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A recently introduced inference method based on system replication and an online message passing algorithm
is employed to complete a previously suggested compression scheme based on a nonlinear perceptron. The
algorithm is shown to approach the information theoretical bounds for compression as the number of replicated
systems increases, offering superior performance compared to basic message passing algorithms. In addition, the
suggested method does not require fine-tuning of parameters or other complementing heuristic techniques, such
as the introduction of inertia terms, to improve convergence rates to nontrivial results.
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I. INTRODUCTION

The successful application of techniques developed in
statistical mechanics of disordered systems to a wide range
of problems in information theory has benefited both fields
by exchanging methods and ideas, providing new insights and
algorithmic tools [1]. The statistical mechanics methodology
has complemented the mathematical rigor of traditional infor-
mation theory techniques by providing exact analytical results
for typical properties in the limit of very large systems—the
thermodynamic limit. Conversely, the importance of obtaining
specific microscopic states in practical information theory
problems, in contrast to the usual goal of characterizing
macroscopic states in statistical mechanics, has contributed to
a renewed interest in inference methods to obtain ground-state
solutions of the corresponding Hamiltonians when the energy
landscape is complex.

In problems related to communication systems, micro-
scopic states are associated with specific transmitted messages
and one is interested in recovering messages associated with
the specific instance rather than analyzing general macroscopic
properties averaged over an ensemble of such systems. The
correct message refers to the ground state of the corresponding
Hamiltonian with the level of noise in the channel being
represented by the temperature used. Common examples are
error correcting codes [2], where one wishes to recover the
original message, after it has been encoded and corrupted upon
transmission through a noisy channel.

The problem of finding a ground state, or equivalently the
global minimum of a Hamiltonian, can only be solved analyt-
ically in very simple cases. For disordered systems, especially
in the spin-glass phase, the energy landscape is so complex that
the use of approximate computational techniques is unavoid-
able. The ruggedness of energy landscapes which characterize
such systems poses a challenge for optimization techniques.
For instance, gradient descent-based methods get trapped in
local minima and more sophisticated Monte Carlo algorithms,
such as parallel tempering [3,4], are computationally slow.

An alternative family of algorithms which provide compu-
tationally efficient approximations to the exact but computa-
tionally hard full Bayesian inference is that of message passing
(MP) algorithms, also known as belief propagation [5]. These
methods have been able to achieve good performance in many
complex problems and are considered a promising alternative
for tackling inference problems in a range of fields such

as information theory [1], hard combinatorial problems [6],
statistical mechanics models, and complex systems in general.

The information theoretical problem we address here is
that of source coding or lossy compression. The problem is of
great importance practically and is highly challenging theo-
retically; computationally efficient solutions for this problem
have been sought after for over 50 years. Shannon was the
first to study lossless and lossy [7,8] compression and to
establish theoretical bounds to the achievable performance
under a given information loss. However, Shannon’s results
are not constructive, leaving open the challenge of finding a
computationally feasible scheme that saturates the theoretical
bounds.

The main difficulty in finding such schemes is the associated
computational complexity. Some schemes can saturate the
theoretical bounds, for instance by an exhaustive search, but
are impractical due to the computational cost involved which
scales exponentially with the size of the message. Other
approaches provided good approximations [9–14] that still fall
short of the theoretical limits for certain loss rates. The search
for efficient schemes, those which are at least polynomial
in message size, is what drives research in the field even
today. Notable among these schemes are recent approximate
Bayesian methods based on MP algorithms.

A radically different approach based on the nonlinear
perceptron has been introduced by Hosaka, Kabashima, and
Nishimori [15]. By using the replica method it has been shown
that a nonlinear perceptron can be used as part of a compression
scheme, which can achieve close to optimal performance, both
in terms of the theoretical compression-distortion limits [15]
and the related error exponents [16], depending on the
parameters of the message generation and activation function
of the perceptron. The analytical results are obtained for the
typical case and were numerically verified only by exhaustive
search methods, which are clearly exponentially slow as the
size of the message is increased. In a follow-up work [17] an
MP algorithm has been suggested for the compression of the
messages showing good performance as long as some heuristic
modifications were added; but performance was bounded due
to inherent limitations of the inference method. While this
compression method is highly promising it still requires an
efficient inference technique to bring performance closer to
the theoretical limits.

The aim of the current paper is to do exactly that; namely,
to adapt a recently introduced MP algorithm [18] to bring
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the performance of the nonlinear perceptron compression
scheme closer to the theoretical limits. This algorithm, named
the replicated online message passing algorithm (rOnMP), is
based on improved inference in hard computational problems
by averaging over results obtained from different solutions
of replicated variable systems. It has been previously applied
to solve the binary Ising perceptron capacity problem as a
benchmark case.

We will employ a similar replicated online message passing
algorithm to obtain solutions as part of the compression
method and show that it can achieve an increasingly better
performance as the number of replica increases. The rOnMP
algorithm exhibits several advantages over basic MP methods:
(i) it does not require any heuristic additions to suppress
convergence to nontrivial solutions due to symmetry properties
of the problem; (ii) it does not depend on training parameters
that may need fine-tuning; (iii) and, most importantly, it
provides increasingly improved performance as the number
of replica increases.

The remainder of the paper is organized as follows. In Sec. II
we provide the theoretical formulation of the compression
method using a nonlinear perceptron. We then proceed to
introduce the conventional MP equations corresponding to
this method in Sec. III, which use the whole data set at once
(offline). In Sec. IV we argue in favor of converting these
equations into an online set of equations that incorporate
a single data point at a time. A further improvement that
completes the algorithm is the replication of the online MP
process, as explained in Sec. V. Once the rOnMP algorithm has
been fully derived for the compression problem, we analyze
its computational complexity in Sec. VI. Results of numerical
simulations are presented in Sec. VII followed by a summary
and some final considerations given in Sec. VIII.

II. COMPRESSION BY A NONLINEAR PERCEPTRON

The compression problem consists in encoding an N -
dimensional binary message y = (y1, . . . ,yN ) ∈ {±1}N into
a K-dimensional binary vector b = (b1, . . . ,bK ) ∈ {±1}K ,
where K < N , such that the compressed message can be later
recovered by a decompressing algorithm with zero or minimal
loss. The compression rate R = K/N indicates the level of
compression; it is desirable to minimize R while minimizing
distortion losses. When zero information loss is possible in the
recovered message we term the problem lossless compression,
while when allowing for some deterioration after recovery it
is called lossy compression.

Given that we will usually use finite compression rates in
this study, we will refer to both N and K interchangeably as
the system size. The thermodynamic limit will then be taken
by sending both N and K to infinity while keeping R fixed to
a finite value.

Shannon’s source-code theorem [7] shows that lossless
compression is possible when the rate R is less than the
entropy per bit of the source y in the thermodynamic limit.
Higher compression rates can be achieved if one allows for
information loss, with the precise meaning that a nonvanishing
average error per bit will be expected in the retrieved message.
The error per bit, also called the distortion rate, is measured by
the average Hamming distance between the original message

y and its inferred version ŷ as

D = lim
N→∞

1

N

N∑
μ=1

δ(yμ,ŷμ), (1)

where δ represents the Kroenecker δ.
Perceptrons represent simple nonlinear maps and have been

extensively studied in statistical mechanics [19]. As such, they
are promising candidates for compression schemes; one such
specific scheme was proposed in [15]. The perceptron used
corresponds to the mapping

yμ = sgn (� − |ξμ|), (2)

with the so-called synaptic field given by

ξμ = 1√
K

K∑
k=1

bksμk, (3)

where the a priori given vectors {sμ} are fixed at each instance
of the problem. The nonlinear activation function used is
visualized in Fig. 1, where it can be seen that the constant
threshold � defines the width of the square bump.

In the suggested compression scheme, a fixed set of N

randomly sampled K-dimensional vectors sμ ∈ RK is given,
playing the role of fixed parameters that characterize the
compression scheme and facilitate decompression. The data
set D composed of pairs (yμ,sμ) is used to estimate the
parameters of the perceptron, which represent the compressed
codeword corresponding to the original data vector y. These
parameters are encoded by the vector b, known in the
literature as the synaptic vector. Decompression consists in
presenting the input vectors sμ to the perceptron to obtain the
decompressed message ŷ using Eq. (2).

Typical case analysis of the achievable compression rate
for a given distortion (error rate) D was carried out using
the replica method, with replica symmetry being sufficient
in this case [15]. The data bits yμ ∈ {±1} of the original
message were randomly sampled from a biased distribution
p = P(yμ = 1) = 1 − P(yμ = −1); the parameter vectors
sμk were sampled from a Gaussian distribution of zero mean
and unit variance. Theoretically, the compression scheme

FIG. 1. Activation function for the nonlinear perceptron used in
the present compression scheme.
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saturates Shannon’s limit, with a compression rate R(D)

R = H2(p) − H2(D) (4)

and

erf

(
�√

2

)
= p − D

1 − 2D
, (5)

where H2(x) = −x log2x − (1 − x)log2(1 − x).
Equation (4) represents the optimal compression rates for

a given fixed D for any message bias, while Eq. (5) gives
the optimal value of � in terms of the bias and either D or
R. We will use these results to determine � in our scheme
and compare the performance of our algorithm with optimal
compression.

III. MESSAGE PASSING

The validity of the replica solution for the suggested
compression scheme was tested in [15] using an exhaustive
search, which is very slow and practically infeasible as it scales
exponentially with the system size. An MP algorithm aimed
at implementing the compression scheme was subsequently
suggested in [17]. Our objective in this paper is to suggest an
alternative efficient compression algorithm, where “efficient”
refers to the algorithm’s computational complexity which
scales polynomially with the system size.

The algorithm we propose here is based on a recently
introduced variant of the MP algorithm [18]. The latter
aims at addressing one particularly serious recurring general
problem in perceptron optimization tasks—the complexity of
the energy landscape.

Two key modifications of traditional MP algorithms were
fundamental to improving the quality of the solutions obtained.

(1) Making MP an online algorithm. The conventional
MP algorithm, which aims to provide a good approximation
to the maximum a posteriori solution for all available data
simultaneously, is an offline process expressed in the form of
recursive equations. We modified these equations to devise
an online algorithm where data points (input patterns and the
corresponding output binary values) are introduced one at a
time. This allows one to explore a new degree of freedom
which does not exist in the offline version, namely the order
of data presentation.

(2) Replicating the process. We introduced a series of
real replicated systems exposed to the same set of data
and constraints, but setting a different path through example
space for each of the systems. Final estimates are obtained by
averaging over the inferred solutions calculated by each one
of the replicated systems.

The method proved to be extremely good in tackling the
binary Ising perceptron capacity problem, which is compu-
tationally hard in both worst and typical cases. One of the
strengths of this method is in its generality; in principle, it can
be easily applied to any nonpathological densely connected
inference problem with minimal modifications. At the heart
of the method, which we abbreviated by rOnMP (replicated
online MP), are the original MP equations. Because we are
dealing with a densely connected system, we need to derive
an approximation for these equations. This is done by an
expansion which is valid in the limit of large systems. Details

of this approximation and the following derivation were given
in [18] and could easily be adapted for the current case by
introducing straightforward modifications. We will therefore
provide here only a brief description of the derivation and refer
the reader to [18] for further details.

The ordinary MP equations are given as pairs of coupled
equations for each cavity magnetization mμ. These equations
take the form

m̂t
μk =

∑
bk

bkP t+1(yμ|bk,{yν �=μ})∑
bk
P t+1(yμ|bk,{yν �=μ}) , (6)

mt
μk = tanh

⎡
⎣∑

ν �=μ

arctanh m̂t
νk

⎤
⎦ ≈ tanh

⎛
⎝∑

ν �=μ

m̂t
νk

⎞
⎠. (7)

The temporal index t in the variables indicates the update
order as the equations should be solved by iteration until
they converge. The variables m̂ are auxiliary variables used to
calculate the actual cavity magnetizations m and are sometimes
called conjugate magnetizations.

The method proposed in [18] can then be easily adapted
to the compression scheme. Using the nonlinear activation
function for the current perceptron, one can calculate analyti-
cally both the numerator and denominator of the equation for
the conjugate magnetizations as a power series in K . This is
accomplished by uncoupling the synaptic vectors by means
of Hubbard-Stratonovich fields, which can then be exactly
integrated at the end. By expanding the solution to leading
order in K we finally obtain

m̂μk = 2sμkyμ√
K

N
(
�| − uμk,σ

2
μk

) − N
(
�|uμk,σ

2
μk

)
1 + yμ

[
erf

( �+uμk√
2σ 2

μk

) + erf
( �−uμk√

2σ 2
μk

) − 1
] , (8)

where

N (x|u,σ 2) = 1√
2πσ 2

exp

[
− (x − u)2

2σ 2

]
, (9)

σ 2
μk = 1

K

∑
l �=k

(
1 − m2

μl

)
s2
μl, (10)

uμk = 1√
K

∑
l �=k

mμlsμl, (11)

and erf(x) is the error function given by

erf(x) = 2√
π

∫ x

0
dτ e−τ 2

. (12)

The new pair of equations to be iterated until convergence are
now (7) and (8). By dropping the index t to indicate fixed-point
values once convergence is attained, we can write the inferred
value of the perceptron synaptic vector bk as

bk = sgn mk, mk = tanh

(∑
μ

m̂μk

)
. (13)

IV. OFFLINE VS ONLINE

The equations derived in the previous section are the
conventional offline version of the MP algorithm, which means
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that the data set used during the learning phase is available in
full to the algorithm. The algorithm then uses the whole data
set to extract the necessary information for the inference task.
While probabilistically this is clearly optimal, it is unclear that
the dynamical iterative process of Eqs. (6) and (7) will indeed
converge to the correct solution in general graphs. In some
cases, making use of the full data set sets the iteration dynamics
on a course that prevents convergence to the optimal solution.

Equations (6), (7), and (13) are fairly general offline equa-
tions for binary systems and the (nonreplicated) MP approach
of [17] is, in practice, equivalent to them. However, this set of
equations has an inconvenient symmetry, which gives rise to
an ambiguity in deciding on the sign of the inferred variables.
The reason is that, due to this symmetry, the equations result
in mk = 0. The equations introduced in [17], as the ones
derived here, consider the first significant term in m̂μk and
hence suffer from a similar symmetry problem. To solve it, a
heuristic inertia term was introduced [20], which depends on
a parameter that has to be adjusted by trial and error.

Given our success in solving the Ising perceptron capacity
problem by turning the offline MP into an online algorithm we
introduce a similar approach here. The online version of the
MP equations is obtained via an additional expansion for the
large system size, this time using Eq. (13).

Because in this equation each term of the summation inside
the hyperbolic tangent is of order 1/

√
K , we can single out

one of these terms and expand the tanh around the remaining
terms for large K . By singling out the νth term, the right-hand
side of Eq. (13) becomes

mk =
∞∑

n=0

m̂n
νk

n!
Fn(mνk), (14)

where

mνk = tanh

⎛
⎝∑

μ �=ν

m̂μk

⎞
⎠ (15)

and

Fn(mνk) = d

dx
tanh x

∣∣∣∣
x=∑

μ m̂μk

. (16)

The fact that each Fn depends only on mνk is a consequence
of a property of the tanh function, the derivative of the
hyperbolic tangent being a function of the hyperbolic tangent
itself.

We now reinterpret the term which was singled out as
a new example, introduced after the previous patterns have
already been learned. Alternatively, one may interpret the
index ν in the MP equations as a time step t and substitute
mt

νk by mk(t − 1) and mt
k by mk(t). We ran an extensive

series of tests that led to the conclusion that by using an
expansion up to the third term in Eq. (14) one can avoid the
problematic symmetry effects of the offline MP and obtain
extremely good compression performance. More explicitly,
the expansion gives the following update rule:

mk(t) = mk(t − 1) + [
1 − m2

k(t − 1)
]
m̂tk

−mk(t − 1)
[
1 − m2

k(t − 1)
]
m̂2

tk. (17)

At first sight, it seems that the second-order term would
contribute to further stabilization of the zero solution as it
suppresses the previous value of mk . However, due to the fact
that the first-order term gives rise to a solution that is identically
zero, the second-order term actually generates a perturbation
away from zero; while this perturbation is small, it helps break
the symmetry enough to allow the algorithm to pick a sign for
the magnetization.

The conversion of the offline algorithm to an online one
is very important as it opens up the possibility for using a
degree of freedom which was not available before—the order
of data presentation. As we have seen in the beginning of
this section, an offline algorithm like MP has access to the
whole data set, which determines the course of the iteration
dynamics. Conversely, online algorithms have access only to
the information available before some point in time. Inference
is then updated for each time step using new data in the order
it arrives. This adds disorder to the iterative equations and
prevents a set course for their dynamics; this randomness
helps to avoid getting trapped in dynamical local minima,
a fundamental limitation of the offline MP in some instances.

V. REPLICATION

The final and most important step of the rOnMP algorithm
is the system replication. Replication, in the context of this
algorithm, means the introduction of real replica of the same
system, which carry out the same inference task in parallel
(subject to the disorder in the introduction of examples) and
interact at very specific points.

This replication is done by generating randomly n different
paths in the example space. Each path is composed by the
same example pairs (yμ,sμ), but in a different order. The idea,
as we have already discussed briefly, is to use the new degree
of freedom encoded by the order of example presentation to
facilitate a better search in solution space and avoid being
trapped in suboptimal minima. For N examples, there are N !
possible orders of presentation, but we will choose only a
number n of these sequences, with n being of polynomial
order in N . In previous applications [18] we observed that
this is enough to considerably improve the performance of the
nonreplicated algorithm.

Once n different paths through the example space have been
generated, parallelization takes place. For each example path, a
different replicon of the system is created. Each replicon works
as an independent system performing online MP learning after
each corresponding example is presented, and inferring a new
ba , where a is a replica index ranging from 1 to n, and the
components of each vector are given by Eq. (13) applied to
each replicon.

After each one of these learning steps, an averaged inferred
vector is calculated by taking a weighted average of all
replica as

b̄k = sgn

(
n∑

a=1

waba
k

)
, (18)

and this is used as the initial point for the next learning step
for each replicon.
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The crucial point in the rOnMP algorithm is clearly how
to decide on the appropriate weights for averaging. Although
white averages, with all weights equal to 1, are usually faster
to calculate, they exhibit very poor performance in the present
case. One can alternatively adopt a procedure based on a
Boltzmann weight

wa ∝ e−βE(ba ), (19)

with the energies E(ba) being a measure of performance,
which here we define as the number of misclassified examples.
The parameter β works as an inverse temperature and we
recover the white average for β = 0 (infinite temperature).

For the compression task, we observed that much better
performance is attained when the average is highly biased,
which is equivalent to choosing a very low temperature, thus
selecting lower-energy states. We adopted the rather simplified
criteria of choosing the best replicon as the inferred vector
for the next learning step, which amounts to choosing the
zero-temperature weights.

VI. COMPUTATIONAL COMPLEXITY

There is of course a trade-off between performance and
computational complexity of the algorithm which cannot be
avoided in most hard computational problems and the current
one is no exception. The complexity of the energy landscape
for the present problem suggests that exact algorithms are
invariably computationally hard. The more sophisticated the
search algorithm is, the more one can expect the computational
complexity to increase. However, given the difficulty of the
task, as long as the complexity of the resulting algorithm
remains polynomial in the system size with a small power,
this can be considered an acceptable trade-off.

As we are assuming that the system size K scales with the
size of the data set N , the naive MP algorithm, summarized
in Eqs. (6) and (7), requires the calculation of 2K2 terms
as each equation depends on two indices. To calculate the
hatted variables, Eq. (8) requires two loops, each one of order
K . Calculating the magnetizations in Eqs. (10) and (11) also
requires one internal loop of order K , making the total number
of operations scale with K3. The final step of the inference
algorithm (13) does not increase the complexity as it requires
only K2 operations.

Although replication increases the computational complex-
ity of the original MP equations, because we work with
at most an order N of replica, this is not excessive given
the computational complexity of the nonreplicated algorithm.
The replicated algorithm scales with K4, which is still
polynomial in the system size, one order higher than the
nonreplicated algorithm. The replica averaging operation does
not change this result as it scales only with K . Therefore, the
computational complexity of the rOnMP algorithm remains
polynomial in the number of examples N as one would aim
for in the case of hard computational problems.

It is not difficult to see that there is additional inherent
complexity in the algorithm, hidden in the procedure for
deciding on the order of example presentations. The most
efficient way of choosing this order, which maximizes the
information gain, is indeed a difficult problem and needs to
be considered with much more detail. In our tests, we used a

0.0 0.1 0.2 0.3 0.4 0.5
D

0.0

0.2

0.4

0.6

0.8

1.0

R

p=0.2 - HK
p=0.2
p=0.5 - HK
p=0.5
p=0.8 - HK
p=0.8

FIG. 2. Performance of the rOnMP-based compression scheme
for different levels of bias. Dashed lines in this and the following
figures represent the theoretical bounds; the top line for bias p = 0.5
and the lower one for p = 0.2,0.8. Solid lines with full symbols are
averages over 100 instances using n = 104 replica, while those with
hollow symbols represent results presented in [17] for comparison.

random order for the introduction of examples. Although this
is far from optimal, even this very naive approach resulted in
a considerable improvement in the algorithm’s performance.
This suggests that by improving this procedure, one can
achieve even better results.

VII. RESULTS

We tested the performance of the rOnMP algorithm against
results published in the literature for different bias values of the
pattern components. Trials with different weighting options for
the averaging of the replicas indicate that, contrary to results
obtained for the binary Ising perceptron, there is a considerable
difference between results obtained using white and weighted
averages. For the suggested compression scheme, choosing
the best performing replicon at each step turns out to be much

0 0.1 0.2 0.3 0.4 0.5
D

0

0.2

0.4

0.6

0.8

1

R

n=10
n=100
n=1000
n=10000

FIG. 3. Performance dependence on the number of replica n for
bias p = 0.5 and K = 101.
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FIG. 4. Performance dependence on the system size K for p =
0.5 and n = 100.

more efficient than any other choice; it has therefore been used
in all the experiments reported below.

Figure 2 shows the performance of the compression scheme
in terms of the average bit error or distortion D versus
the compression rate R for three different bias values p =
0.2,0.5,0.8 and system size K = 101. The dashed curves show
the theoretical bounds, while the solid lines with full symbols
show averages over 100 different sets of Gaussian distributed
randomly generated patterns with zero mean and unit variance.
Each experiment was a run with a total of n = 10 000 replica.

The performance shown in Fig. 2 is better than the results
presented in [17] (hollow symbols) for high R values and
deteriorates in the lower R regime for p = 0.5,0.8. For p =
0.2 our results are better for all R values. As with previous uses
of the rOnMP algorithm, performance improves as the number
of replica increases. Such an improvement is exemplified in
Fig. 3, where we present results for n = 10,100,1000,10000
replica for the case of K = 101 and p = 0.5.

This shows that the main limit for further improvement is
computing time. Another notable feature of Fig. 2 is that our
results for p = 0.2 and p = 0.8 are much closer to each other
than in previous works. Further experiments indicate that the
smaller the size of the system, the closer the curves become
using the same algorithm.

Finally, Fig. 4 shows how results change with increasing
system size. The graph shows results obtained for K =
21,51,101,201 with a bias p = 0.5 and n = 100 replica. We

can see an effect common to most systems with a complex
energy landscape. The larger the system, the larger the number
of local minima with a higher probability for the algorithm to
get trapped; the number of replica needed to attain the same
performance increases.

VIII. CONCLUSIONS

We applied the recently introduced replicated online mes-
sage passing algorithm (rOnMP) [18] to the promising com-
pression method based on a nonlinear perceptron suggested
in [15].

The rOnMP algorithm is based on insights from statistical
physics and uses a parallel replication of the approximate
Bayesian inference procedure known as message passing (MP)
to explore the complex energy landscape that characterizes the
parameter estimation problem of the nonlinear perceptrons.
In addition, the algorithm explores a new way of applying
message passing by changing the usual offline MP equations
to an online version and by using an expansion for a large
system size K .

We showed that our algorithm offers superior performance
with respect to conventional MP methods with several ad-
ditional advantages. (i) The performance of the algorithm
is only limited by the available running time as our tests
indicate that the larger the number n of replica, the closer
to the theoretical performance limits the algorithm gets.
(ii) The particular compression scheme we employ suffers
from inherent symmetries which prevent the algorithm from
converging to the correct value of the binary variables; this
usually requires the introduction of a heuristic inertia term [20]
in the MP equations. This term is characterized by a constant
that has to be fine-tuned. In contrast, our online replicated
version of MP does not require any adjustable parameters.

We believe that there is still room for further improvement
of the results presented. The natural step is to judiciously
choose the path in the example space in a way that maximizes
the extraction of information from the set of examples.
However, given the complexity of the solution space, this
requires new tools and approaches that are currently being
investigated.

ACKNOWLEDGMENTS

Support by the Leverhulme trust (F/00 250/M) is acknowl-
edged. We also thank anonymous referees for their useful
suggestions.

[1] H. Nishimori, Statistical Physics of Spin Glasses and Informa-
tion Processing (Oxford University Press, Oxford, UK, 2001).

[2] Y. Kabashima and D. Saad, Europhys. Lett. 45, 97 (1999).
[3] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607

(1986).
[4] E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).
[5] J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan

Kaufmann, San Francisco, 1988).
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