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A simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge that is
valid for long-wavelength high-frequency perturbations is derived using an approximate solution of a linearized
Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both
the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative
contribution of the latter collisions to the dielectric function is treated phenomenologically, introducing some
parameter � that is chosen in such a way as to get a well-known expression for stationary electric conductivity
in the low-frequency region and fulfill the requirement of a vanishing contribution of electron-electron collisions
in the high-frequency region. This procedure ensures the applicability of our model in a wide range of plasma
parameters as well as the frequency of the electromagnetic radiation. Unlike the interpolation formula proposed
earlier by Brantov et al. [Brantov et al., JETP 106, 983 (2008)], our model fulfills the Kramers-Kronig relations
and permits a generalization for the cases of degenerate and strongly coupled plasmas. With this in mind, a
generalization of the well-known Lee-More model [Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984)]
for stationary conductivity and its extension to dynamical conductivity [O. F. Kostenko and N. E. Andreev, GSI
Annual Report No. GSI-2008-2, 2008 (unpublished), p. 44] is proposed for the case of plasmas with arbitrary
ionic charge.
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I. INTRODUCTION

The problem of interactions of intense laser pulses with
solids and plasmas continues to be the subject of intense
experimental and theoretical research. These interactions are
associated with both the fundamental aspects of the behavior
of matter in ultrastrong laser fields and various applications
such as fast ignition [1], the development of new sources
of x-ray radiation and warm dense matter production [2],
particle acceleration [3], and the laser generation of shock
waves. In most part of these studies the high-power laser
pulse ionizes the matter, so one eventually has to deal with
a partially or fully ionized plasma. In the past few decades
much effort has been devoted to investigating the various
aspects of laser-plasma interactions (see, e.g., Refs. [4–7]).
Currently, various models of these interactions are widely
discussed (see, e.g., Refs. [8–13] and references therein). The
key quantity that characterizes laser-matter interactions as well
as the optical properties of matter is the plasma dielectric
function (permittivity) ε, which determines the electrodynamic
response of the system on perturbations. Thus, the construction
of theoretical models for plasma permittivity that are valid in
a wide range of the plasma parameters is of fundamental and
practical importance.

Plasma permittivity has been studied in detail and is well
known in two limiting cases corresponding to the collisionless
case based on the solution of the Vlasov kinetic equation
[5–7,14] and to the strongly collisional hydrodynamic limit
[15,16]. In the latter regime the ranges of applicability of the
corresponding expressions for the permittivity of a collisional
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plasma are strongly restricted and cannot be used for arbitrary
values of ω/νe and kλei , where νe is the electron-ion collision
frequency and λei is the mean free path of electrons with
respect to their collisions with ions. An important development
in recent years is the weakly collisional theory proposed in
Ref. [17], which extends the range of the analytical description
of the permittivity for a collisional plasma compared to the
collisionless case.

To obtain a qualitative description of the collisional regimes
of a plasma the Bhatnagar-Gross-Krook (BGK) [18] colli-
sional model in the kinetic equation for electrons has been
widely used with or without a number-conservation procedure
[7,19–24]. The appeal of this model is its simplicity, which in
its original nonconserving form amounts to the replacement
of ω → ω + iν in the argument of the plasma dispersion
function, where ν is a model collision frequency. Furthermore,
more advanced number- and energy-conserving BGK models
as well as number-, momentum-, and energy-conserving BGK
models have been presented in Refs. [25,26] and [27,28],
respectively, which yield analytic expressions for the permit-
tivities in terms of combinations of the plasma dispersion
function. However, for a completely ionized plasma, the
model permittivity within the BGK approximation and the
corresponding Drude model for the transverse permittivity
[7,22–24] lead to the significant deviations from the known
limiting cases in the range of moderate and strong collisions
[29–31]. For instance, it has been found that this model cannot
reproduce the plasma permittivity in the strongly collisional
hydrodynamic regime considered in Ref. [16]. A significant
improvement of the theory has been achieved within the
Lorentz plasma model [31–33]. However, the Lorentz plasma
model cannot describe permittivity accurately in a wide range
of parameters, even for a highly ionized plasma, as long as
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the electron-electron collisions are neglected in this model.
We also mention the model of Ref. [34] with a simplified
Fokker-Planck kinetic equation, where the diffusion tensor
and the friction coefficient are treated as given constants.
The resulting dielectric function has been compared with the
number-conserving Mermin dielectric function demonstrating
that both functions are almost identical.

For the case of a plasma with a large ionic charge Z � 1,
where the electron-electron collision integral is involved only
in the equation for the isotropic part of the electron distri-
bution function, the longitudinal and transverse permittivities
have been obtained in Refs. [35,36] and [30], respectively.
Generalization of the latter results to the case of an arbitrary
ionic charge Z requires, in addition, the consideration of
the electron-electron collision integral for the anisotropic
part of the perturbed distribution function. This problem
was considered in Ref. [37] without any constraints on the
parameters under consideration. The model developed in
Ref. [37] is based on the solution of a linearized kinetic
equation for electrons with a Landau collision integral. In
addition, the suggested method of solving the kinetic equation
is valid for an arbitrary ionic charge Z, an arbitrary relation
between the perturbation inhomogeneity scale length k−1 and
the electron mean free path, and an arbitrary relation between
the characteristic time scale ω−1, electron collision time,
and the time scale of collisionless electron motion 1/kvth,
where vth is the thermal electron velocity.

However, the model proposed in Ref. [37] being accurate
in a wide range of parameters is rather complicated and does
not determine the permittivity in an explicit form expressed
through the plasma parameters. Therefore, simplified but
still accurate models for the plasma permittivity are highly
desirable. Besides, the model of Ref. [37] considers the case
of ideal nondegenerate plasmas only, which restricts its use for
the description of laser-matter interactions in a wide range of
parameters.

In the present study we propose an alternative and simplified
solution of the kinetic equation for electrons with a Landau
collision integral for an arbitrary charge of plasma ions.
The model accounts for both electron-ion collisions and
collisions of the subthermal (cold) electrons with thermal ones.
As has been shown in Ref. [17], the latter collisions may
contribute considerably in the common integral of collisions
and one can derive an algebraic expression for the respective
parts of the integral of electron-electron collisions containing,
however, some free parameter. This parameter is then adjusted
so as to ensure agreement of the present model with the
respective expression for a stationary electric conductivity
at low frequencies [37,38] and the proper behavior of high-
frequency conductivity (or permittivity) at high frequencies.
Moreover, the presented model permits simple extensions
for the cases of degenerate and/or strongly coupled plasmas,
which makes it possible to use it for the description of optical
properties of plasmas in a wide range of temperatures and
densities. Thus, this model represents a generalization of the
well-known Lee-More model [39] for a stationary conductivity
and its extension for a dynamical conductivity [40] (in the
same relaxation-time approximation). It is valid for plasmas
with arbitrary degeneracy and arbitrary ionic charge, where
the electron-electron collisions play an essential role.

II. THEORETICAL MODEL

Within linear response approximation the evolution of
small perturbations arising in a homogeneous, collisional, and
unmagnetized plasma is considered below. The case of long-
wavelength and high-frequency perturbations is considered
for the electron component of the plasma. The dynamics of
the plasma ions is neglected. More specifically, we assume
that kvth � ω, kλei � 1, and kλee � 1, where k−1 is the
wavelength of the perturbations, ω−1 is the characteristic time,
and λei (λee) is the mean free path of the electrons with respect
to their collisions with ions (electrons).

The evolution of the electron component of the plasma
is governed by the Fokker-Planck kinetic equation for the
velocity distribution function f (v,t) of the electrons. The
distribution function of the ions is fixed and is given
by fi(v,t) = δ(v). Neglecting the spatial inhomogeneity of
the electron distribution function in the case of the long-
wavelength perturbations, the kinetic equation can be written
as [5,6,14]

∂f

∂t
− e

m
E · ∂f

∂v
= J [f ] ≡ ∂

∂vi

(
Dij

∂f

∂vj

− Fif

)
, (1)

where J [f ] = Jee[f ] + Jei[f ] is the collision term with the
contributions of the electron-electron Jee[f ] and electron-ion
Jei[f ] collisions, respectively, E is the self-consistent electric
field strength, and Dij and F are the diffusion tensor and the
friction force in a velocity space, respectively.

Taking the collision term J [f ] in the form of Landau
[5,6,14], the velocity diffusion tensor and the friction force
are given by

Dij = h

2

[
1

Z

∫
f (v′,t)gij (u)dv′ + gij (v)

]
, (2)

Fi = h

2

[
1

Z

∫
f (v′,t)

∂gij (u)

∂uj

dv′ + m

mi

∂gij (v)

∂vj

]
, (3)

where u = v − v′,

gij (v) = 1

v

(
δij − vivj

v2

)
, (4)

∂gij (v)/∂vj = −2vi/v
3, δij is the unit tensor of rank 3, h =

3
√

π/2νev
3
th,

νe = 4
√

2πneZe4

3(mT 3)1/2

 (5)

is the effective electron-ion collision frequency, and vth =√
T/m. Here −e,m,ne and Ze,mi,ni are the electron and

ion charges, masses, and equilibrium densities, respectively,
T is the temperature of electron component, and 
 is the
Coulomb logarithm, which is defined later. Charge neutrality
of the plasma with ne = Zni and an arbitrary (and finite) ionic
charge Z are assumed.

The first and the second terms in Eqs. (2) and (3)
correspond to the electron-electron and electron-ion collisions,
respectively. The last term in Eq. (3) describes the energy
exchange between electrons and ions and is proportional to
the small parameter ∼m/mi � 1. This term will be neglected
in the subsequent calculations. The electron-electron collisions
terms in Eqs. (2) and (3) contain the inverse Z−1 of the ionic

033102-2



DIELECTRIC FUNCTION OF A COLLISIONAL PLASMA . . . PHYSICAL REVIEW E 89, 033102 (2014)

charge number Z. Hence, these terms vanish at the limit Z � 1
of the highly ionized ions and one arrives at the Lorentz
plasma model [22] in this case, which is frequently used in
hydrodynamic codes due to its simplicity [9–13].

The Lorentz model is justified only for plasma with highly
ionized ions with Z � 10. For plasmas with Z < 10 electron-
electron collisions should be accounted for numerically more
precise calculations, although, due to the momentum conser-
vation (i.e.,

∫
vJee[f ]dv = 0) they do not directly contribute

to the induced current density. Nevertheless, they modify the
electron distribution function and thus influence the value of
permittivity. A rigorous kinetic theory for the calculation of
the permittivity of a plasma taking into account electron-
electron collisions and nonlocal transport was proposed in
Ref. [37].

In the present paper a simpler but physically motivated
approach is considered, which makes it possible to derive a
simple expression for the permittivity of plasmas that takes
into account the contribution of electron-electron collisions
and permits further generalizations for quantum plasmas
and/or for strongly coupled plasmas. Unlike the interpolation
formula proposed in Ref. [37], the present model fulfills
Kramers-Kronig relations and permits further extension for
the degenerate plasma case.

In order to derive this model we note that, in accordance
with Ref. [17], the effective frequency for collisions of
subthermal (cold) electrons (with velocities v � vth) with
thermal ones (with v ∼ vth) behaves as νc,ee ∼ (vth/v)3 � νee,
so it considerably exceeds the similar frequency νee for
the collisions of thermal electrons. Therefore, even in a
weakly collisional plasma the cold electrons experience strong
collisions with the thermal ones and may essentially contribute
to the coefficients (2) and (3). With this in mind, we restrict the
upper limits of the velocity integrations in Eqs. (2) and (3) by
some value vm � vth. Also, since v 	 vth in Eqs. (2) and (3),
the tensor gij (u) and the vector ∂gij (u)/∂uj can be replaced
by gij (v) and ∂gij (v)/∂vj , respectively, removing them from
the v′ integrals in Eqs. (2) and (3).

Next, within linear response approach the distribution
function f (v′,t) in Eqs. (2) and (3) can be replaced by the
equilibrium distribution function of the electrons f0(v′) and,
recalling the affirmations stated above, f0(v′) can be replaced
by f0(v′) 	 f0(0). As a result, from Eqs. (2) and (3) we
obtain

Dij = h

2

(
1 + 1

Z∗

)
gij (v), (6)

Fi = h

2Z∗

∂gij (v)

∂vj

, (7)

where Z∗ = Z/� with � = 4π
3 v3

mf0(0).
It is seen that the contribution of the electron-electron

collisions (the terms containing the effective charge number
Z∗) is not negligible in the coefficients (6) and (7). The
parameter � introduced above is the relative fraction of slow
electrons contributing to the coefficients (6) and (7). Clearly
� � 1, which results in Z∗ > Z, i.e., a larger effective charge
of the ions compared to Z.

To obtain an equation for perturbed distribution function
one can substitute f = f0 + f1 (with f1 � f0) into (1) to get

the equation

− iωf1ω(v) − e

m
(Eω · v)

1

v
f ′

0(v) = J [f1ω(v)] (8)

for the Fourier transform with respect to the time t of the
perturbed distribution function f1. Here Eω is the Fourier
transform of the electric field and the prime indicates the
derivative with respect to the argument. The equilibrium
distribution function in the unperturbed state is assumed to
be isotropic f0 = f0(v).

In order to solve Eq. (8) it is convenient to introduce a new
unknown and isotropic function �ω(v) via the relation

f1ω(v) = e

mω
(Eω · v)�ω(v). (9)

This relation (9) explicitly separates the isotropic [the term
�ω(v)] and anisotropic [the term (Eω · v)] parts of the
distribution function f1ω(v). Note that such a choice for the
perturbed distribution function is stimulated by the structure
of (8). Then inserting Eq. (9) into (8) and using the diffusion
tensor (6) and the friction force (7) yields, after straightforward
calculations, an ordinary differential equation for the unknown
function �ω(v),

1

ωZ∗
�′

ω(v) + i

hv
(v3 + ih/ω)�ω(v) = − 1

h
vf ′

0(v). (10)

An expression similar to Eq. (10) was considered previously
in Refs. [9–13,30], neglecting, however, the first term contain-
ing the derivative of the function �ω(v), which is justified for
Z � 1. In this case the differential equation (10) is reduced to
an algebraic one with a simple solution

�(L)
ω (v) = i

v2f ′
0(v)

v3 + ih/ω
, (11)

which eventually yields the Lorentz model for plasma per-
mittivity [9–13,22,30]. For an arbitrary charge state Z of the
plasma ions and for a finite parameter �, the solution of Eq. (10)
is given by

�ω(v) = Z∗ω
h

∫ ∞

v

exp

[
iZ∗ω

3h
(u3 − v3)

](
v

u

)Z∗
f ′

0(u)u du.

(12)

The perturbations of the current induced in the plasma
by the electric field E are determined by j1 = −nee

∫
vf1(v,t)

dv. The Fourier transform of this quantity is then given by

j1ω = − ω2
p

4πω

∫
v(Eω · v)�ω(v)dv, (13)

where ω2
p = 4πnee

2/m is the plasma frequency. Using this
relation one can calculate the conductivity tensor and hence
the permittivity tensor of the collisional electron plasma, which
can be represented in the form εij (ω) = ε(ω)δij with

ε(ω) = 1 − ω2
p

ω2
K0(ω),

K0(ω) = 4πi

3

∫ ∞

0
�ω(v)v4dv. (14)

The obtained expression together with the distribution function
(12) determines the high-frequency dielectric function of the
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collisional plasma for an arbitrary effective charge Z∗ of the
ions. The expression (14) can be further simplified if Eq. (12)
is inserted into it and one performs an integration by parts.
This yields

K0(ω) = iχ
Z2

ξω

8
√

2π

3
v3

th

∫ ∞

0
F (1; α

Z
; iβ

Z
ξ 3)ξ 6f ′

0(ξ )dξ,

(15)

where f ′
0(ξ ) denotes the derivative of f0(ξ ) over ξ ,

ξ = v√
2vth

, ξω = 3
√

π

4

νe

ω
, α

Z
= Z∗ + 8

3
, β

Z
= Z∗

3ξω

,

(16)

and F (a; b; z) is the confluent hypergeometric function. Using
the properties of the confluent hypergeometric functions (see,
e.g., Ref. [41]) one can write the series expansion for F over
its third argument for the case β

Z
ξ 3 � 1,

F (1; α
Z
; iβ

Z
ξ 3) = 1 + i

β
Z
ξ 3

α
Z

− β2
Z
ξ 6

α
Z
(α

Z
+ 1)

+ · · · , (17)

and the asymptotic expression for F over the value of Z−1
∗ ,

Z∗ � 1:

F (1; α
Z
; iβ

Z
ξ 3) = 1

1 − β̃
Z

+
∑
n≥1

1

Zn∗

β̃
Z
Pn(β̃

Z
)

(1 − β̃
Z
)2n+1

, (18)

where β̃
Z

= iξ 3/ξω and Pn(β̃
Z
) are polynomials of β̃

Z
of the

power n. The first three have the following values:

P1 = 5β̃
Z

− 8, (19)

P2 = 10β̃2
Z

− 47β̃
Z

+ 64, (20)

P3 = −10β̃3
Z

+ 48β̃2
Z

+ 69β̃
Z

− 512. (21)

Considering Eq. (17), one can derive from Eq. (15) the
following expression for the function K0(ω) in the limiting
case of low frequencies ω � νe:

K0(ω) = 3χ
Z1

ξ 2
ω

〈ξ 6〉 − 2iχ
Z2

ξω

〈ξ 3〉, (22)

where 〈ξn〉 indicates an average of the value ξn over the
unperturbed distribution function f0(ξ ) and the two parameters
χ
Z1

and χ
Z2

depend on the effective charge Z∗ as follows:

χ
Z1

= 1

(1 + 5/Z∗)(1 + 8/Z∗)
, χ

Z2
= 1

1 + 5/Z∗
. (23)

Considering Eq. (18), one can derive from Eq. (15) the
expression for the function K0(ω) in the opposite limiting
case of high frequencies ω � νe:

K0(ω) = 1 − iχ
Z3

8π
√

2

3
v3

thξωf0(ξ = 0), (24)

where the parameter

χ
Z3

= 1 + 2/Z∗ (25)

contains the dependence on the effective charge Z∗. Equations
(22) and (24) represent well-known cases for the normal

low-frequency and normal high-frequency skin effects, respec-
tively. It should be emphasized that they depend essentially
on the ion effective charge Z∗ and they are valid for an
arbitrary equilibrium distribution function f0, including one
for the degenerate electron plasma. Below, these limiting cases
will be used for the determination of the unknown parameter
� = Z/Z∗.

A. Nondegenerate electron plasma

For the Maxwell equilibrium distribution function f0(ξ ) =
(2πv2

th)−3/2e−ξ 2
one has from Eq. (15) the following expres-

sion:

K0(ω) = −8iχ
Z2

3ξω

√
π

∫ ∞

0
F (1; α

Z
; iβ

Z
ξ 3)ξ 7e−ξ 2

dξ. (26)

The limiting cases (22) and (24) for the case of the Maxwell
distribution function give, respectively,

K0(ω) = 315

8

χ
Z1

ξ 2
ω

− 8i√
π

χ
Z2

ξω

(27)

and

K0(ω) = 1 − i
4

3
√

π
ξωχ

Z3
, (28)

which completely agree with the standard forms of the
corresponding expressions [5,6,9–14] in the case χ

Z1
= χ

Z2
=

χ
Z3

= 1, which follows from Eqs. (23) and (25) in the formal
limit Z → ∞. Inserting the first term of Eq. (18) into Eq. (26),
one gets the Lorentz model for optical properties of plasmas:

K0(ω) = 8χ
Z2

3
√

π

∫ ∞

0

ξ 7e−ξ 2

ξ 3 + iξω

dξ, (29)

considered previously (for χ
Z2

= 1) in Refs. [9–13,30].
In order to use Eq. (15) or (26), one has to derive an

expression for the relative fraction � of electron-electron
collisions with subthermal electrons. This can be done if
one takes into account the above limiting cases. (i) For
ω → ∞ the permittivity does not depend on electron-electron
collisions [5,6,22,37], which means that it should not contain
a dependence on Z∗. Recalling Eqs. (25) and (24), this means
that

Z∗ → ∞ for ω → ∞. (30)

(ii) For ω → 0 one has the respective interpolation formula
for stationary conductivity

σ0 = γσ (Z)σsh, σsh = 2

π3/2

ω2
p

ωξω

, γσ = a + Z

b + Z
, (31)

where a = 0.87 and b = 2.2 (see Refs. [37,38]). Considering
the connection

σ ′ = − ω2
p

4πω
Im[K0(ω)] (32)

of the real part of conductivity and the function K0(ω), one can
write the following expression for the imaginary part of K0(ω)
in the stationary case: Im[K0(ω)]|ω→0 = −8iγσ /

√
πξω. Com-

paring this expression with Eqs. (27) and (23), one gets

�(Z,ω → 0) = Z

Z∗(ω → 0)
= Z(b − a)

5(Z + a)
. (33)
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Taking into account Eqs. (30) and (33), one can propose the
following interpolation for �(ω) in the whole frequency range:

�(ω) = �0[1 + (C/ξω)s]−1, (34)

where �0 = �(ω → 0) is given by Eq. (33) and C > 0 and s >

0 are positive numerical constants, which can be withdrawn,
for example, from the comparison with the exact calculations.

B. Degenerate electron plasma

In this section we generalize the permittivity (15) obtained
for a nondegenerate electron plasma to the cases of a partially
or fully degenerate plasma. Strictly speaking, the starting point
in this case should be the quantum kinetic equation. However,
arguments below show that a simple generalization of Eq. (15)
is possible in the manner analogous to that done for the case of
a Lorentz plasma with arbitrary degeneracy in Refs. [39,40].

First, it has been shown previously (see, e.g., Ref. [42])
that the calculation of a velocity-dependent electron-ion
collision frequency ν(v) [ν(v) ∼ h/v3, where h has been
introduced in Sec. II], on the basis of the quantum kinetic
equation, yields the same result as if one had started from
the classical kinetic equation, where, however, the classical
Coulomb logarithm has to be replaced by the quantum one.
Second, the electron-electron collisions in a degenerate plasma
have been investigated in detail in Refs. [43–46] using the
quantum kinetic equation approach. However, starting from
the quantum kinetic equation and following the same steps
that led to Eqs. (6) and (7), we now get similar expressions.
Finally, it is well known (see, e.g., Refs. [6,7]) that at
vanishing quantum recoil with �k2/2m � ω, the dielectric
function that follows from the collisionless quantum kinetic
equation in a random-phase approximation [47] is identical
to the corresponding classical expression. Thus, in the case
of a degenerate plasma Eq. (15) is applicable, assuming that
�k2/2m � ω in addition to the conditions introduced at the
beginning of Sec. II.

In the case of a partially degenerate electron plasma the
equilibrium distribution function f0(ξ ) in Eq. (15) is given by
the Fermi-Dirac distribution

f0(ξ ) = B0fF (ξ ), fF (ξ ) = [1 + exp(ξ 2 − εμ)]−1, (35)

where B0 = (3/4π )(m/2EF)3/2 is the normalization constant,
EF = �

2

2m
(3π2ne)2/3 is the Fermi energy, εμ = μ/T , and μ

is the chemical potential. Inserting the distribution (35) into
Eq. (15), we arrive at

K0(ω) = −2iχ
Z2

ξωε
3/2
F

∫ ∞

0
F (1; α

Z
; iβ

Z
ξ 3)fF (ξ )[1 − fF (ξ )]ξ 7dξ

(36)

for a partially degenerate electron plasma with εF = EF/T . It
should be emphasized that the definitions of the dimensionless
quantities ξω and β

Z
[see Eq. (16)] in Eq. (36) should now

contain a quantum expression for the Coulomb logarithm 
 in
the expression for collision frequency [Eq. (5)].

The dimensionless chemical potential in the expression for
fF is calculated from

εμ = X1/2
(

2
3ε

3/2
F

)
, (37)

where X1/2 is the function inverse to the Fermi integral F1/2(x),
X1/2(F1/2(x)) = x, where Fα(x) = ∫ ∞

0 tα(1 + et−x)−1dt . For
the numerical evaluation of Eq. (37) it is useful to use the
highly accurate rational function approximations for the Fermi
integrals and their inverse functions derived in Ref. [48].

To compare the present approach with the previously known
models it is also constructive to consider some particular
cases of the general expression (36). In the case of a highly
degenerate electron plasma with T � EF the function (36) is
simplified and is given by

K0(ω) = − iχ
Z2

ηω

F (1; αZ; iγZ). (38)

Here γZ = Z∗/3ηω and ηω = ξω/ε
3/2
F = νd/ω, where νd =

(4Zme4/3π�
3)
d is the electron-ion collision frequency

in the case of a fully degenerate electron plasma derived
by Flowers and Itoh [45] and more recently by Shternin
and Yakovlev [46] and 
d is the corresponding Coulomb
logarithm.

Noting that for EF > T one has Z∗ � 1 (see below),
one can use the expansion (18) to calculate the confluent
hypergeometric function in Eq. (38). With only the first term
in this expansion one gets from Eq. (38)

K0(ω) = 1

1 + iηω

, (39)

i.e., the Drude expression for the function K0(ω).
In the limit of low frequencies ω � νe one can obtain from

Eq. (22) the expression for a degenerate plasma similar to that
for the nondegenerate one (27):

K0(ω) = 3χ
Z1

ξ 2
ω

F7/2(εμ)

F1/2(εμ)
− 2iχ

Z2

ξω

F2(εμ)

F1/2(εμ)
, (40)

which in the limit T � EF turns into

K0(ω) = χ
Z1

/η2
ω − iχ

Z2
/ηω. (41)

Note that this result follows also from Eq. (38).
From Eqs. (41) and (32) one can obtain the following ex-

pression for the real part of the stationary electric conductivity
σ ′(ω → 0) of a highly degenerate plasma (at T � EF):

σ ′ = χ
Z2

�

√
E3

F/EH√
2πZ

1


d

, (42)

where EH = me4/�
2 	 27.2 eV is the Hartree energy. This

expression coincides with the generalization of the well-known
Ziman formula [49] for the partially degenerate case [26] if
one uses the expression


d =
∫ ∞

0

S(k)

k

fF (kλ̄)dk

|εL(k,0)|2 (43)

for the Coulomb logarithm 
d and sets χ
Z2

= 1 in Eq. (42).

In Eq. (43) λ̄= �/(2mT )1/2 is the thermal wavelength, S(k)
is the static structure factor, and εL is the Lindhard dielectric
function [47] for a partially degenerate electron gas [50,51].
In the opposite limiting case of high frequencies ω � νe, from
Eq. (24) one can obtain the expression

K0(ω) = 1 − iχ
Z3

ξωε
−3/2
F (1 + e−εμ )−1, (44)
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which in the case of high degeneracy with EF � T becomes

K0(ω) = 1 − iχ
Z3

ηω. (45)

Next, in the limit Z∗ � 1, taking the first term of Eq. (18), in
leading order one gets from Eq. (36) the following expression:

K0(ω) = 2χ
Z2

ε
3/2
F

∫ ∞

0

fF (ξ )[1 − fF (ξ )]

ξ 3 + iξω

ξ 7dξ, (46)

which in the particular case χ
Z2

= 1 coincides with a result
obtained in Refs. [39,40] for the electron conductivity of a
Lorentz plasma.

As mentioned above, for an accurate numerical treatment
of the permittivity of degenerate plasmas one should use
a proper expression for the Coulomb logarithm in Eq. (5)
[and hence in Eqs. (16) and (36)]. For moderate values of
the degeneracy parameter � = ε−1

F = T/EF � 1 a wide-range
formula for stationary electric conductivity for hydrogenlike
plasmas (Z = 1) was proposed in Ref. [52]. Comparing the
expression for σ ′ obtained in Ref. [52] and Eq. (31) for Z = 1
and for a weakly degenerate plasma (� � 1), one can use the
following interpolation expression for 
 in a wide range of
density and temperature:


(�,�)= 1/2

1 + b1/�3/2

[
D ln(1+A+B) − C − b2

b2 + ��

]
,

(47)

where � = (4πne/3)1/3Ze2/T is the coupling parameter. The
quantities A, B, C, and D are functions of the parameters �

and � and are given by

A = �−3(1 + a4/�2�)

1 + a2/�2� + a3/(�2�)2
[a1 + c1 ln(c2�

3/2 + 1)]2,

B = b3(1 + c3�)

��(1 + c3�4/5)
, C = c4

ln(1 + �−1) + c5�2�
,

D = �3 + a5(1 + a6�
3/2)

�3 + a5
,

with a set of numerical constants a0 = 0.03064, a1 = 1.1590,
a2 = 0.698, a3 = 0.4876, a4 = 0.1748, a5 = 0.1, a6 = 0.258,
b1 = 1.95, b2 = 2.88, b3 = 3.6, c1 = 1.5, c2 = 6.2, c3 = 0.3,
c4 = 0.35, and c5 = 0.1 (see Ref. [52] for details). The
expression (36) with the Coulomb logarithm given by Eq. (47)
gives an accurate description of the permittivity of plasmas for
Z = 1 and for Z � 1, where it applies to the Lorentz model of
Lee and More [39] for stationary conductivity and its extension
for dynamical conductivity [40].

For highly and moderately degenerate plasmas the influence
of electron-electron collisions will be decreased due to Pauli
blocking [52]. This effect can be taken into account if one uses
the expression for the Spitzer factor in a degenerate electron
plasma [53,54],

γ̃σ (Z) = γσ (Z) + 1 − γσ (Z)

1 + 0.6 ln(1 + �/20)
, (48)

instead of the respective expression for the nondegenerate
Spitzer factor γσ (Z) [Eq. (31)]. In Ref. [53] it was demon-
strated that the interpolation formula (48) gives results very
similar to those obtained by a rigorous quantum statistical
approach.

FIG. 1. (Color online) Real (top) and imaginary (with minus
sign) (bottom) parts of K0(ω) for the nondegenerate electron plasma
with different ionic charges Z = 1 (thick lines), Z = 3 (thinner lines),
and Z = 10 (thinnest lines), calculated by Eqs. (26) and (34) with
C = s = 1 (solid lines) and by the interpolation formula of Brantov
et. al. [37] (dotted lines).

Using the same arguments that were used for the derivation
of the expression (33), one can obtain the following expression
for the value of �0 = Z/Z∗(ω → 0) for the case of partially
or fully degenerate plasmas:

�0 = Z
[
γ̃ −1

σ (Z) − 1
]
/5, (49)

where γ̃σ is given by Eq. (48). The frequency dependence of �

is given by the same equation (34) as in the case of a degenerate
plasma.

It should also be mentioned that the theoretical model
described above is valid for frequencies ω � ωp. For frequen-
cies higher than the plasma frequency the value of the real
part of the function K0(ω) will be considerably decreased in
comparison with the one for ω < ωp [55–57] as long as a
charged particle screening at the plasma frequency is replaced
by a screening at the laser frequency for ω > ωp. This can
be approximately accounted for by replacing ωp by ω in the
Coulomb logarithm for the case ω > ωp [56].

III. NUMERICAL RESULTS

In Fig. 1 the results of the numerical calculations of the real
Re[K0(ω)] and imaginary (with a minus sign) −Im[K0(ω)]
parts of the function K0(ω) for nondegenerate plasmas by
Eqs. (26), (33), and (34) are presented for different ionic
charges Z = 1,3,10 as functions of the scaled frequency ω/νe

of the electromagnetic radiation. The case of highly charged
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plasma ions with Z = 10 is almost identical to the Lorentz
model. The parameters C and s in Eq. (34) are equal to 1. For
comparison, the results of the calculation by the interpolation
formula suggested by Brantov et al. [37] are also shown by
dotted lines. For the considered long-wavelength perturbations
(k → 0) this interpolation formula consists of Eq. (29) with
χ
Z2

= 1 and the dimensionless quantity ξω is replaced by
ξωGZ(ω), where

GZ(ω) = 1 + C0ξω/γσ (Z)

1 + C0ξω

, C0 = 4

15
√

π
(1 + 2i). (50)

Here the factor γσ (Z) is given by Eq. (31). In the limit Z � 1
the factor γσ (Z) → 1 and therefore GZ(ω) → 1, which gives
the Lorentz model.

It can be seen that our results shown in Fig. 1 are very close
to the interpolation results obtained in Ref. [37]. The largest
difference between both models occurs for the imaginary part
of the function K0(ω) at ω/νe ∼ 0.5 and Z = 1 and the relative
deviation is within 5%. However, the interpolation formula of
Ref. [37] has an accuracy of about 7% compared to the more
rigorous fully kinetic treatment [37].

It should be noted that both the models (26), (33), and (34)
and the interpolation formula suggested in Ref. [37] lead to the
correct asymptotic expressions for the permittivity in the low-
and high-frequency limits, although the interpolation formula
[37] does not satisfy the fundamental property ε(−ω) = ε∗(ω)
and the Kramers-Kronig relations [58]. This is because the
function GZ(ω) given by Eq. (50) does not satisfy the relation
GZ(−ω) = G∗

Z(ω). Contrarily, our model satisfies the equality
ε(−ω) = ε∗(ω) and the Kramers-Kronig relations.

It should also be emphasized that the model presented
here only weakly depends on the actual choice of the fitting
parameters C and s in the expression (34). More specifically,
the results are only slightly changed in the interval C,s ∈
[0.5; 2].

In Fig. 2 the function K0(ω), obtained by Eqs. (36), (49),
and (34), is shown for the cases of partially degenerate
plasmas with different degeneracy parameters εF = EF/T =
10−5,10−2,1.5,10 and different ionic charges Z = 1,10. The
results for a weakly degenerate case with εF = 10−5 coincide
for all Z (thick solid and dashed lines in Fig. 2) with
those calculated by Eqs. (26), (33), and (34) obtained for a
nondegenerate plasma. For Z ≥ 10 the results of calculations
by Eqs. (36), (49), and (34) are close to those obtained for the
nondegenerate case if εF � 0.3.

For εF � 0.1 the Spitzer factors (48) for a degenerate
plasma are very close to 1. That is, for moderately and highly
degenerate plasmas the electron-electron collisions do not play
a significant role and K0(ω) does not depend on Z. For this
case and for εF < 1 (i.e., at 0.1 � εF < 1) the dependence of
K0(ω) on the frequency is the same as in the nondegenerate
case with Z ≥ 10.

As shown in Fig. 2, a substantial difference between the
nondegenerate and degenerate regimes occurs at EF/T � 1.
For EF/T � 1 the difference is dramatic: The function K0(ω)
is shifted to the left along the ω/νe axis while increasing EF/T .
This is stipulated by the fact that, in accordance with Eq. (38),
the function K0(ω) for a degenerate plasma depends on ηω =
ξω/ε

3/2
F rather than on the parameter ξω as in the nondegenerate

FIG. 2. (Color online) Real (top) and imaginary (with minus
sign) (bottom) parts of K0(ω), calculated by Eqs. (36), (49), and (34)
with C = s = 1, for the degenerate electron plasma with different
ionic charges and different degeneracy parameters: Z = 1,εF = 10−5

(thick solid lines); Z = 10,εF = 10−5 (thick dashed lines); Z =
1,εF = 10−2 (thin solid lines); Z = 10,εF = 10−2 (thin dashed lines);
Z = 10,εF = 1.5 (marked lines); and Z = 10,εF = 10 (dash-dotted
lines).

case. This means that the displacement of the maximum of the
function K0(ω) along the ω/νe axis is proportional to ε

3/2
F

for εF � 1. Therefore, to gain more insight we plot in Fig. 3
the function K0(ω) versus the quantity η−1

ω , i.e., excluding the
factor ε

3/2
F in the scaled frequency. One can easily see that for

εF ≥ 5 all curves are similar and centered near ηω = 1 and for
εF > 10 one can use the Drude formula (39) to calculate the
permittivity.

IV. SUMMARY

In this paper we have obtained an analytical solution
of the linearized Fokker-Planck kinetic equation with a
Landau collision integral and for a completely ionized and
unmagnetized electron plasma with an arbitrary ionic charge.
This solution accounts for both electron-ion collisions and the
collisions of the subthermal (cold) electrons with thermal ones.
The latter collisions have been treated phenomenologically by
introducing a parameter � related to the relative contribution
of the subthermal electrons to the friction force and diffusion
coefficient in velocity space (the limit � → 0 corresponds to
the vanishing contribution of the electron-electron collisions).

Using the obtained solution of the Fokker-Planck kinetic
equation, we have proposed an analytical model for the high-
frequency (ω � kvth) dielectric function of the collisional
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FIG. 3. (Color online) Real (top) and imaginary (with minus
sign) (bottom) parts of K0(ω) as functions of the parameter η−1

ω ,
calculated by Eqs. (36), (49), and (34) with C = s = 1, for the
degenerate electron plasma with εF = 1.5 (lines with crosses), εF = 5
(lines with triangles), εF = 10 (dash-dotted lines), and for εF → ∞
(solid lines). In the latter case the function K0(ω) is given by Eq. (38),
which, however, in the limit εF → ∞ coincides with the Drude model
(39). The results do not depend on the value of Z (for Z > 1 and
εF > 1).

electron plasma with an arbitrary ionic charge. More precisely,
the validity of the model is restricted to the long-wavelength
high-frequency perturbations when k−1 is the largest length
scale of the problem with kvth � ω, kλei � 1, and kλee � 1,
where λei and λee are the electron-ion and electron-electron
mean free paths, respectively.

In our model the dielectric function contains the contribu-
tion of the electron-electron collisions through an unknown
parameter �(ω), which has been treated as a function of the
frequency ω. Then �(ω) is adjusted by considering the low-
frequency (ω → 0) limit of the dielectric function, where it
should agree with the well-known expression for the stationary

electric conductivity. On the other hand, at high frequencies
(ω → ∞) it behaves as �(ω) → 0 to fulfill the requirement
of a vanishing contribution of the electron-electron collisions.
One important feature of the outlined model is the possibility
of generalization of the results to the cases of partially
degenerate and/or strongly coupled plasmas. Making such
a generalization, we have assumed an additional limitation
�k2/2m � ω on the wavelength of the excitations.

In a further step we have considered a number of limiting
cases: (a) the limit of a highly degenerate (T � EF) plasma,
(b) the limit of low frequencies, (c) the limit of high frequen-
cies, and (d) the asymptotic behavior of the dielectric function
at large ionic charge Z � 1 when our model coincides with the
Lorentz plasma model derived for either nondegenerate [22]
or partially degenerate plasmas [39,40]. These limiting cases
facilitate the systematic comparison of our analytical results
with previous theoretical models.

In particular, the present model has been compared both
analytically and numerically with the interpolation formula
suggested by Brantov et al. [37]. It has been demonstrated
that our results agree satisfactorily with those obtained in
Ref. [37], showing relative deviations of less than 5% in an
unfavorable case of lowest ionic charge Z = 1. It should be
noted, however, that the interpolation formula by Brantov et al.
has an accuracy of about 7% compared to the more rigorous
fully kinetic treatment of Ref. [37].

As the main goal of this paper we suggested a simple
but more advanced analytical model for calculations of the
dielectric function and related quantities in a wide range of
parameters that is appropriate for modeling many experiments
with laser-matter interactions. In addition, further improve-
ment of the present model can be achieved by considering
the spatial inhomogeneity of the perturbations (i.e., finite
wavelengths k−1) in the Fokker-Planck kinetic equation (1).
This can be done using the method of Ref. [37] for the
solution of the kinetic equation and, to treat the electron-
electron collisions, following the same steps that led to the
approximate coefficients (6) and (7). Systematic investigation
of this problem is left for future work.
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[26] A. Selchow, G. Röpke, and K. Morawetz, Nucl. Instrum.
Methods Phys. Res. Sect. A 441, 40 (2000).

[27] K. Morawetz and U. Fuhrmann, Phys. Rev. E 61, 2272
(2000).

[28] G. S. Atwal and N. W. Ashcroft, Phys. Rev. B 65, 115109 (2002).
[29] A. V. Brantov, V. Y. Bychenkov, W. Rozmus, and C. E. Capjack,

IEEE Trans. Plasma Sci. 34, 738 (2006).

[30] V. Y. Bychenkov, V. T. Tikhonchuk, and W. Rozmus, Phys.
Plasmas 4, 4205 (1997).

[31] V. Y. Bychenkov, Plasma Phys. Rep. 24, 801 (1998).
[32] R. A. Koch and W. Horton, Jr., Phys. Fluids 18, 861 (1975).
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