size sample M)
if e and w are independent. From the expression (28) for P̄ ,

E(P̄ ) = E

(
ew

w̄
− ē

)
= E

(∑M
i=1 eiwi∑M
i=1 wi

)
− E(e). (29)

Using the independence of ei and wi , we obtain

E(P̄ ) =
M∑
i=1

E(ei)E

(
wi∑M

j=1 wj

)
− E(e)

= E(e)
M∑
i=1

E

(
wi∑M

j=1 wj

)
− E(e)

= E(e)E

(
M∑
i=1

wi∑M
j=1 wj

)
− E(e) = 0.

Since P = 0 (because e and w are independent), the bias
E(P̄ ) − P is equal to zero whatever the size M of the sample.
For e and w independent, an exact expression for the variance
of P̄ (cf Appendix) can be shown to be

V (P̄ ) = V (e)

M
E

(
w2 − w̄2

w̄2

)
= V (e)V (w)

E(w2)M
+ o

(
1

M

)
.

(30)

The variance of P̄ is therefore proportional to V (e), which
in turn is usually proportional to N . For large system sizes,
the statistical fluctuations are dominated by the fluctuations of
the nonlocal component [third term of Eq. (23)]. Hence, the
variance does not exhibit the locality property.

In practice it is not possible to split exactly the system into
independent fragments; thus, we have access to the expression
(22) and not to the expression (23). The numerator of the latter
is a covariance of nonindependent variables. An evaluation
of the bias and the variance can be done in this general case
(where e and w are not independent) as a power expansion in
1
M

. We do it in an Appendix for the sake of completeness.

III. NUMERICAL RESULTS

A. Model

Linear chains of hydrogen atoms are a convenient test
bed for studying the large N behavior of QMC methods
in the context of highly correlated many electron problems.
We provide illustrations on two different geometries. The
first geometry is the one that minimizes the Hartree-Fock
energy. The corresponding chain is then made of molecules
of H2 (hydrogen intermolecular distances around 1.4 a.u.)
separated by distances of typically 6.5 a.u. This system
is nonmetallic, displaying short range correlations with the
electronic correlations decreasing exponentially fast as a
function of the interparticle distance. The second geometry
is made of equally separated hydrogen nuclei, with a distance
equal to the equilibrium geometry of the H2 molecule (1.4 a.u.).
This chain is known to have metallic properties, i.e., long range
correlations between electrons.

The most commonly employed wave function form in VMC
is a product of a sum of antisymmetric Slater determinants
multiplied by a symmetric correlation function (which contain
explicit electron-electron, electron-nuclei, and higher order
terms) [40–42]. Such wave functions provide a compact
representation of the important static and dynamic electronic
correlation effects compared to configurational interaction (CI)
expansions, but generally result in integrals that cannot be
integrated analytically, and must be performed numerically by
Monte Carlo integration. In the present case since we are only
interested in the system size dependence [43] of the statistical
uncertainty, we limit ourselves to simple single determinant
wave functions, obtained from restricted Hartree-Fock (RHF)
calculations with the GAMESS package. This enables direct
comparison with energies and gradient components obtained
using ab initio deterministic methods. The basis set used is
a Slater basis set expanded as a large expansion of Gaussian
basis functions to facilitate treatment by the GAMESS ab initio
package. All the VMC calculations are performed, using an
overdamped Langevin process on 480 walkers with a time
simulation of 6400 a.u. The statistics is done on 400 blocks of
480 trajectories that each span 16 a.u. of simulation time.

B. Energies

Figure 1 shows the RHF energies as a function of the
number of atoms in a chain for both geometries (metallic
and insulating). The RHF energies display a linear behavior
as a function of the number of atoms in the chain. This curve
illustrates that the size extensivity holds almost perfectly even
for the metallic chains and from a small number N of atoms
(∼4–6). Note that, as expected, the energies obtained in VMC
do not differ within the error bars from the deterministic ab
initio calculations.

C. Force estimators

The space localized property we focus on in this paper is
the force component on the first nucleus of the chain in the
direction of the chain axis (z axis). The expression (1) of
the perturbation (λO) holds with O being the z component of
the Coulombic force on the first nucleus, λ being the magnitude
of the displacement. This property is also the derivative of the
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FIG. 1. (Color online) Total energies for linear Hn molecules,
insulating and metallic. The two curves represent spline interpolations
of the RHF energies that were calculated with the ab initio
deterministic package GAMESS. The points with the error bars are the
VMC energies. The inset shows the deviation of the VMC energies
from the RHF energies.

energy with respect to the displacement of the first nucleus in
the chain. We use different estimators coming from the general
expression (18). We take two kinds of auxiliary function states
ψ̃ , ψ̃ = ψ̃min for a “minimal” choice [32,33] for which the
estimator e′(ψ̃min,0) has a finite variance. Its expectation value
ZV (ψ̃min,0) is the same that of the bare estimator (the usual
Coulombic force).

When one chooses ψ̃ = ψ ′
λ, that is the derivative of the

self-consistent solution ψ with respect to the first nucleus z

component, then e′(ψ ′
λ,0) is also the derivative of the local

energy with respect to the nucleus z component. Also note
that its expectation value, ZV (ψ ′

λ,0), does not differ from that
of the bare estimator. Regarding the warped coordinates (v 	=
0), we use the expression used in Ref. [33] with parameters
optimized to lower the fluctuations of the weight w′(ψ̃,v). The
generalized Pulay correction [second term of the right-hand
side of (17)] is either P (ψ ′

λ,0) (the usual Pulay correction)
or P (ψ ′

λ,v) (the generalized Pulay correction including the
Jacobian of the warped coordinates).

D. Force expectation values

Forces computed with different estimators are reported in
Figs. 2 and 3. Similar results are observed for both metallic and
nonmetallic systems. (i) For estimators that have the locality
property for the statistical fluctuations: the zero variance with
no warped coordinates [ZV (ψ̃min,0), ZV (ψ ′

λ,0)] estimates are
found to be the same within the error bars. These estimators
should coincide with the target, i.e., the RHF forces; however,
they are very different in practice. This is because we do
not deal with the exact RHF solution, only an approximation
coming from the incomplete basis used in the self-consistent
field (SCF) calculation. Such behavior illustrates the sensitivity
of the bare force to the quality of the variational wave
function.

The zero-variance calculations with warped coordinates
ZV (ψ ′

λ,v) are, as one would expect, different from the bare
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FIG. 2. (Color online) Energy derivative, different estimators,
metallic chains.

result. Interestingly, they are found to be closer to the target
by a factor 2. We interpret this result as follows. In the limit
where the fluctuations of the weight w′(ψ̃,v) are zero, the
Pulay correction should be zero. In general, a substantial gain
in the fluctuations of the weight should improve the accuracy
of ZV (ψ ′

λ,v). In other words, warped coordinates lower the
sensitivity of the expectation value of the modified zero-
variance estimator ZV (ψ ′

λ,v), to the quality of the variational
wave function. With the addition of the Pulay correction, we
recover the derivative of the variational energy with respect to
the nucleus position (the SCF force).

E. Statistical fluctuations and size dependencies

The uncertainties obtained with zero-variance estimators
(estimators without a Pulay correction) are reported in Fig. 4.
Estimators containing the auxiliary function ψ̃ = ψ ′

λ display
large fluctuations in the statistical uncertainty, due to the
formal infinite variance of these estimators (the nodes of ψ ′

λ

differ from the ψ’s). However, the overall behavior does not
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FIG. 3. (Color online) Energy derivative, different estimators,
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FIG. 4. (Color online) Statistical uncertainties for estimators
without a Pulay correction. (Top) Insulating Hn chains; (bottom)
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appear to grow with system size. With the minimal auxiliary
function ψmin, the independence of the statistical uncertainty
with respect to the system size is more obvious (that comes
from the finite variance of the estimator).
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FIG. 5. (Color online) Histograms of the local energy derivative
(ZV estimator) for the Hn metallic chains.
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FIG. 6. (Color online) Histograms of the local energy for the Hn

metallic chains.

To confirm the trend in a more quantitative way, we provide
the histograms of the derivatives of the local energy with and
without warped coordinates. The histogram of the local energy
derivative (which has an infinite variance) for the metallic
chain is presented in Fig. 5. The histograms converge rapidly
with the number N of atoms; they appear to be numerically
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FIG. 7. (Color online) Statistical uncertainties on the Pulay cor-
rection. (Top) Insulating chains; (bottom) metallic chains.
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FIG. 8. (Color online) Square of statistical uncertainties as a
function of the number of atoms (metallic chains). The lines are
linear fits on the energy and minimal Pulay correction uncertainties
squared.

the same for the H2 and the H48 molecules. This contrasts
with the behavior of the local energy (see Fig. 6) which, as
expected, has larger tails as N increases. We conclude that
the locality property of the statistical fluctuations of the zero-
variance estimator is not limited to systems with short range
correlations.

The uncertainties obtained in the Pulay corrections are
reported in Fig. 7. Three different Pulay corrections are pre-
sented: the ones [P (ψ ′

λ,v) and P (ψ ′
λ,0)] that have already been

introduced, but also a minimal Pulay correction P (ψ̃min,0)
which has a finite variance. The Pulay corrections for both the
metallic and insulating hydrogen chains appear to grow as a
function of the system size. They grow as

√
N , just like the

variational energy. This is illustrated in Fig. 8, where the square
of the statistical uncertainties appears to be a linear function
of N . Hence, this behavior which has been proven here for
independent (noninteracting) systems, also holds for (strongly
interacting) metallic hydrogen chains and thus is expected to
hold for more general systems.

As a consequence, the statistical uncertainty on the ZVZB
estimators are then dominated by the Pulay correction for large
N , which grow as

√
N . In practice one can see on the Fig. 7

that the statistical fluctuations on the Pulay correction becomes
dominant from 2 to 4 atoms without warped coordinates and
from about 10 atoms (metallic chain) or 15 atoms (insulating
chain) with warped coordinates. We note that the main role of
warped coordinates is to lower the slope of the variance as a
function of N .

IV. CONCLUSION

Many physical properties are local in space, meaning
that their expectation values converge as a function of the
system size N . We have analyzed in this paper the statistical
fluctuations as a function of system size displayed by usual
QMC estimators of space local properties.

Correlated sampling techniques with reweighting (to com-
pute small differences of energies) and ZVZB estimators

(to compute energy derivatives) were handled in the same
way. Both types of estimators were written as a sum of two
terms. The first term is a difference (or derivative) of two
local energies. In the context of improved estimators for
observables (energy derivatives), this term is the so-called
zero-variance estimator (which has the same expectation value
as the bare estimator but a lower variance). When warped
coordinates are introduced this difference involves two local
energies computed at two different locations in the space of
configurations, and the expectation value is different from
the bare estimator. The second involves the covariance of the
local energy and a weight and possibly includes a Jacobian (if
warped coordinates are used). This second term is interpreted
as a generalized Pulay correction.

In this paper, we have proved that for a sum of independent
Hamiltonians (noninteracting fragments), the variance of
the first term has the locality property, meaning that the
fluctuations do not depend on irrelevant degrees of freedom.
We have observed numerically for linear hydrogen chains that
this property holds also for both interacting and noninteracting
systems.

The variance of the second term (Pulay) does not have
the locality property. This is because it is proportional to the
variance of the local energy which usually grows linearly as
a function of the system size N . The consequence is that
the usual reported N2-N3 scaling of QMC methods (for the
energy) has to multiplied by N when local properties are to be
computed. The variance of the Pulay term can be huge, if there
is, for example, a very heavy atom far from the perturbation
site. The heavy atom would not contribute to the expectation
value but would dramatically increase the variance (since this
heavy atom would have a large contribution to the variance of
the local energy).

Note that this behavior might also be responsible for a
deterioration of the accuracy for large N when optimizing
trial functions, since estimators of the derivatives of the energy
involve a covariance of the weights and the local energies.

In summary, calculations of properties, energy derivatives
or energy differences using available methods lead to statistical
fluctuations depending on irrelevant degrees of freedom, and
which grow with the system size. The slope of this growth,
however, can be limited using warped coordinates as we have
discussed and illustrated numerically.

To avoid these artificial statistical fluctuations, we see two
possibilities. (i) The first is to limit the slope of the growth
via warped coordinates and/or a very careful optimization of
the wave function to lower the variance of the local energy.
Here we did not improve the trial function for the hydrogen
chains beyond the SCF solution. When we do improve it with
a simple Jastrow enforcing some of the cusp conditions, a
gain in the variance of the local energy by a factor 10 is
typically achieved, further decreasing the slope of the variance
on the Pulay correction. That means that the Pulay correction
becomes only dominant for 10 times the size of the chain
(here 50–100 atoms, which might be large enough for practical
purposes). For a system with larger atoms, in an all-electron
calculation, the contribution to the variance of a single large
atom is much larger (even after optimization), and so is the
slope; the predominance of fluctuations in the Pulay correction
would arise for much smaller system sizes.

033304-7



ROLAND ASSARAF AND DOMINIK DOMIN PHYSICAL REVIEW E 89, 033304 (2014)

(ii) The second strategy would be to use the zero-variance
estimator, i.e., dropping the Pulay correction. The inconve-
nience is that the bias is of order one (see Ref. [33]), rather
than order two. Using optimized warped coordinates, however,
is liable to lower the prefactor of the bias. Of course, a
new method having the locality property for the statistical
uncertainty while keeping a second order systematic error on
physical properties would be potentially much more efficient.
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APPENDIX A: ESTIMATOR OF THE PULAY
CORRECTION—BIAS AND STANDARD ERROR

1. Estimator of the Pulay correction

We introduce the property

P = cov(e,w)

E(w)
, (A1)

where e and w are random variables defined on some
probability measure. We suppose that w is positive and that e,
w, and ew have a finite variance.

Introducing a sample of M independent realizations of the
triplet (e,w,ew), namely {(ei,wi,eiwi),i ∈ [1, . . . ,M]}. We
note that for each random variable X ∈ {e,w,ew} the mean

X̄ = 1

M

M∑
i=1

Xi (A2)

is an unbiased estimator of E(X).
P is a function of expectation values

P = f (E(ew),E(e),E(w)),
(A3)

where f (X,Y,Z) = X − YZ

Z
.

A usual estimator of P is the same function applied on the
estimators of the expectation values,

P̄ ≡ f (ew,ē,w̄) = ew − ēw̄

w̄
. (A4)

This is the estimator we consider here.

2. Evaluation of the bias

The estimator (A4) has the following bias:

E(P̄ ) − P = E[f (ew,ē,w̄) − f (E(ew),E(e),E(w))]. (A5)

We evaluate (A5) and prove that it is generally nonzero.
For that purpose we write the development of the function
f (X,Y,Z) around a point (X0,Y0,Z0),

f (X,Y,Z) = −Y + X

Z0

∞∑
n=0

(−1)n
(Z − Z0)n

Zn
0

. (A6)

Using (A6) and making the identifications (X0,Y0,Z0) =
[E(ew),E(e),E(w)], (X,Y,Z) = (ew,ē,w̄), we have

P̄ − P = f (X,Y,Z) − f (X0,Y0,Z0)

= −[ē − E(e)] + ew − E(ew)

E(w)

+ ew

E(w)

∞∑
n=1

(−1)n
[w̄ − E(w)]n

E(w)n
. (A7)

Note that this expression is well defined provided that M is
sufficiently large [44].

Writing w̄e = E(we) + [we − E(we)] and reordering the
sum order by order we have

P̄ − P = −[ē − E(e)] + ew − E(ew)

E(w)
− E(ew)

E(w)2
[w̄ − E(w)]

+
∞∑

n=2

(−1)nE(w)−n

(
E(ew)

E(w)
{[w̄ − E(w)]n}

− {[ew − E(ew)][w̄ − E(w)]n−1}
)

. (A8)

Hence, the bias [Eq. (A5)] reads

E(P̄ ) − P =
∞∑

n=2

(−1)nE(w)−n

(
E(ew)

E(w)
E{[w̄ − E(w)]n}

−E{[ew − E(ew)][w̄ − E(w)]n−1}
)

. (A9)

To proceed further we need to evaluate E {[w̄ − E(w)]n} and
E{[ew − E(ew)][w̄ − E(w)]n−1}. Both terms can be written
in the form (X̄Ȳ n−1), where X̄ and Ȳ are centered random
variables:

E(X̄Ȳ n−1) = E

⎡
⎣∑M

i=1 Xi

M

(∑M
i=1 Yi

M

)n−1
⎤
⎦

= 1

Mn−1
E

⎡
⎣X1

(
M∑
i=1

Yi

)n−1
⎤
⎦ . (A10)

In the last expression, we used the hypothesis that the Xi are
equidistributed.

For n = 1 this reduces trivially to zero. We restrict the
discussion to the case n > 1. Developing the (n − 1)th power
we obtain

E(X̄Ȳ n−1) = 1

Mn−1

∑
∑M

i=1 ki=n−1

(n − 1)!

k1!k2! · · · kn!

×E
(
X1Y

k1
1 Y

k2
2 · · ·Y kn

M

)
. (A11)

Using the independence of random variables for two different
indices i and the hypothesis that Yi are equidistributed, this
expression reads

E(X̄Ȳ n−1) = 1

Mn−1

∑
∑M

i=1 ki=n−1,k1 	=0,i>0⇒ki 	=1

(n − 1)!

k1!k2! · · · kn!

×E(XYk1 )E(Y k2 ) · · · E(Y kn). (A12)
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The indices ki in this summation are positive integers
(including 0). The restrictions k1 	= 0 and ki 	= 1 can be
done since the corresponding terms are zero (all variables are
centered). For the first values of n one would obtain from this
formula

E(X̄Ȳ ) = 1

M
E(XY ),

E(X̄Ȳ 2) = 1

M2
E(XY 2),

E(X̄Ȳ 3) = 1

M3
[E(XY 3) + 3(M − 1)E(XY )E(Y 2)],

E(X̄Ȳ 4) = 1

M4
{E(XY 4) + (M − 1)[6E(XY 2)E(Y 2)

+ 4E(XY )E(Y 3)]},
E(X̄Ȳ 5) = 1

M5
{E(XY 5) + (M − 1)[10E(XY 3)E(Y 2)

+ 10E(XY 2)E(Y 3) + 5E(XY )E(Y 4)]

+ 15(M − 1)(M − 2)E(XY )E(Y 2)2}.
More generally, the number of terms in the brackets depends
only on n. Each term is a product of some number k of
expectation values times a term growing like Mk−1 for large M .
For a fixed even n the largest value of k, is n/2 corresponding
to the largest nonzero product, namely E(XY )E(Y 2)

n−2
2 . For

a fixed odd n � 5 the largest value of k is n−1
2 , corresponding

to the product E(XY )E(Y 2)
n−5

2 E(Y 3).
Under the hypothesis that E(XY ) 	= 0, then for large M

E(X̄Ȳ n−1) ∝ M− n
2 E(XY )E(Y 2)

n−2
2 + o

(
M− n

2
)
, for n even,

E(X̄Ȳ n−1) ∝ M− n+1
2 E(XY )E(Y 2)

n−5
2 E(Y 3) + o

(
M− n+1

2
)
,

n � 5, n odd. (A13)

Applying this result, the dominant term in expression (A9) as
a function of M is obtained for the index n = 2:

E(P̄ ) − P = 1

M
E(w)−2

(
E(ew)

E(w)
E{[w − E(w)]2}

−E{[ew − E(ew)][w − E(w)]}
)

+ o

(
1

M

)

= 1

M
E(w)−3[E(ew)E(w2) − E(ew2)E(w)]

+ o

(
1

M

)

= 1

M
[cov(ew,w2) − cov(ew2,w)] + o

(
1

M

)
.

(A14)

This term is, in general, nonzero. For example, if one takes
e = 1

w
, one has E(P̄ ) − P = 1

N
E(w)−3[E(w2) − E(w)2] =

1
N

E(w)−3V (w), which is general strictly positive.
We have proved that the dominant term of the bias as a

function of N is, in general, nonzero. Hence, the bias is, in
general, nonzero. Furthermore, it is decreasing like the inverse
of the size of the sample.

3. Standard error of the estimator

The standard error on the estimator of P (P̄ ) is usually
given by the square root of its variance provided that M is
large enough. The variance reads as

V (P̄ ) = E[P̄ − E(P̄ )2] = E[P̄ − P + P − E(P̄ )2]

= [P − E(P̄ )]2 + E[(P̄ − P )2]. (A15)

The last term E(P̄ − P )2 is the square of the bias.
Therefore, it is at least of order 1

M2 . The previous term is the
square of the average of (A8). It can be written as an expansion
of powers of 1

M
. For the same justifications as before, the

leading term is the one of order 2. This term is the square of
the term of order 1 in (A15)

E[(P̄ − P )2] = 1

M
V

[
ew

E(w)
− E(ew)

E(w)2
w − e

]
+ o

(
1

M

)
.

(A16)

The last term of (A15) is the square of the bias; thus, it is
behaving as 1

M2 . We finally have

V (P̄ ) = 1

M
V

[
ew

E(w)
− E(ew)

E(w)2
w − e

]
+ o

(
1

M

)
. (A17)
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