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Electron density compression and oscillating effects on laser energy absorption
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An analytical model for energy absorption during the interaction of an ultrashort, ultraintense laser with an
overdense plasma is proposed. Both the compression effect of the electron density profile and the oscillation of
the electron plasma surface are self-consistently included, which exhibit significant influences on the laser energy
absorption. Based on our model, the general scaling law of the compression effect depending on laser strength
and initial density is derived, and the temporal variation of the laser absorption due to the boundary oscillating
effect is presented. It is found that due to the oscillation of the electron plasma surface, the laser absorption
rate will vibrate periodically at ω or 2ω frequency for the p-polarized and s-polarized laser, respectively. The
effect of plasma collision on the laser absorption has also been investigated, which shows a considerable rise in
absorption with increasing electron-ion collision frequency for both polarizations.
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I. INTRODUCTION

The interaction of intense laser pulse with highly over-
dense plasmas offers very promising applications such as
coherent and incoherent x-ray production [1,2], high harmonic
generation [3], plasma-based particle acceleration [4–7], and
high-energy electron production [8,9]. Knowing how much
laser energy can be converted to thermal or directed kinetic
energy of charged plasma particles is of critical importance
to these applications. Early work in the context of inertial
confinement fusion focused on the inverse bremsstrahlung
in underdense, coronal plasma profiles due to the low laser
intensities at that time [10]. With the advent of short-pulse,
high-intensity lasers in the early 1990s, new mechanisms
have been postulated to explain the high absorption measured
experimentally in regimes where the collisional absorption
became ineffective, such as resonance absorption [11], J×B

heating [12], vacuum heating [13–15], etc. To understand
the basic physics of laser–overdense-plasma interaction and
obtain quantitative predictions, some approximation must be
made, also the detail electron dynamics should be simplified.
For example, a recent model developed by Haines et al. [16]
predicts increasing absorption with higher intensity, albeit with
a highly simplified assumption for the hot electron flux and
restricted to normally incident light. Good agreements with
experimental results in the high-intensity regime are shown in
an analytical model presented by Gibbon et al. [17], in spite
that the electron dynamics is also simplified and the results are
based on the choice of a special attenuation factor of the pump
strength.

Recently ultrashort (sub-10 fs) laser pulses with a high
contrast ratio (1010) and relativistic intensity (>1018 W/cm2)
have been realized by using either plasma mirrors or parametric
amplifications [18,19]. It allows the laser field to directly
interact with solid matter, where the plasma is highly overdense
and collisional. On the other hand, the light pressure of the
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ultraintense laser pulse will exceed the thermal pressure and
compress the electrons to an equilibrium position where the
induced electrostatic field can balance the light pressure [20].
Furthermore, under the driving of the 2ω ponderomotive force
or the longitudinal component of the laser electric field, the
electron plasma surface will oscillate periodically [21]. To our
knowledge, there is no proper theoretical model to understand
the details of the ultrashort laser absorption, including the
novel electron density compression and oscillating effects.
So, a generally applicable, quantitative theory which can
describe the influences of the electron density compression
and oscillating effects on laser absorption is still lacking.

In this article an analytical model describing this scenario is
presented. Within the assumption of cold-fluid approximation,
this one-dimensional (1D) model captures the quantitative
aspects of the laser energy absorption. Combined with the
oscillation of the electron plasma surface, it also manages to
reproduce the salient features of laser absorption from the
electron wall piled up by the light pressure. In particular, we
clarify the influence of the electron density compression effect
and the oscillation of the electron plasma surface on laser
absorption. For small laser intensities or high plasma densities,
the compression effect and the oscillation of the electron
plasma surface are nearly turned off, which however, shows
a considerable higher absorption. Electrons are accelerated
toward the target by the oscillating laser field and then
gain energy from the evanescent wave. For higher laser
intensities or lower plasma densities, subjected to the light
pressure, the electrons are pushed into the target, forming
an electron-depleted layer where the 2ω ponderomotive force
or the longitudinal component of the laser electric field will
drive the electron plasma surface to oscillate. Due to the
high-density electron wall, the incident laser will be reflected
more thoroughly, resulting in a significant decrease of the laser
absorption.

This paper is structured as follows. In Sec. II the cold-fluid
model describing this scenario is presented and the compres-
sion effect of the electron density is illustrated. Section III deals
with the compression and oscillating effects on s-polarized
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laser absorption, whereas the solution for p-polarized laser
absorption is studied in Sec. IV. Finally, we compare the
theoretical results with experimental data and discuss our
model in Sec. V.

II. COLD-FLUID MODEL AND COMPRESSION OF
ELECTRON DENSITY

We consider an ultrashort, strong laser pulse irradiating on
a solid-density target at an angle θ from the z direction. The
half space z � 0 is assumed to be initially filled by a neutral,
homogeneous plasma of electron density ne = N0. On the time
scale (t < 10 fs), the plasma density is not affected by the usual
hydrodynamic plasma expansion, and is highly overdense and
collisional [22]. The ion motion during the process of interest is
negligible and can be ignored. Furthermore, the quiver velocity
of the electron in the laser field is much higher than the electron
thermal velocity, so that the plasma can be assumed to be cold.
Our starting point is the Lorentz equation of motion for the
electrons in a cold, unmagnetized plasma, plus the Maxwell
equations:

∂tp = −eE − mec
2∇γ, (1)

∇ × E = −(1/c)∂tB, (2)

∇ · E = 4πe(Zni − ne), (3)

∇ × B = (1/c)∂tE − (4π/c)eneu, (4)

where p = γmeu, u and γ = √
1 + p2/m2

ec
2 are the electron

velocity and relativistic factor. ne, ni , me, c, and Z mean the
electron density, ion density, electron mass, the light speed,
and the ion charge number, respectively. Electromagnetic
fields, space, density, and time coordinates are normalized
as (E,B)→(E,B)e/meωc, (x,y)→(x,y)k, ne→ne/nc, and
t→ωt . Here nc = meω

2/4πe2 is the critical density, ω and
k denote the laser frequency and wave number, respectively.

When the laser pulse impinges on the plasma surface,
electrons are quickly pushed inward by the light pressure.
The electrons pile up, leaving behind a charge depletion layer
and giving rise to an electrostatic field back-holding them. We
assume that the electrons quickly reach an equilibrium position

where the electrostatic field balances the light pressure exactly.
Thus, a density jump is formed at the position of the effective
vacuum-plasma interface zb. Below the density jump (z < zb),
electrons are totally pushed out (i.e., ne = 0). While beyond
the density jump, the electron density can be compressed to a
very high level in a narrow region [23]. For the profile of the
electron density ne(z) in z � zb, in the intense laser intensity
(aL � 1) and highly overdense plasma (ne � nc) limits, a
quantitative estimate is feasible by [24]

ne(z) = δnbe
(zb−z)/ls + N0, (5)

where δnb = Neb − N0, and Neb is the peak value of the
electron density piled up at zb. For the skin depth ls we expect
ls≈λb=

√
nc/Neb λ [25], with λ being the wavelength of the

laser pulse. The balance between the total radiation pressure
and the electrostatic force reads

E0(zb)e
∫ +∞

zb

[ne(z) − ni(z)]dz/2 ≈ 2I cos θ/c, (6)

where E0(zb) is the electrostatic field at zb. From Poisson
equation (3) we obtain

E0(zb) = 4πe

∫ zb

−∞
ni(z)dz. (7)

Conservation of the total electric charge requires∫ +∞

zb

[ne(z) − ni(z)]dz =
∫ zb

−∞
ni(z)dz. (8)

From Eqs. (6)–(8) the explicit expressions of zb and Neb can
be described by

zb =
(

1√
2

aL/π

N0/nc

√
cos θ

)
λ, (9)

Neb = N0 + α2N2
0

2nc

+ αN0√
nc

√
N0 + α2N2

0

4nc

, (10)

respectively, with aL = eE/meωc (the normalized laser am-
plitude), and α = zb/λ. To obtain this expression we have
taken Iλ2 = πP0a

2
L/2 = [1.37×1018 W cm−2 μm2]a2

L, with
P0 = m2

ec
5/e2 = 8.67 GW [26]. Thus the general scaling law

of the electron density compression effect is derived.
Of particular interest is the dependence of the compression

effect upon the laser strength aL and the initial plasma density

FIG. 1. (Color online) (a) The position of the density jump zb and the peak of electron density Neb as a function of the incident laser
amplitude for N0 = 10, θ = 45◦. (b) zb, Neb versus the initial plasma density with aL = 5, θ = 45◦.
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FIG. 2. (Color online) The spatial distribution of electron density
(red solid line), ion density (blue dashed line), magnetic field
(orange dotted line), and electric field (green dashed-dotted line),
for s-polarized laser with aL = 5, N0 = 10, ν = 0.5, θ = 45◦.

N0. Figure 1(a) shows zb and Neb as functions of the incident
laser amplitude for N0 = 10, θ = 45◦. As expected, with
larger aL the laser can push electrons deeper into the plasma.
However, for the given laser and plasma parameters, the depth
of the compressed electron layer remains around one tenth of
the laser wavelength [27]. As a result, the electron density
at the density jump Neb increases rapidly with the laser
strength and can become several times the original target
density. The influence of the initial plasma density on zb

and Neb are exhibited in Fig. 1(b) with aL = 5, θ = 45◦.
It shows that for the given laser strength, the position of
the effective vacuum-plasma interface zb reduces noticeably
with the increase of initial plasma density. While the electron
density at the density jump Neb exhibits linear dependence on
the initial plasma density. Physically, this is due to the fact that,
for a larger original plasma density, the displacement of the
electron plasma boundary will be less pronounced because the
electrostatic field can easily balance the radiation pressure.
This further improves the fact that the compression effect will
weaken with the increase of initial plasma density.

III. COMPRESSION AND OSCILLATING EFFECTS ON
S-POLARIZED LIGHT ABSORPTION

In the interaction of an ultraintense s-polarized laser
pulse with a solid target, the ponderomotive forces, the

zero-frequency component, as well as the 2ω oscillatory
components both play important roles. The former determines
the density profiles of the electrons and the latter drives the
electron plasma surface oscillation at the second harmonics
[28]. Besides, the absorption coefficient can be defined by
using surface properties of the plasma, in particular the surface
dielectric constant. In this way we can provide a modulation of
the electron density compression effect on the laser absorption.
Both of these will be discussed in more detail below.

A. The oscillation of the electron plasma surface driven by the
2ω ponderomotive force

In the following it is important to emphasize that we are
considering the surface of overdense plasma where a major
part of the incident light is reflected. Inside the plasma, the
electromagnetic fields decay rapidly, and the thickness of skin
layer ls is much smaller than the wavelength of the laser.
Based on the electron density profile derived from Sec. II, the
distributions of the electromagnetic fields can be solved from
the Helmholtz equation for the electric field:

∂2
z Ey + (ε − sin2 θ )Ey = 0, (11)

where ε denotes the dielectric function in the plasma. A
typical solution is plotted in Fig. 2 with aL = 5, N0 = 10,
θ = 45◦, ν = 0.5 (ν denotes the normalized electron-ion
collision frequency). For z < zb, it represents a standing wave,
formed by the superposition of the incident laser wave with
the reflected wave. However, beyond the density jump z�zb,
electrons are piled up deeply in a narrow region by the
light pressure. Both the electric and magnetic fields evanesce
quickly in the plasma, which are therefore sharply localized
at the surface. Note the discontinuity in the magnetic field
gradient at the density jump: This arises because the magnetic
field changes its sign at the density jump.

As mentioned above, the electron distribution has a sharp
surface located at the position zb. It represents an effective
surface from which the light is reflected. The ion density
remains fixed with a sharp surface at z = 0. We assume that
the skin layer with a thickness of ls moves as a whole with the
surface. Then for the s-polarized laser, the surface is driven
harmonically by the ponderomotive force:

fb(t) = −mec
2∇γb(t), (12)

FIG. 3. (Color online) Temporal variation of the density jump zb and the peak of electron density Neb for the s-polarized laser, with
(a) N0 = 10, ν = 0.5, θ = 45◦, and aL = 1, 5, 10. (b) aL = 5, ν = 0.5, θ = 45◦, and N0 = 10, 30, 50.
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FIG. 4. (Color online) Temporal variation of the laser energy
absorption rate A(t) and the dielectric constant at the density jump
εb(t) for the s-polarized laser, with aL = 5, N0 = 10, ν = 0.5, and
θ = 45◦.

where γb(t) =
√

1 + a2
Lb(t)/2, aLb(t) = eEyb(t)/meωc, and

Eyb(t) is the transverse electric field of the laser light at
the surface. As we are mainly interested in highly overdense
plasmas, i.e., ne/nc � 1, and omitting constant phase factors,
Eyb(t) can be approximated by [29]

Eyb(t) ≈ 2EL

√
nc/Neb cos(ωt) cos θ. (13)

Here EL is the electric filed of the incident laser, and
Neb means the compressed electron density at the surface
as demonstrated above. Under the modulation of the 2ω-
frequency ponderomotive force, the position of the electron
plasma boundary will oscillate as

zbosc (t) = zb + λ

4π2

√
Nebnc

N2
0

a2
Lb(t)

2γb(t)
, (14)

here zb is the initial equilibrium position in Eq. (9), where the
electrostatic fields balances the zero-frequency ponderomotive
force. Owing to the conservation of the total electric charge,
the peak value of the compressed electron density will also
oscillate:

Neb(t) = N0 + α2(t)N2
0

2nc

+ α(t)N0√
nc

√
N0 + α2(t)N2

0

4nc

, (15)

where α(t) = zbosc (t)/λ. The typical trajectory of zbosc (t)
and the temporal variation of Neb(t) are shown in Fig. 3.

Figure 3(a) presents the influence of the incident laser
amplitude on the oscillation of the electron plasma surface. The
laser strength aL is varied from 1 to 10, while the initial plasma
density keeps constant as N0 = 10 with θ = 45◦, ν = 0.5. As
expected, zbosc (t) and Neb(t) both oscillate at 2ω frequency,
yet also exhibit obvious perturbations which depend on the
laser amplitude. With the increase of the laser strength, the
amplitude of the electron plasma surface oscillation enlarges
significantly, and the electron density can be compressed to a
very high level. Figure 3(b) shows the time evolution of the
zbosc (t) and Neb(t) with different initial plasma densities for
fixed aL = 5 with θ = 45◦, ν = 0.5. We can see that the oscill-
ation of the electron plasma surface decreases with the initial
plasma density clearly. However, the change in the amplitude
of Neb(t) is not noticeable, only the average of the compressed
electron density increases linearly with the initial plasma
density as presented in Fig. 1(b).

B. The compression effect on s-polarized light absorption

The present investigation is restricted to one-dimensional
geometry and considers a plane plasma layer with a sharp
surface. The effect of the electron-ion collisions under these
conditions will make the plasma behave like a metal surface
with a finite conductivity. For the case of the oblique incidence
of an s-polarized laser beam at an angle θ , the solution to
Maxwell’s equations results in the Fresnel formula for the
reflectivity [30]:

Rs =
∣∣∣∣ sin(θ − θt )

sin(θ + θt )

∣∣∣∣
2

, (16)

where θt = arcsin[sin θ/nb] is the generalized, complex angle
of the transmitted light rays (from Snell’s law), and nb = √

εb

means the local refractive index. Due to the oscillation of
the compressed electron density, the dielectric constant at the
surface εb will also vibrate with time in the form according to
the Drude model [30]:

εb(t) = 1 − Neb(t)

1 + iν
, (17)

where ν = νei/ω, and νei is the electron-ion collision fre-
quency. Following the general theory of the metal optics, one

FIG. 5. (Color online) Angular dependence of s-polarized light absorption for N0 = 10, ν = 0.5, and aL = 1, 5, 10. (b) The laser energy
absorption rate as a function of the normalized laser amplitude for N0 = 10, ν = 0.5, θ = 45◦.
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FIG. 6. (Color online) Angular dependence of s-polarized light absorption for aL = 5, ν = 0.5, and N0 = 10, 30, 50. (b) The laser energy
absorption rate as a function of the initial plasma density for aL = 5, ν = 0.5, θ = 45◦.

can immediately write the laser absorption rate as

As(t) = 1 − Rs(t), (18)

which also changes periodically with time. The temporal
variation of the laser energy absorption rate As(t) and the
dielectric constant at the density jump εb(t) are shown in Fig. 4.
The red solid line represents As(t), and the blue dashed line
denotes εb(t) according to Eq. (17). Both curves present 2ω

oscillations, which is similar to the behavior of the electron
plasma surface. The energy absorption rate oscillates between
0.16171 and 0.16408, which means that the amplitude of
the oscillation is only 1.5% of the average. This proves that
for the s-polarized laser plasma interaction, the influence of
the electron plasma surface oscillation on the laser energy
absorption is negligible. In order to quantitatively investigate
the compression effect on the energy absorption, we apply the
time-averaged As(t) to describe the laser energy absorbed per
unit time per unit volume in plasma:

As = 〈As(t)〉 = 1

T

∫ T

0
As(t)dt, (19)

where T is the laser period.
It is of interest to consider the dependence of the laser

energy absorption on the laser strength. As the comparison in
Fig. 5(a) shows, the influence of the compression effect on laser

absorption is particularly evident. With the increase of the laser
intensity, the energy absorption rate decreases significantly
due to the strengthening of the compression effect. Figure 5(b)
presents the absorption rate as a function of the normalized
laser amplitude for the fixed incident angle θ = 45◦ with
N0 = 10, ν = 0.5, which shows the absorption rate falling
off in a more quantitative way. This can be interpreted by
the compression of the electron density profile and the rapid
evanescing of the electromagnetic fields in the plasma for
such a sharp density gradient. In fact, while the electron
density of the target front surface is compressed significantly
by the strong laser pressure, only the electrons in the skin
layer contribute to the absorption, the laser light can hardly
penetrate into the plasma, and most of it will be reflected into
the vacuum.

A further important issue is the influence of the initial
plasma density on the laser energy absorption. Figure 6(a)
shows the angular dependence of s-polarized light absorption
for different initial plasma densities N0 = 10, 30, and 50. In
general, the absorption decreases monotonically with the angle
of incidence, which is one of the characteristics of s-polarized
light absorption. One observes that the absorption at each
initial plasma density peaks at θ = 0◦ because of the maximum
penetration of the wave when the irradiation is normal to
the target plane. For N0 = 10, the lower density implies

FIG. 7. (Color online) Angular dependence of s-polarized light absorption for aL = 5, N0 = 10, and ν = 0.05, 0.5, 5. (b) The laser energy
absorption rate as a function of the electron-ion collision frequency for aL = 5, N0 = 10, θ = 45◦.

033106-5



Z. Y. GE et al. PHYSICAL REVIEW E 89, 033106 (2014)

FIG. 8. (Color online) The spatial distribution of electron density
(red solid line), ion density (blue dashed line), magnetic field
(orange dotted line), and electric field (green dashed-dotted line),
for p-polarized laser with aL = 5, N0 = 10, ν = 0.5, θ = 45◦.

smaller restoring forces and therefore larger amplitudes of
the electron surface oscillations. Apparently, with the increase
of N0, the compression effect weakens, but the average
electron density rises. As a result, the absorption rate falls
off rapidly with the initial plasma density as illustrated in
Fig. 6(b).

For s polarization, the collisionality is a vital parameter,
since the inverse bremsstrahlung absorption also plays an
important role in the absorption [31]. Figure 7(a) shows the
angular dependence of s-polarized light absorption for three
different electron-ion collision frequencies ν = 0.05, 0.5, and
5. It is seen that for the low-collisionality case (ν = 0.05),
the energy absorption is almost not noticeable compared to
the solid-collisionality case (ν = 5). With the increase of the
collisionality, the overall absorption rises obviously. However,
this trend turns to slow down as depicted in Fig. 7(b) over a
much wider range of collisionalities. It should be noticed that
in our model, for simplicity, the collision frequency is assumed
to be a constant at the density jump. In fact, the collisionality
will decrease linearly with the electron density decay into the
target [32]. Ignoring the dependence of collisionality upon
the electron density may slightly overestimate the absorption
in our model. While this overstatement is negligible (less
than 10%) since the depth of the compressed electron layer
remains around only one tenth of the laser wavelength,

and the laser pulse can be thoroughly reflected within this
region.

IV. COMPRESSION AND OSCILLATING EFFECTS ON
P-POLARIZED LIGHT ABSORPTION

In the case of a p-polarized, obliquely incident laser pulse,
the electron plasma surface is then mostly driven by the dom-
inant longitudinal component of the laser E field. Electrons
are thus pulled into the vacuum, where they are accelerated by
the electromagnetic standing wave resulting from the incident
and reflected laser waves, and subsequently pushed back into
the target. In this regime we will see significant differences
in the electron plasma surface oscillation and the laser energy
absorption from the s polarization.

A. The oscillation of the electron plasma surface driven by the
ω longitudinal electric field

For p light (electric vector in the plane of incidence), it is
convenient to write the Helmholtz equation in terms of B, the
complex magnetic field, in order to avoid the coupling between
electromagnetic and electrostatic modes set up by the nonzero
divergence of the laser electric field:

∂2
z By − ε−1∂zε∂zBy + (ε − sin2 θ )By = 0. (20)

Here ε is the dielectric function in the plasma, and θ is the angle
of incidence. The boundary conditions for Eq. (20) are freely
outgoing waves at the vacuum side and evanescent waves
at the high-density side. Therefore, by assuming electron
density profile as supposed in Sec. II, Eq. (20) can be solved
numerically (see Fig. 8). In the depletion region (z < zb), since
the electrons have been totally pushed out, the fields present
standing-wave behavior like in the vacuum. While in the
compression layer where z�zb, the incident laser penetrates
a skin depth into the dense plasma, and the electromagnetic
fields decay significantly due to the high electron density level
compressed by the light pressure.

Let us consider the case of a highly overdense plasma
(ne/nc � 1), and neglect the magnetic field of the wave. Based
on the Brunel’s capacitor approximation [13], the driving
electric field has a simple harmonic form

Ezb(t) ≈ 2EL cos(ωt) sin θ. (21)

FIG. 9. (Color online) Temporal variation of the density jump zb and the peak of electron density Neb for the p-polarized laser, with
(a) N0 = 10, ν = 0.5, θ = 45◦, and aL = 1, 5, 10. (b) aL = 5, ν = 0.5, θ = 45◦, and N0 = 10, 30, 50.
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FIG. 10. (Color online) Temporal variation of the laser energy
absorption rate A(t) and the dielectric constant at the density jump
εb(t) for the p-polarized laser, with aL = 5, N0 = 10, ν = 0.5, and
θ = 45◦.

Suppose this field pulls a sheet of electrons out from the initial
equilibrium position zb at a certain time t0. Then, at t0 + π , the
driving field will reverse its direction, and push those electrons
back into the target. As a consequence, the laser-plasma system
behaves as a forced oscillator, and the electron-plasma surface
response is synchronized with the driving electric field as

zbosc (t) = zb + λ

π

nc

N0
aL cos(ωt) sin θ. (22)

Due to the conservation of the total electric charge, the
oscillation of the compressed electron density will obey the
following equation:

Neb(t) = N0 + α2(t)N2
0

2nc

+ α(t)N0√
nc

√
N0 + α2(t)N2

0

4nc

, (23)

where α(t) = zbosc (t)/λ. The time evolutions of zbosc (t) and
Neb(t) are displayed in Fig. 9 for different plasma and laser
parameters. Figure 9(a) illustrates the influence of the laser
intensity on the oscillation of the electron plasma surface. For a
moderate intensity (aL = 1), the displacement of the electron-
plasma surface is much lower than the plasma skin depth, and
the surface motion is also small. For higher intensities, the
initial equilibrium position zb will be pushed deeper into the
plasma, and the surface oscillation becomes comparable to
the plasma skin depth due to the increasing total force. To gain

the dependence of the surface motion on the initial plasma
density, we present zbosc (t) and Neb(t) with different initial
plasma densities for fixed aL = 5 with θ = 45◦, ν = 0.5 in
Fig. 9(b). Clearly, for the given laser amplitude, the decreasing
of N0 will strengthen the oscillation of the surface. Comparison
between these three group curves also indicates that zbosc (t)
turns out to be sensitive to N0, whereas the oscillation
amplitude of Neb(t) almost remains constant (or grows slowly
with N0).

B. The compression effect on p-polarized light absorption

For the absorption of p-polarized laser energy, we employ
the same method as in the s-polarized laser case to interpret the
laser energy absorption in simple terms as reflected light from
an oscillating mirror. An essential point is to account for the
electron density compression effect on the energy absorption.
The reflectivity is deduced from the Fresnel equations [30]:

Rp =
∣∣∣∣ tan(θ − θt )

tan(θ + θt )

∣∣∣∣
2

. (24)

Subjected to the oscillating of Neb(t) in Eq. (23), the dielectric
constant at the surface εb will change periodically with time
as in Eq. (17), and also the laser absorption rate:

Ap(t) = 1 − Rp(t). (25)

The temporal variation of the laser energy absorption rate
Ap(t) and the dielectric constant at the density jump εb(t) for
the p-polarized laser are presented in Fig. 10. Compared to the
results of the s polarization, both Ap(t) and εb(t) oscillate at
ω frequency, mostly driven by the longitudinal component of
the laser electric field. Moreover, the oscillation amplitude of
Ap(t) becomes considerably large, nearly 30% of the average,
which is far beyond the value of the s polarization. Thus, the
influences of the driving longitudinal laser electric field on
the oscillation of the electron-plasma surface and laser energy
absorption are much more significant for p polarization. Here
and in the following, similar to the s polarization case, we
will use the time-averaged Ap(t) to describe the laser energy
absorption for convenience:

Ap = 〈Ap(t)〉 = 1

T

∫ T

0
Ap(t)dt, (26)

FIG. 11. (Color online) (a) Angular dependence of p-polarized light absorption for N0 = 10, ν = 0.5, and aL = 1, 5, 10. (b) The maximum
absorption rate fmax and the optimum angle θopt as a function of the normalized laser amplitude for N0 = 10, ν = 0.5.
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FIG. 12. (Color online) (a) Angular dependence of p-polarized light absorption for aL = 5, ν = 0.5, and N0 = 10, 30, 50. (b) The maximum
absorption rate fmax and the optimum angle θopt as a function of the initial plasma density for aL = 5, ν = 0.5.

where the brackets denote the average over one period of the
laser field.

The influence of the laser strength on energy absorption
is shown in Fig. 11(a). Without the compression effect,
the absorption is considerably higher than that with the
compression effect been considered. As the laser amplitude
increases, the piled up electron wall can be compressed to a
much higher level. Thus the incident laser will be reflected
more thoroughly by the high-density electron wall, resulting
in the drop of the absorption. To investigate this in a more
quantitative way, we present the maximum absorption rate fmax

and the optimum angle θopt as a function of the laser intensity in
Fig. 11(b). Note the feature that the absorption peak decreases
approximately linearly with laser intensity, and the increase in
θopt reflects the shift of the angular absorption peak to higher
angles. In addition, the absorption at normal incidence should
be the same for both polarizations, and indeed it is the same,
as one compares the result with the s polarization in Fig. 5(a)
at θ = 0◦. This behavior is consistent with that of Fresnel
reflection from a sharp vacuum-plasma interface, which proves
the efficiency of our model.

Figure 12(a) illustrates the angular dependence of the
absorption for p-polarized light and initial plasma densities
N0 in the range 10–50 for aL = 5, ν = 0.5. Note that with the
increase of N0, the absorption peak moves to higher angles
of incidence, narrows, and decreases. The narrowing in angle
with increased initial density arises mainly because the wave

spends progressively more of its time in the high-density
plasma. The maximum absorption rate fmax and the optimum
angle θopt as a function of the initial plasma density are plotted
in Fig. 12(b). On the whole fmax reduces, while θopt increases
with the initial plasma density, but these trends tend to slow
down and get saturated as the density becomes high enough
(N0 > 50). This can be attributed to the weakening of the
electron density compression effect with the increase of the
initial plasma density for fixed laser intensity, as shown in
Fig. 1(b). Moreover, the high-density plasma will reflect the
incident light in a fashion similar to a metallic mirror, which
leads to a higher reflectivity and poor coupling of the laser
pulse to the plasma.

In order to complete the discussion of the p-polarized laser
absorption, the angular dependence of the absorption on the
electron-ion collision frequency is also considered, as dis-
played in Fig. 13(a), for three different collision frequencies.
The peaks in the absorption curves correspond to the angular
dependence of vacuum heating mechanism [13], where there
is competition between the maximization of the electric field
component along the density gradient and the wave penetration
depth beyond the electron plasma surface. For ν = 0.05, the
condition is characteristic of a low-collisionality absorbing
medium with the solid-state free-electron density. The overall
absorption is small (<7%), and the maximum absorption
occurs at θ ≈ 80◦. As ν increases, the absorption peak moves
to smaller angle of incidence, and fmax increases, as shown in

FIG. 13. (Color online) (a) Angular dependence of p-polarized light absorption for aL = 5, N0 = 10, and ν = 0.05, 0.5, 5. (b) The
maximum absorption rate fmax and the optimum angle θopt as a function of the electron-ion collision frequency for aL = 5, N0 = 10.
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FIG. 14. (Color online) Theoretical angular dependence of the
laser absorption (for N0 = 100, ν = 3), compared with the exper-
imental data from [34] for 8 fs, 790 nm laser pulses irradiated an
aluminum target at an average intensity of 5×1016 W/cm2.

Fig. 13(b). For collisionality in the solid ν = 5, the absorption
are largely due to collisional or inverse bremsstrahlung
absorption, and the resonance absorption is quenched since the
electron density is far beyond the resonance condition [33].

V. COMPARISON WITH EXPERIMENT
AND CONCLUSION

Comparison of our model calculation with the experimental
results of Cerchez et al. [34] is displayed in Fig. 14,
which shows good agreement with appropriate choice of the
parameters. In the experiment, their laser pulse parameters
(∼8 fs and high-contrast ∼108) allowed us to study the
absorption under novel conditions where the pulse energy is
basically directly transferred to the solid matter. The energy of
these ultrashort laser pulses can be efficiently absorbed up to
≈77% by a plasma at density close to solid state, characterized
by a very steep profile. The absorption of the p-polarized laser
pulses significantly exceeds the s-polarization absorption.
Computer simulations are consistent with the experimental
results for a plasma profile of L/λ ≈ 0.01, which is just the
extremely short scale length required in our assumption of
sharp boundary. For the theoretical calculation, we consider
a solid aluminum target with the ionization degree Z = 3,
such that ne = 2 × 1023 cm−3. As the target is irradiated with
0.8 μm light from a Ti:sapphire laser, we have ne/nc ≈ 100.
Suppose that the plasma is heated to 170 eV after just 8 fs

irradiation by the incident laser, so that according to [11]

νei = 4(2π )1/2

3

neZe4

m2
ev

3
te

ln �

≈ 2.91 × 10−6ZneT
−3/2
e ln �s−1, (27)

where Te is the electron temperature and ln� is the Coulomb
logarithm, we have νei/ω = 3 at the initial density. The
resulting absorption curves calculated from Eqs. (16) and (24)
are shown in Fig. 14 for the s-polarized and p-polarized laser,
respectively. Obviously the two curves agree well with the
experimental data, especially for the p polarization. Thus,
our calculation clearly confirms the observations and the
validation of our model should be evident. However, when
the laser pulse is typically longer than 100 fs, or a prepulse
is present, a preplasma will be formed in front of the target
and undergoes hydrodynamic expansion. Then the assumption
of sharp boundary becomes invalid and our model may fail.
Besides, though our model is consistent with experimental
data at low intensities, the electron density compression and
oscillating effects predicted by our model at ultraintense
intensities should be further examined by future experiments.

In conclusion, we present an analytical model for ultrashort
ultraintense laser absorption. This model is based on the
assumption of a sharp boundary, which requires an extremely
short scale length, and the details of the electron dynamics
are neglected. In contrast to previous theoretical papers,
the analysis undertaken in the present paper sheds light
on the electron density compression and oscillating effects
on the laser energy absorption. The general scaling law
of the electron density compression effect depending on
laser intensity and initial plasma density is derived, and the
temporal variation of the laser absorption due to the boundary
oscillating effect is presented. The theory should provide
quantitative guidance for applications involving high-order
laser harmonics and particle sources.
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