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Effect of magnetic field on the velocity autocorrelation and the caging of particles
in two-dimensional Yukawa liquids
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We investigate the effect of an external magnetic field on the velocity autocorrelation function and the “caging”
of the particles in a two-dimensional strongly coupled Yukawa liquid, via numerical simulations. The influence of
the coupling strength on the position of the dominant peak in the frequency spectrum of the velocity autocorrelation
function confirms the onset of a joint effect of the magnetic field and strong correlations at high coupling. Our
molecular dynamics simulations quantify the decorrelation of the particles’ surroundings: the magnetic field
is found to increase significantly the caging time, which reaches values well beyond the time scale of plasma
oscillations. The observation of the increased caging time is in accordance with findings that the magnetic field
decreases diffusion in similar systems.
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I. INTRODUCTION

Strongly coupled plasmas [1] comprise a large class of
physical systems, in which the ratio of the interparticle
potential energy to the kinetic energy, expressed by the
coupling parameter �, (largely) exceeds 1. Dusty plasmas
[2] are a notable type of strongly coupled many-particle
systems that appear both in astrophysical environments and
can as well be realized in laboratory. In laboratory settings
dust particles can grow in a reactive plasma environment,
or can be externally introduced into nonreactive (typically
noble gas) discharge plasmas. In this latter case both three-
dimensional and two-dimensional particle configurations can
be realized. Microgravity conditions favor three-dimensional
settings, while in the presence of gravity lower-dimensional
configurations are routinely formed.

In typical laboratory setups (a radio-frequency driven
plasma source with parallel, horizontal electrodes) two-
dimensional layers of particles can be realized [3]. In such
settings the position of the dust particle layer is determined by
the balance of the major forces acting on the particles, which
are usually the electrostatic force, gravitational force, and ion
drag force. Additional forces, e.g., the thermophoretic force
[4] can change the particle configuration drastically, and make
it possible to realize three-dimensional structures (Yukawa
balls) in the presence of a thermal gradient of the background
gas [5]. A wide variety of physical phenomena taking place
in two-dimensional particle layers—e.g., crystal formation
and melting [6], transport processes [7], as well as the
propagation of waves [8]—have been thoroughly investigated
in experiments, by theoretical approaches, and via simulation
methods.

Besides the crystallized phase, the strongly coupled liquid
phase of dusty plasmas has been receiving a lot of attention.
It is an important property of this phase that the surroundings
of individual particles are “quasistable” for a certain time,
in contrast to the solid and gaseous limiting cases, where
the time of particle localization, respectively, is infinite and
extremely short. This property of the liquid phase is the basis
of several features of strongly coupled plasmas [9]: among

other properties, the Coulomb one-component plasma in the
� � 50 domain was found (i) to exhibit a shear viscosity that
follows an Arrhenius type behavior, with an activation energy
related to the “binding energy” of the particles in the cages, and
(ii) to obey the Stokes-Einstein relation, characteristic of dense
fluids. At strong coupling the particles oscillate in local minima
of the potential landscape, which itself changes on the time
scale of particle diffusion. This difference of the time scales
for the plasma oscillations and diffusion serves as the basis of
the quasilocalized charge approximation [10], that allows
calculation of the dispersion relations of collective excitations
from static properties of the system (pair correlation).

Quantitative data for the localization time have been
obtained for Coulomb and Yukawa liquids in [11] by molecular
dynamics simulations, using a technique of [12] that allows
tracing of the changes of the neighborhoods of the particles.
The simulation results have confirmed that at high coupling the
particles spend several oscillation cycles in local minima of the
potential surface without experiencing substantial changes in
their surroundings.

The effect of magnetic fields on strongly coupled dusty
plasmas became an important topic in the last few years
[13–17]. Theoretical and simulation studies have demonstrated
the formation of magnetoplasmons and their higher harmonics
in strongly coupled Coulomb and Yukawa systems [13].
Detailed studies of the impact of the magnetic field on the col-
lective excitations and the self-diffusion have been presented,
respectively, in [14] and [17]. The effect of magnetic field on
binary Yukawa systems has been studied in [18]. Another line
of research focuses on systems of superparamagnetic particles
[19].

Experiments, aimed at the realization of magnetized dusty
plasmas, have faced, however, serious difficulties, as the
external magnetic fields cause a significant perturbation to the
plasma itself (like filamentation) before affecting the dynamics
of the dust system [20]. An alternative method to investigate
magnetic field effects was suggested in [21], based on the
equivalence of the magnetic Lorentz force and the Coriolis
inertial force acting on moving objects when they are viewed
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in a rotating reference frame. Experimental realization of a
rotating dusty plasma has confirmed the theoretical predictions
and has proven the formation of magnetoplasmons [22] in
the “magnetized” dusty plasma. We note that in magnetized
strongly coupled plasmas many of the effects are qualitatively
different from those observed and well known for weakly
coupled plasmas, due to the interplay of magnetization and
strong correlation effects.

In this paper we investigate the effect of an external,
homogeneous magnetic field on the behavior of the velocity
autocorrelation function (VACF) in the time and frequency
domains, as well as on the caging of the particles, in two-
dimensional strongly coupled Yukawa liquids. These phenom-
ena are investigated using molecular dynamics simulations.
The model and the simulation techniques are described in
Sec. II. In Sec. III we present and analyze the simulation
results, while Sec. IV gives a short summary of the work.

II. MODEL AND SIMULATION METHOD

We investigate the effect of the magnetic field on many-
particle systems, in which particles interact via a screened
Coulomb (Debye-Hückel, or Yukawa) potential:

φ(r) = Q

4πε0

exp(−r/λD)

r
, (1)

where Q is the charge of the particles and λD is the screening
(Debye) length. The ratio of the interparticle potential energy
to the thermal energy is expressed by the coupling parameter

� = Q2

4πε0akBT
, (2)

where T is temperature. We introduce the screening parameter
κ = a/λD , where a = (1/πn)−1/2 is the two-dimensional
Wigner-Seitz radius and n is the areal number density of the
particles.

In particular, we investigate the effect of the magnetic
field on the velocity autocorrelation function (VACF) of the
particles and the cage correlation function that quantifies the
relation of the localization time of the particles to the time
scale of plasma oscillations.

We apply the molecular dynamics (MD) simulation method
to describe the motion of the particles governed by the New-
tonian equation of motion. For the integration of the equation
of motion that accounts for the presence of the magnetic field
we use the method described in [23]. The number of particles
is fixed at N = 4000 (at N = 1000 in the calculations of cage
correlations, see later) and we use a quadratic simulation box.
The particles move in the (x,y) plane and the magnetic field
is assumed to be homogeneous and directed perpendicularly
to the two-dimensional (2D) layer of the particles, i.e., B =
(0,0,B). The strength of the magnetic field is expressed in
terms of

β = ωc

ωp

, (3)

where ωc = QB/m is the cyclotron frequency and ωp =√
nQ2/2εma is the nominal 2D plasma frequency. We note

that the Larmor radius becomes smaller than the WS radius at
magnetic fields β � 0.1.

The velocity autocorrelation function is defined as (see,
e.g., [24])

Avv(t) = 〈v(t) · v(0)〉, (4)

while its normalized value [giving Avv(0) = 1] is given by

Avv(t) = 〈v(t) · v(0)〉
〈v(0) · v(0)〉 . (5)

The Fourier transform of the VACF is defined as

Avv(ω) =
∫ ∞

0
Avv(t)eiωtdt, (6)

and is calculated by replacing the upper limit of the integration
with a time tmax, for which Avv(t) ∼= 0 at t > tmax.

Taking the time integral of the VACF, the self-diffusion
coefficient of the particles can be calculated:

D = 1

2

∫ ∞

0
Avv(t)dt. (7)

We note, however, that previous studies have shown that this
integral may be divergent for a 2D system, at a certain range of
parameters [25], where calculations, as well as experimental
measurements of the self diffusion coefficient, based on the
mean square displacement (MSD) of the particles have both
shown superdiffusion, MSD ∝ tα , with α > 1 [26].

The Fourier transform of the VACF is known to be
connected with the longitudinal and transverse fluctuations
in the system [24]. Therefore we also calculate the respec-
tive fluctuation spectra L(k,ω) and T (k,ω), for a discrete
set of wave numbers k = m(2π/L) = mkmin, m = 1,2, . . . ,
accommodated by the simulation box of edge length L. To
accomplish this calculation we collect data during each time
step of the simulation for the microscopic currents

λ(k,t) =
∑

j

vjx(t) exp[ikxj (t)],

τ (k,t) =
∑

j

vjy(t) exp[ikxj (t)],
(8)

where xj and vj are the position and velocity of the j th particle.
These data sequences are subsequently Fourier analyzed to
yield, e.g., L(k,ω) as

L(k,ω) = 1

2πN
lim

�T →∞
1

�T
|λ(k,ω)|2, (9)

where �T is the length of data recording period and λ(k,ω) =
F[λ(k,t)] is the Fourier transform of (8). Calculation of T (k,ω)
proceeds in the same way. We note that the collective modes
show up as peaks in these current fluctuation spectra.

To quantify the time dependence of the correlation of the
particles’ surroundings we adopt the method proposed in [12]
and used in [11] for the investigation of strongly coupled
Coulomb and Yukawa liquids. We use a generalized neighbor
list i for particle i, i = {fi,1,fi,2, . . . ,fi,N }. Due to the sixfold
symmetry we always find the six closest neighbors of particle
i and the f ’s corresponding to these particles are set to a value
1, while all other f ’s are set to 0.
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The similarity between the surroundings of the particles at
t = 0 and t > 0 is measured by the list correlation function:

C(t) = 〈i(t) · i(0)〉
〈i(0)2〉 , (10)

where 〈·〉 denotes averaging over particles and initial times.
C(t = 0) = 1, and C(t) is a monotonically decaying function
(provided that averaging is sufficient).

The number of particles that have left the original cage of
particle i at time t can be determined as

nout
i (t) = |i(0)2| − i(0) · i(t), (11)

where the first term gives the number of particles around
particle i at t = 0 (that, actually, equals 6, in our case), while
the second term gives the number of “original” particles that
remained in the surroundings after time t elapsed. As the next
step an integer value c is defined, which is the number of the
“original” neighbors that have to leave the cage before we say
that the cage has undergone a “substantial change.” The cage
correlation function Cc

cage(t) can be calculated by averaging
over particles and initial times, of the function �(c − nout

i ),
i.e.,

Cc
cage(t) = 〈

�
(
c − nout

i (0,t)
)〉
. (12)

Here � is the Heaviside function. We calculate the cage
correlation functions for c = 3, meaning that half of the
original neighbors leave the cage. We adopt the definition of
the caging time introduced in [11], according to which tcage is
defined as the time when C3

cage decays to a value 0.1.

III. RESULTS

A. Velocity autocorrelation

The general effect of the external magnetic field on the
velocity autocorrelation function is illustrated in Fig. 1(a),
at � = 120 and κ = 2. At β = 0 the VACF exhibits a few
oscillations, which is a fingerprint of localized oscillations of
the particles. In the magnetized case the dominant frequency
is clearly increased, as well as the values of the extrema of the
oscillatory VACF. The Fourier transform of the VACF, Avv(ω),
shown in Fig. 1(b) exhibits characteristic changes when the
magnetic field is applied. In the β = 0 case the spectrum
exhibits a single peak at about ω/ωp ≈ 0.48. This peak is
known to be related to the longitudinal current fluctuations
(see, e.g., [24]), and this frequency indeed corresponds to
the plateau of the dispersion relation of the longitudinal
mode, shown in Fig. 2(a). At β > 0 the formation of a
magnetoplasmon shifts the peak position to a higher value,
ω/ωp ≈ 0.74, following the change of the character of the
mode dispersion curve, plotted in Fig. 2(b). The low-frequency
part of Avv(ω), seen in Fig. 1(b), is depleted at β > 0 with
respect to the β = 0 case, and we also observe the formation
of a small peak at ω/ωp = 0.5, corresponding to the cyclotron
frequency of the dust particles.

We note that, according to (6) and (7), D = 1
2Avv(ω = 0).

Evaluation of Avv(ω = 0) from Fig. 1(b) is ambiguous, in
accordance with the possible divergence of the Green-Kubo
integral (7) already quoted. Plotting the normalized VACF
for the unmagnetized case [see Fig. 1(c)] confirms that Avv(t)

FIG. 1. (Color online) (a) Normalized velocity autocorrelation
functions at β = 0 and β = 0.5, for � = 120 and κ = 2. Fourier
transforms of the VACFs are shown in (b). P1, P2, and P3 identify
peaks of the spectra; the peak positions are given in units of ωp .
(c) Magnitude of the normalized VACF for the above � and κ values,
for the unmagnetized case. Note the nearly t−1 decay of the curve
at long times. S denotes the “sound peak” originating from the finite
size of the simulation cell; see [25].
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FIG. 2. (Color online) The sum of longitudinal and transverse
current fluctuation spectra, L(k,ω) + T (k,ω), at � = 120 and κ =
2, for (a) the unmagnetized and (b) magnetized, β = 0.5 systems.
Note the lifting of the longitudinal mode in the magnetized system.
The easily recognizable modes correspond to the longitudinal current
fluctuations; the transverse current fluctuations appear with weak
amplitude, at low frequencies (at ω/ωp � 0.2).

decays as t−1 at long times, making (7) divergent (if we assume
that the decay rate is maintained up to infinitely long time).
It is not the topic of the present paper to investigate these
effects further, and, accordingly, we shall not discuss the ω → 0
behavior of Avv(ω).

Figure 3(a) presents a series of normalized VACFs for
increasing magnetization, at fixed � = 120 and κ = 1. The
data show that the behavior of Avv(t) is significantly altered
with the introduction of the magnetic field. The dominant
frequency (easily observed by eye) increases with increasing
β, and the oscillations of the VACFs persist for an increasingly
longer time when the strength of the magnetic field is
increased. Figure 3(b) shows the respective Avv(ω) functions
in the frequency domain, where the dominant frequency
appears as a definite peak. In [13] it has been shown that
at high coupling the dominant frequency in the longitudinal
fluctuation spectrum takes a value

ω2
1 = ω2

c + 2ω2
E = β2ω2

p + 2ω2
E, (13)

FIG. 3. (Color online) Normalized VACFs for a set of magne-
tization values at � = 120 and κ = 1, and their frequency domain
behavior, Avv(ω). Note that the curves in (a) are vertically shifted, for
the clarity of the plot.

where ωE is the Einstein frequency, defined as the oscillation
frequency of a test particle in a frozen environment. At
κ = 1 we have ωE

∼= 0.52ωp [see Fig. 19(b) of Ref. [27];
note, however, that the numerical data of the same paper,
given by Eq. (54) are false]. The positions of the peaks
observed in Fig. 3(b), in comparison with the theoretical
prediction given above, are listed in Table I. We find a
very good agreement (only a few % deviation) between
the two sets of data, confirming the theoretical arguments

TABLE I. The dependence of the frequency of the dominant peak
observed in Avv(ω), as function of the normalized magnetic field β,
for � = 120 and κ = 1.

β Observed ω/ωp Theoretical ω1/ωp , Eq. (13)

0 0.74 0.74
0.2 0.78 0.76
0.5 0.92 0.89
1.0 1.28 1.24
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FIG. 4. (Color online) Normalized VACFs for a series of � values
at fixed values of κ = 1 and β = 0.5, and (b) their frequency domain
behavior, Avv(ω). Note that the curves in (a) are vertically shifted, for
the clarity of the plot. The vertical solid lines in panel (b) indicate the
frequencies given by Eqs. (13) and (14), respectively, for the strong
and weak coupling limits.

of [13], according to which the dominant oscillation frequency
forms due to a combined effect of magnetic field and strong
correlations, lifting the fundamental frequency above the
cyclotron frequency ωc = βωp.

Next, we investigate the effect of the coupling strength
on the normalized VACFs and their Fourier transform, at a
fixed value of normalized magnetic field, β = 0.5. The data
are displayed in Fig. 4, for κ = 1. The time-domain data
show only a more persistent correlation at higher coupling,
however, the frequency spectrum Avv(ω) shows an upwards
shift of the dominant peak with lowering �. The relation (13),
discussed above, holds only for a high coupling. In the limit of
vanishing correlations (weakly coupled plasma limit, � → 0)
the frequency of the resulting (upper) hybrid mode in a
magnetized plasma (where the direction of propagation is
perpendicular to the direction of the magnetic field) is known
to turn into the random phase approximation (RPA) value (for

FIG. 5. (Color online) The sum of longitudinal and transverse
current fluctuation spectra, L(k,ω) + T (k,ω), at � = 10, κ = 2, and
β = 0.5 system.

details see [28]),

ω2
2 = ω2

c + ω2
p = ω2

p(β2 + 1). (14)

At β = 0.5, the frequency defined by the above equation is
ω2

∼= 1.19ωp. This frequency value is not reached by our
simulation data at decreasing coupling, due to the significant
broadening of the frequency spectrum, as indicated in Fig. 5,
for the conditions � = 10, κ = 2, and β = 0.5. Here the
magnetoplasmon becomes hardly recognizable at reduced
wave numbers ka � 2.5, where the fluctuation spectrum is
practically featureless.

B. Caging

The dependence of the cage correlation function C3
cage(t),

defined by Eq. (12), on the system parameters, is analyzed in
Fig. 6. The cage correlation functions have been calculated for
a series of � values, for the unmagnetized case (β = 0) and
for a moderate value of the magnetization, β = 0.5. The data
are shown for κ = 2; the behavior is similar at other values of
screening. Comparison of the data for these two cases, shown
in Figs. 6(a) and 6(b), respectively, reveals the increase of the
caging time with increasing magnetic field. This behavior can
easily be understood by the decreasing Larmor radius of the
particles, that becomes a fraction of the interparticle distance
at the highest β values considered.

Finally, we show the dependence of the caging time, defined
earlier as C3

cage(tcage) = 0.1, in Fig. 7(a) on the magnetic
field (at κ = 2 and coupling values � = 120 and 20), and
in Fig. 7(b) on � (at fixed κ = 2 and magnetic field strengths
β = 0 and 0.5). Figure 7(a) reveals an approximately three
times increase of the caging time when β is increased from 0
to 1, at both values of coupling.

At the parameter pair � = 120 and κ = 2 we reach
ωptcage

∼= 400 at β = 1.2. Now we estimate how many
oscillations caged particles execute during this time. One
oscillation cycle of a caged particle in the strong coupling
domain corresponds to ω1t ∼= 2π , where ω1 is defined by
Eq. (13). For a number of oscillation cycles, Nosc, within the
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FIG. 6. (Color online) Cage correlation functions: the effect of �

at (a) β = 0 and (b) β = 0.5.

cage ω1tcage
∼= 2πNosc holds. From this,

Nosc = 1

2π
(ωptcage)

ω1

ωp

= 1

2π
(ωptcage)

√
β2 + 2

ω2
E

ω2
p

. (15)

For κ = 2 we have ωE/ωp
∼= 0.32 (according to Ref. [27]),

so at β = 0 and β = 0.5, respectively, Nosc
∼= 0.051(ωptcage),

and Nosc
∼= 0.107(ωptcage). Selected values, correspond-

ing to the data shown in Fig. 7(b), are given in
Table II.

The data unambiguously confirm that in the � 	 1 domain
the particles carry out several oscillation cycles within their
cages, before the potential landscape changes due to the
diffusion of the particles. In magnetized systems Nosc increases

TABLE II. Number of oscillations cycles of caged particles, Nosc,
at selected �, β parameter pairs, at κ = 2.

� β = 0 β = 0.5

10 0.6 2.2
40 2.0 5.9
120 6.9 22.5

FIG. 7. (Color online) The dependence of the caging time (a) on
the magnetic field strength at � = 20 and 120, and (b) on the coupling
strength � at β = 0 and 0.5.

because of two reasons: (i) due to the reduction of the
diffusion with increasing magnetic field, and (ii) due to the
increasing oscillation frequency in the strong coupling domain.
This effect has important consequences in determining the
properties of strongly coupled plasmas [9].

IV. SUMMARY

We have investigated the effect of a homogeneous magnetic
field on the velocity autocorrelation function and the caging
phenomenon in two-dimensional Yukawa liquids in the strong
coupling domain. The velocity autocorrelation functions have
been analyzed both in the time and frequency domains.
The dominant peak in Avv(ω), related to the longitudinal
current fluctuations in the liquid, was shown to be formed
at high coupling at a frequency defined by a joint effect
of cyclotron motion and strong interparticle correlations
[13]. Towards lower coupling values the position of the
peak was found to shift upwards, towards the RPA limit,
which, however, was not reached due to the broadening of
the peak. The caging time of the particles, of which the
relation to the plasma oscillation cycles is of paramount
importance in determining the liquid state properties of the
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plasma, was found to increase significantly with the applied
magnetic field. Experimental verification of our computational
results should be possible in future rotating dusty plasma
experiments [22].
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