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Vertex-based finite volume simulation of Liesegang patterns on structureless meshes
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A computational method is suggested for the simulation of Liesegang patterns in two dimensions on
structureless meshes. The method is based on a model that incorporates dynamical equations for the nucleation
and growth of solid particles of different sizes into reaction-diffusion equations. We find the model cannot be
numerically solved with Galerkin-based finite element methods and cell-centered finite volume methods. Instead,
the vertex-based finite volume method is used to correctly reproduce the Liesegang pattern on structureless
meshes. The numerical solution is then compared with specially designed experiments on Liesegang patterns in
various geometries, and it is shown to be in good agreement.
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I. INTRODUCTION

Chemical reactions coupled to diffusion often produce a
spatiotemporal phenomenon that leads to the formation of
a localized pattern [1,2]. One classical example of pattern
formation in chemistry is periodic precipitation or the so-called
Liesegang phenomenon [3–6]. It is a special type of chemical
pattern formation that results from periodic precipitation
in certain diffusion-driven chemical systems. The pattern
is generally considered to be the product of a complex
combination of chemical reaction(s), diffusion, nucleation,
and growth. Models explaining the Liesegang phenomenon
can be generally divided into two groups. The first is based
on Ostwald’s theory of successive supersaturation where it is
assumed that the appearance of precipitation bands is due to a
repetitive appearance of a supersaturation wave [7]. Since the
system is diffusion controlled, the reaction zone becomes de-
pleted and therefore the time required for precipitation to occur
again increases. This in effect leads to an increasing distance of
separation between the bands. Theories based on this concept
are said to follow prenucleation mechanisms because emphasis
is given to the relation among supersaturation, nucleation
rate, and growth kinetics. The second group of models is
based on postnucleation mechanisms where emphasis is given
to the processes occurring after the nucleation of the solid
phase. In such theories, it is generally believed that the growth
mechanism is the result of the Lifshitz-Slyozov instability [8]:
the growth of larger particles at the expense of the neighboring
smaller ones, which could dissolve back. In this case the pattern
is described as a dissipative structure without any need for
supersaturation.

A model that takes both mechanisms into account was
introduced in Ref. [9], where it was shown that this model
could reproduce the Liesegang pattern on square domains [10].
To our knowledge, there are no simulations of Liesegang pat-
terns in multidimensions on structureless meshes. Moreover,
striving to solve the resulting partial differential equations
with the Galerkin-based finite element and cell-centered finite
volume methods using existing numerical libraries such as
the Portable, Extensible Toolkit for Scientific Computation
(PETSc) and software such as COMSOL Multiphysics Engineer-
ing Simulation Software did not lead to converging solutions.
In this paper, a numerical scheme based on the vertex-based

finite volume method (vb-FVM) is proposed in order to extend
the model applicability to structureless meshes. In specific,
it is shown that the Liesegang pattern can be reproduced on
circular domains and starting from initial conditions of various
geometrical constraints.

This paper is composed as follows. Section II contains
the theoretical model describing the Liesegang phenomenon.
In Sec. III we present the numerical algorithm to solve
the discretized partial differential equations. In Sec. IV we
implement the numerical scheme and present the numerical
solutions and then compare them to the experiment. Section V
concludes the paper.

II. THEORETICAL MODEL

Consider a closed system consisting of two components
(A) and (B), of concentration functions a(x,t) and b(x,t),
respectively. The vector x denotes position in real space, and t

denotes time. The system � is partitioned into two; an interior
subdomain is where reactant (A) is homogeneously distributed
with concentration a0 and the reactant (B) is zero, and an
exterior part where (A) is zero and (B) is homogeneously
distributed with concentration b0. At time t > 0 the two
reactants begin to diffuse and react irreversibly according to
the following bimolecular chemical reaction

A + B
kr→ C. (1)

The reaction constant is kr such that the rate of the reaction vr

is approximated by the mean-field theory

vr (x,t) = kra(x,t)b(x,t). (2)

Let c(x,t) denote the concentration function of (C), a weakly
soluble electrolyte. Evidently the initial value of (C) is zero
everywhere on �. Over the boundaries, the fluxes of all
components must vanish. The Neumann boundary conditions
for the three components are

∇xa · n|∂� = ∇xb · n|∂� = ∇xc · n|∂� = 0, (3)

where n is the normal vector to ∂� and pointing outwards.
Taking into account that (A), (B), and (C) undergo diffusion
in the absence of convection, the following mass balance
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equations can be written as

∂ta = ∇x · �a∇xa − vr, (4)

∂tb = ∇x · �b∇xb − vr, (5)

∂tc = ∇x · �c∇xc + vr + �. (6)

The derivative notation ∂t is defined as ∂t → ∂
∂t

. The scalar
function � contains terms that are related to the solid phase
dynamics. The diffusion coefficients of (A),(B), and (C), are
�a , �b, and �c, respectively. The precipitate is assumed to
exist in only two forms: small-sized nuclei [represented by the
nuclei distribution function n(x,t)], which can dissolve back
to replenish (C) or transit to large-sized particles [represented
by p(x,t)], which can grow at the expense of (C). It was shown
in Ref. [9] that � can take the following simple form

� = vd − vn − vg, (7)

such that vd is the rate of nuclei dissolution, vn is the rate of
nucleation, and vg is the rate of growth of the large particles. It
is further assumed that the precipitate does not diffuse, which
makes the evolution equations of the solid phase free of any
terms containing spatial derivatives, and that in turn makes
their numerical solution less expensive. This is physically
justified on the basis that diffusion in solids is much slower
than in liquids, and the nucleation and growth time scales are
much less than that of diffusion. This agrees with experimental
observations that show that the precipitate formed in Liesegang
systems does not diffuse and distort the pattern [11,12]. On
the other hand, the particular forms of the nucleation and
growth rate functions do not significantly alter the final pattern
observed [10,13]. Therefore, the simplest possible shaping
functions are chosen such that the equations remain mass
balanced. The nucleation, transition, dissolution, and growth
rate functions are respectively given by

vn = k(1)
n (c − cn)H (c − cn), (8)

vt = k(2)
n (c − cd )H (c − cd )n, (9)

vd = kd (cd − c)H (cd − c)n, (10)

vg = kg(c − cg)H (c − cg)p. (11)

The parameters k(1)
n , k(2)

n , kd and kg are the nucleation,
transition, dissolution and growth rate constants, respectively.
The nucleation rate of the smallest particles, vn, is independent
of n(x,t) because otherwise nucleation cannot commence.
Moreover, the nucleation rate should vanish when c(x,t) is
less than some critical constant, termed cn, which is why the
rate functions have been multiplied by the Heaviside unit-step
function. Similarly, the rate of transition from small nuclei to
large particles and that of dissolution depend on the critical
dissolution constant, cd . Finally, the growth rate vg , is a
function of the particle distribution function, p and the critical
growth constant, cg . The differential equations describing the
precipitate dynamics can be written as

∂tn = vn − vt − vd, (12)

∂tp = vt + vg. (13)

The critical constants cg and cd are characteristic values of the
system such that when c(x,t) exceeds cg , the growth rate is
greater than zero, otherwise this rate vanishes. On the other
hand, when c(x,t) is less than cd the rate of dissolution is
positive while that of transition vanishes, otherwise the former
goes to zero while the latter is positive. It is assumed that once
the particles reach their maximum size, they do not dissolve
back. They can grow or remain static in time. In this case,
the Lifshitz-Slyozov instability [8] leads to a constraint on
the nucleation critical constants: cn > cd � cg . This constraint
shall be imposed whenever Liesegang bands are sought after.

III. NUMERICAL ANALYSIS

A. Spatial discretization and time integration

Equations (4)–(6), (12)–(13) are spatially discretized using
the vertex-based finite volume method (also known as the
control volume finite element method), a general class of
numerical methods that are widely employed for solving trans-
port equations. The vertex-based finite volume method was
introduced by Baliga and Patankar in 1980 [14]. The method
was initially applied to the solution of a two-dimensional
convection diffusion equation. Application to the complete
Navier-Stokes equations followed later [15]. An attractive
feature of this method is that the discretized equations are
mass conservative and the nonlinear source or sink terms can
be naturally diagonalized. This allows greater flexibility in
dealing with systems of nonlinear equations, and leads to a
robust method that can handle highly nonorthogonal meshes.
This proved to be an integral part of our algorithm as we
discuss in Sec. IV A. The numerical scheme used in this work
is based on treating nucleation and growth sites at the centers
of the control volumes (CVs) whereas diffusion fluxes are
computed at the faces of each CV. Equations (4)–(6), (12)–(13)
are solved over a two-dimensional mesh partitioned into a finite
number of triangles. The numerical solution of these equations
is sought on the domain of each CV, which is defined to be
a 2m-sided polygon where m is the number of triangles that
contribute to the formation of this CV [16]. Such a polygon
should be centered around each node of the mesh so that the
total number of CVs is equal to the total number of nodes, Nc.
The numerical solution φ is defined as a linear interpolation
of its values at three nodes of each triangle

φ(x) =
3∑

i=1

ζi(x)φi, (14)

where {ζi}3
i=1 is the set of basis functions, taken to be linear

functions of space. Furthermore, the union of all CV polygons
must form the total mesh. For each triangle, its contributing
node belongs to two of its three edges. Thus, the midpoints
of each of these two edges are connected to the centroid of
the triangle, forming two segments of the CV polygon. The
procedure is repeated again for another contributing triangle,
and so on. The result is a polygon with 2m sides (Fig. 1) and
of volume V ,

V = 1

3
h

m∑
k=1

Ak, (15)
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FIG. 1. A hexadecagonal control volume in gray (its centroid is
in blue) is generated from eight neighboring triangles that form the
region of support.

where h is the depth and Ak the area of triangle k. Equa-
tions (4)–(6), (12)–(13) are transformed into their weak form
by integrating them over the entire domain. Writing this form
at the local (triangular) level yields∫

�k

∂tφdV =
∫

�k

∇x · �∇xφdV +
∫

�k

sdV, (16)

where �k is the domain of the kth triangle forming the region
of support for the CV under consideration, φ represents the
concentration function of any of the components, and s a
nonlinear term that accounts for the reaction, nucleation, or
growth. For the nucleation and growth equations, the diffusion
term vanishes. The transient and reaction or nucleation inte-
grals are then approximated by a first-order Gauss quadrature,
which is evaluated at the centroid of the CV (see Fig. 1)

∫
�k

∂tφdV = Akdtφch, (17)

where φc is the value of φ at the centroid of the CV. Similarly,
the volume integral arising from the nonlinear terms can be
evaluated with a first-order Gauss quadrature

∫
�k

sdV = Aks(φc)h. (18)

On the other hand, by applying the divergence theorem, each
diffusion volume integral is transformed into a surface integral,
which is split into two line integrals∫

�∇xφ · ndS = h

∫
f1

�∇xφ · nd� + h

∫
f2

�∇xφ · nd�.

(19)

Let the coordinates of the kth triangle be represented by the
vectors x(k1), x(k2), and x(k3) (see Fig. 2). Then each line integral
is approximated with a first-order Gauss quadrature

�∇xφ · nf1�
∣∣
f1

� �

2A(k)

{[(
x(k2)

2 − x(k3)
2

)(
φk1 − φk3

) − (
x(k1)

2 − x(k3)
2

)(
φk2 − φk3

)]
δx(1)

2 + [(
x(k2)

1 − x(k3)
1

)(
φk1 − φk3

)

− (
x(k1)

1 − x(k3)
1

)(
φk2 − φk3

)]
δx(1)

1

}
, (20)

�∇xφ · nf2�
∣∣
f2

� �

2A(k)

{[(
x(k2)

2 − x(k3)
2

)(
φk1 − φk3

) − (
x(k1)

2 − x(k3)
2

)(
φk2 − φk3

)]
δx(2)

2 + [(
x(k2)

1 − x(k3)
1

)(
φk1 − φk3

)

− (
x(k1)

1 − x(k3)
1

)(
φk2 − φk3

)]
δx(2)

1

}
. (21)

The projection vectors from Fig. 2 can be found [16] to be

δx(1) = −x(k1)

6
+ x(k2)

3
− x(k3)

6
, (22)

δx(2) = x(k1)

6
+ x(k2)

6
− x(k3)

3
. (23)

The diffusion surface integral yields∫
�∇xφ · ndS � −h

∑
i∈�k

ck1,iφi, (24)

where

ck1,k1 = �

2Ak

[(x(k3) − x(k2)) · (δx(1) + δx(2))], (25)

ck1,k2 = �

2Ak

[(x(k1) − x(k3)) · (δx(1) + δx(2))], (26)

ck1,k3 = �

2Ak

[(x(k2) − x(k1)) · (δx(1) + δx(2))]. (27)

Each of the faces of the polygon has an outward normal vector
that is perpendicular to its surface line (see Fig. 2). Since each
triangle provides two faces for the control volume, two fluxes
are defined with each being parallel to its outward normal
vector. The global diffusion matrix is assembled by looping
over each node (representing a specific CV) and computing
three entries [Eqs. (25)–(27)] for each of the contributing
triangles forming the region of support (Fig. 1). The number
of triangles in the region of support can be computed from
the data structure generated by the open source software
TRIANGLE [17], which constructs a set of two-dimensional
(2D) arrays (one for the triangular nodes and another for their
coordinates) that represent a structureless mesh. For vb-FVM
computations, it is necessary that the region of support for
each CV is determined. An additional data structure therefore
includes a two-dimensional array of length Nc and a variable
number of columns.

Let � represent the discretized unknown functions at
all nodes. Then, the system of spatially discretized time-
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FIG. 2. A contributing triangle to the control volume (centered at
node k1) through its two edges, k1-k2 and k1-k3. The normal vectors
to the faces are projected (in gray) along the triangular axes.

dependent ordinary differential equations for Eqs. (4)–(6),
(12)–(13) can be written as

dt� = − �� + s, (28)

where the tensor � contains the diffusion matrices and the
vector s contains all the nonlinear terms. A variable order and
variable step-size memory-based implicit time integrator is
used to solve Eqs. (28) using up to fourth-order backward
differentiation formulas (BDF) [18]. For a discrete time
interval δt at the mth time step, the temporal derivative can
be approximated with

dt� =
n∑

i=0

λi�
tm−i + O(δtn). (29)

Here {λi}ni=0 is a set of BDF coefficients that depend on
the current and previous time steps in a complicated manner
[19,20]. Since the equations are stiff, the time step was varied
(see Fig. 3) such that the minimum number of computations
are performed by the solver [21].

B. Algebraic solution

The reactants (A) and (B) form a reaction-diffusion system
that is independent of other components. Therefore, the
differential equations for (A) and (B) ought to be solved first,
and then the solution obtained is used for the nucleation and
growth equations. Newton’s method is the most commonly
used iterative method for finding an approximate solution
of a system of nonlinear algebraic equations. For large
computational problems, however, building the Jacobian (or
an approximation of it) can be quite expensive. Therefore,
a fixed point iteration is used that allows decomposition
and manipulation of the nonlinear terms in such a way that
convergence is rapid for the (A)-(B) reaction-diffusion system.
Such a scheme falls under the realm of operator splitting (OS)
methods [22–26]. The linearized equations are

[
ϒ

tm
A

]
j
(atm )j+1 = −

n∑
i=1

λiatm−i , (30)

[
ϒ

tm
B

]
j

(btm )j+1 = −
n∑

i=1

λibtm−i , (31)
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FIG. 3. A plot of the time-step size δt versus the time-step
number. In solving Eq. (28), the BDF integrator takes small time
steps during the formation of a ring in order to resolve the nonlinear
nucleation and growth terms. Between the formation of one ring and
another, the system is diffusion controlled, and the solver therefore
takes much larger time steps. The parameters used here are the same
as those in Fig. 4 for the Liesegang rings.

where the notation [v]j denotes that the tensor v in brackets is
being evaluated at the j th iteration. The vectors a and b contain
the discretized concentrations of (A) and (B), respectively, and

[
ϒ

tm
A

]
j

= λ0I+�a�+kr

[
Dtm

b

]
j
, (32)

[
ϒ

tm
B

]
j

= λ0I+�b�+kr

[
Dtm

a

]
j
, (33)

where � is the diffusion matrix, I is the identity matrix, and
Dtm

v is a diagonal matrix with entries equal to v evaluated at time
tm. The convergence rate of this method is linear. However,
since convergence is quite rapid, the method is computationally
less expensive than Newton’s method. On the other hand, the
nucleation, growth, and diffusion equations for (C), (N), and
(P) are solved using the trust region algorithm [27], where a
modified Newton direction is taken, depending on how well the
right-hand side equations are minimized. The unconstrained
Newton method leads to the following linearized system

[J]j ×
⎛
⎝ δc

δn
δp

⎞
⎠

j+1

= −

⎛
⎜⎝

∑n
i=0 λictm−i + �c�ctm − stm

c∑n
i=0 λintm−i − stm

n∑n
i=0 λiptm−i − stm

p

⎞
⎟⎠

j

, (34)

where δ [v]j+1 is equal to [v]j+1 − [v]j for a vector v, and sc,
sn, and sp are vectors that contain all the discretized nonlinear
terms for species (C), (N ), and (P ), respectively. The Jacobian
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J of these equations can be written in the following form:

J =
⎛
⎝J11 J12 J13

J21 J22 0
J31 J32 J33

⎞
⎠ , (35)

where

J11 = λ0I + �c�+k(1)
n θ (n) + kgθ

(g)Dtm
p + kd (I − θ (d))Dtm

n ,

(36)

J12 = −kd

(
cdI − Dtm

c

)
(I − θ (d)), (37)

J13 = kg

(
Dtm

c − cgI
)
θ (g), (38)

J21 = −k(1)
n θ (n) − kd (I − θ (d))Dtm

n + k(2)
n θ (d)Dtm

n , (39)

J22 = λ0I+kd

(
cdI − Dtm

c

)
(I − θ (d)) + k(2)

n θ (d)
(
Dtm

c − cdI
)
,

(40)

J31 = −k(2)
n θ (d)Dtm

n − kgθ
(g)Dtm

p , (41)

J32 = −k(2)
n

(
Dtm

c − cdI
)
θ (d), (42)

J33 = λ0I − kg

(
Dtm

c − cgI
)
θ (g), (43)

and θ is a diagonal matrix such that its ith entry is

θ
(n)
ii = H

(
ctm
i − cn

)
, (44)

θ
(d)
ii = H

(
ctm
i − cd

)
, (45)

θ
(g)
ii = H

(
ctm
i − cg

)
. (46)

Since the differential equations describing the temporal evolu-
tion of the nuclei and the precipitate in Eqs. (12), (13) are free
of spatial derivatives (J22 and J33 are diagonal matrices), the
Jacobian can be reduced in size from 3Nc × 3Nc to Nc × Nc :

[Jc]j [δc]j+1 = −[rc]j , (47)

where

Jc = J11 − J12J−1
22 J21 − J13J−1

33 J31 + J13J−1
33 J32J−1

22 J21,

(48)

rc =
n∑

i=0

λictm−i + �c�c − sc − J12J−1
22 rn − J13J−1

33 rp

+ J13J−1
33 J32J−1

22 rn, (49)

and

rn =
n∑

i=0

λintm−i − sn, (50)

rp =
n∑

i=0

λiptm−i − sp. (51)

From [δc]j+1 one can easily compute [δn]j and [δp]j as
follows

[δn]j = −[
J−1

22

]
j
× ([rn]j + [J21]j [δc]j ), (52)

[δp]j = −[
J−1

33

]
j
× ([rp]j + [J32]j [δn]j + [J31]j [δc]j ).

(53)

We note that the reduced Jacobian is not only smaller in size
but also symmetric. All of the discretized matrices that result
from Eqs. (4)–(6), (12)–(13) are sparse and were therefore
assembled in compressed row storage using the CSPARSE

library [28]. For each iteration, three linearized systems are
to be solved. Since the first two operators [corresponding
to Eqs. (32) and (33)] are symmetric positive definite, the
preconditioned conjugate gradient (PCCG) method [29] is
used to solve the linear systems, with the incomplete Cholesky
factorization used for preconditioning. In solving Eq. (47),
the biconjugate gradient stabilized method is used since the
reduced Jacobian is not always positive definite.

IV. RESULTS AND DISCUSSION

A. Numerical method

We have chosen the vb-FVM as a discretization method
because other well-known discretization methods failed to
reproduce the Liesegang pattern on complicated geometries.
The methods used were the Galerkin-based FEM and the
cell-centered FVM (cc-FVM). The former produced unphys-
ical results on circular domains. Decreasing the time step,
increasing the number and/or order of the elements, and
refining or coarse graining the mesh had no significant impact
on the solution. The cell-centered finite volume method, on
the other hand, is typically used in commercial CFD codes and
performs very well on orthogonal meshes. However, when the
mesh is highly distorted, this method is not very robust and
problems with convergence might arise [30]. This could be
one of the reasons the cc-FVM failed on circular and random
geometrical domains but performed well on quasiorthogonal
meshes (such as rectangles and squares). Thus, we believe
that the vb-FVM correctly reproduced the Liesegang pattern
for two reasons: (i) its ability to handle highly nonorthogonal
grids with ease, and (ii) its higher numerical stability due
to diffusion. The second point follows from the fact that
each CV consists of multiple faces (Fig. 1), so each node
experiences diffusion from multiple sides, and this in turn
reduces numerical instabilities that are prevalent in the other
two aforementioned numerical methods.
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B. Experimental method

To compare the simulation results with experiment, we
pick the cobalt hydroxide-ammonia Liesegang system [31],
which displays numerous well-resolved green/blue Liesegang
bands in a relatively short period of time. We designed
special reactors with different geometries that will allow
us to compare the resulting patterns to the simulated ones.
The chemistry taking place is summarized as follows. A gel
(gelatin) containing the light pink cobalt bromide (source of
inner Co2+) displays the green/blue α-Co(OH)2 (solubility
product Ksp = 3.00 × 10−16) precipitation Liesegang rings
upon diffusion of ammonia solution (called outer electrolyte),
which consists of ammonia (NH3), the hydroxide ions (OH−)
and the ammonium ions (NH+

4 ). α-Co(OH)2 is one of two
polymorphs of cobalt hydroxide [32]. Later, the Co(OH)2

rings near the interface redissolve, forming the orange/yellow
Co(NH3)2+

n complex (for n = 6, the formation constant is
Kf = 5.00 × 104) due to a trailing wave of excess NH3 [33].
However, in this paper, we only focus on ring formation, which
dominates due to a proper choice of experimental parameters,
and ignore the dissolution process. Consequently, the effective
reaction scheme representing the precipitation scenario in the
presence of ammonia is:

Co+2(aq) + 2OH−(aq) → α − Co(OH)2(s)

→ Liesegang rings. (54)

The preparation of the system consists of the following
experimental procedures: The required masses of CoBr2

(Aldrich) to prepare a 0.2 M solution and gelatin (5%)
(Difco) were weighed to the nearest 0.0001g. These masses
are then transferred to a beaker containing doubly distilled
water. After dissolution of the solid, gelatin powder is added
to make a 5% gelatin solution. The solution is then heated
with continuous stirring until all the gelatin dissolves. The
resulting pink Co(II)/gel mixture is immediately transferred
into a specially designed circular reactor, which consists of a
plexiglass Petri-dish-like container above which a plexiglass
cover plate is fitted. On the center of this cover, a reservoir
tube or multireservoirs are adjusted according to a defined
geometry. Each reservoir is fabricated with a cross section of a
specific shape. The cover plate is also equipped with spacers to
control the thickness of the gel matrix. All experiments were
performed with a 0.7 mm spacers. The system is then covered
and allowed to stand for about 24 hours in a thermostatic
chamber at 18◦C. On the next day, the gel is carefully removed
from the bottom of the pouring reservoir tube, then a dilute
solution of ammonia (1–3 M) is added to the reservoir. As the
outer electrolyte solution is being added over the interface, a
homogeneous greenish blue precipitate starts to form. Photos
of the evolution of the precipitate system are taken with a
computer-interfaced digital Canon D450 camera at various
time intervals.

C. Qualitative comparison

The numerical algorithm is implemented and tested in
different domains of initially separated reactants (A and B) and
by choosing suitable parameters that give rise to Liesegang
bands. The inner electrolyte (A), which assumes the higher
concentration, occupies inner domains (reservoirs) of specific

FIG. 4. (Color online) A mesh plot shows the precipitate (P)
spatial distribution at t = 800 in the form of continuous Liesegang
rings in a bounded system with two initially separated reactants; (A)
occupied an inner circle of radius 10

√
2 while (B) filled the remaining

part of the larger circle. Parameters used: �a = 1, �b = 1, �c =
0.5, a0 = 500, b0 = 3, kr = 10−3, k(1)

n = 2.0, k(2)
n = 2.0, kd = 1.0,

kg = 1.0, cg = 1, cd = 1.25, cn = 1.5. Mesh characteristics: 501 873
vertices, 1 001 395 triangles, and maximum elemental area = 0.05.
The precipitate global size distribution function has been rescaled by
a factor of 0.5.

shapes and/or configuration, and the outer electrolyte (B),
which has the relatively lower concentration, occupies the
remaining domains. The shape of the overall domain in this
work is either circular or squared and we choose various shapes
and configurations for the inner domains. The choice of the ge-
ometrical shapes and configurations are chosen in such a way
that can be directly tested experimentally. The spatial distribu-
tion function for the precipitate (P) is then plotted at a given
time t . In the case of a circular inner domain as shown in Fig. 4,
we can see that the system develops into circular Liesegang
rings with increasing spacing as expected in such systems [34].

In the case of Fig. 5, the reactant is initially distributed
into four equal circular containers. The resulting pattern
is complex especially in the region of intersection of the
precipitates. In Fig. 6, we start with a global square domain
and the reactant is initially distributed over nine circular
domains of equal size. We obtain a precipitation pattern
that is symmetric and complex with increasing details at the
intersections of the precipitates.

In Fig. 7, we start with an inner domain with a square
geometry over a global circular domain. In this case, the
rings that form tend to round the edges caused by the inner
square geometry. This feature is due to diffusion and will be
reproduced experimentally in the next section.

In Fig. 8, we change the inner domain from a square to
a triangle. The resulting precipitation pattern is a modulated
triangle with round edges (similar to the square situation
discussed previously), which lead to a breakup due to strain
imposed by the triangular geometry. The breakup persists
even after jiggling or refining the mesh. This feature is always
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FIG. 5. (Color online) A mesh plot shows the precipitate (P)
spatial distribution at t = 300 in the form of Liesegang rings that
intersect at the center of the circular mesh. The reactant (A) was
initially distributed throughout four separated circles, each of radius

10
√

3
2 , and on the same mesh and with the same parameters used in

Fig. 4.

encountered in experiment in the case of geometries with
sharp edges and might give rise to dislocations as we will see
in the coming section.

The patterns obtained experimentally for the cobalt
hydroxide-ammonia Liesegang system are shown in
Figs. 12(a)–12(d). In Figs. 12(a)–12(c), the shape of the
cross section of the inner reservoir is varied whereas in

FIG. 6. (Color online) A mesh plot shows the precipitate (P)
spatial distribution at t = 200 in the form of multiple Liesegang rings
intersecting. The reactant (A) was initially distributed throughout
nine separated circles, each of radius 10, and with the same
parameters used in Fig. 5. Square mesh characteristics: 642 035
vertices, 1 281 543 triangles, and maximum elemental area = 0.05.

FIG. 7. (Color online) A mesh plot shows the precipitate (P)
spatial distribution at t = 800 in the form of four Liesegang squares
that are eventually (as the front approaches the boundary) perturbed
into ellipses due to the circular geometry of the mesh. The reactant
(A) was initially distributed throughout a square of length 10

√
2π

on the same mesh and with the same parameters used in Fig. 5. The
precipitate global size distribution function has been rescaled by a
factor of 0.5.

Fig. 12(d) more circular reservoirs are placed symmetrically
around the center of the domain. It is clear that different
patterns emerge as a result of the imposed shape and con-
figurations and their experimental shape is predicted by the

FIG. 8. (Color online) A mesh plot shows the precipitate (P)
spatial distribution at t = 850 in the form of four Liesegang triangles.
The reactant (A) was initially distributed throughout an equilateral
triangle of length 10 × √

π on the same circular mesh used in Fig.
5. Parameters used: �a = 1.0, �b = 1.0, �c = 1.0, a0 = 500, b0 = 3,
kr = 10−3, cg = 1, cd = 1.25, cn = 1.5, k(1)

n = 2.0, k(2)
n = 2.0, kd =

1.0, kg = 0.5. The precipitate global size distribution function has
been rescaled by a factor of 0.2.
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simulation. For example, Fig. 12(a) represents the experimen-
tal realization of Fig. 4; Fig. 12(b) corresponds to simulation in
Fig. 8; Fig. 12(c) corresponds to the simulation in Fig. 7; and
Fig. 12(d) corresponds to the multireservoir simulation in
Fig. 5. These aforementioned comparisons confirm the ability
to use the model and simulation as tools for design of precipi-
tation patterns for any geometry. Furthermore, dislocations are
also encountered in the case of inner geometries with edges
that can be clearly seen in Figs. 12(b), 12(c) for triangular and
square geometries.

D. Quantitative comparison

Two essential laws associated with the Liesegang banding
phenomenon encountered in a variety of experiments with
different electrolytes have also been verified using this model.
The first one is the so-called spacing law [35,36] and it
indicates that the ratio xn+1/xn of the positions xn and xn+1 of
the consecutive precipitation bands labeled as n and n + 1
tends to a constant for large n, for a given set of initial
conditions, and it can be written as:

xn+1/xn = 1 + p, (55)

where p is a spacing coefficient that varies between 0.01
and 0.5, depending on the inner and outer concentrations.
Experimentally, this indicates that the spacing between bands
increases with the number of bands. Moreover, the time of
appearance of the rings also follows a time law [37] also
characteristic of Liesegang rings whereby the time tn it takes
to form the nth band increases as a function of n such that the
ratio of x2

n/tn approaches a constant value as n increases.
In order to verify these laws using the numerical simulation,

it is important to define the location of the bands and the time
of its formation from simulation and use them systematically.
Therefore, we computed the maximum value (in space) of
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FIG. 9. (Color online) Temporal oscillations of the maximum
value (in space) of c(x,t) around cn (taken to be 1.5 here). The
period of formation, tn, for the nth ring and the distance separating
this ring from the initial interface, xn, are computed from the temporal
evolution of cmax.
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FIG. 10. (Color online) Plot of the ratio xn+1/xn versus the band
number n. It is approximately a constant equal to 1.2. This implies
the distance of separation, xn, follows a geometric progression as
encountered in experiments on Liesegang bands.

c(x,t) as shown in Fig. 9, which as expected in the case
of Liesegang banding exhibits oscillations in time around cn

[Eq. (8)]. The period of formation, tn, for the nth ring and the
distance separating this ring from the initial interface, xn, can
be therefore computed from the temporal evolution of cmax.
Both aforementioned laws are thereafter verified in this model
using Fig. 4 as shown in Figs. 10, 11. These laws can also
be verified for all the other simulated patterns yielding almost
the same spacing coefficient p at the same inner and outer
concentrations, regardless of the geometry of the reservoir.
These results are confirmed experimentally using the patterns
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FIG. 11. (Color online) Plot of the ratio x2
n/tn versus the band

number n. As the number of rings increases, the ratio of x2
n to tn

approaches a constant. This indicates the phenomenon is diffusion
controlled in the asymptotic limit as encountered in experiments on
Liesegang bands.
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(a) (b)

(c) (d)

FIG. 12. (Color online) Different precipitation patterns of cobalt hydroxide are obtained with different cross sections of the inner reservoir.
The geometry of the setup for each pattern is sketched in the upper corner of each panel. The time at which these patterns are photographed
is about 12 hours. (a) Perfect precipitation rings are obtained with a circular cross section. Inner (Co+2) = 0.2 M; outer (NH3) = 3.7 M.
(b) Elliptic patterns are obtained with a triangular cross section. Inner (Co+2) = 0.2 M; outer (NH3) = 1 M. (c) Modulated rings are obtained
with a square cross section. Inner (Co+2) = 0.2 M; outer (NH3) = 1 M. (d) A more complex pattern is obtained by using 4 circular reservoirs
of similar (but not identical) diameters. Inner (Co+2) = 0.2 M; outer (NH3) = 2 M.

displayed in Fig. 12, which lead to a spacing coefficient p

that varies between 0.05 [Fig. 12(a)], 0.18 [Figs. 12(b), 12(c)],
and 0.3 [Fig. 12(d)] depending on the initial concentrations.
Furthermore, the value of p was also found to be independent
of the geometry for the same initial concentrations, as found
in the aforementioned simulations

V. CONCLUSION

We present a numerical algorithm for the simulation of
Liesegang patterns on structureless meshes. The method is
based on the vertex-based finite volume method. The algorithm
is shown to be stable and robust in simulating the Liesegang

pattern starting from different initial conditions. The numerical
results are shown to be in good agreement with the experiment
for various geometrical configurations. Therefore, this method
may be used for the prediction and design of complex
precipitation patterns.
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