
PHYSICAL REVIEW E 89, 033101 (2014)

Towards modeling of nonlinear laser-plasma interactions with hydrocodes: The thick-ray approach
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This paper deals with the computation of laser beam intensity in large-scale radiative hydrocodes applied to
the modeling of nonlinear laser-plasma interactions (LPIs) in inertial confinement fusion (ICF). The paraxial
complex geometrical optics (PCGO) is adapted for light waves in an inhomogeneous medium and modified to
include the inverse bremsstrahlung absorption and the ponderomotive force. This thick-ray model is compared
to the standard ray-tracing (RT) approach, both in the CHIC code. The PCGO model leads to different power
deposition patterns and better diffraction modeling compared to standard RT codes. The intensity-reconstruction
technique used in RT codes to model nonlinear LPI leads to artificial filamentation and fails to reproduce realistic
ponderomotive self-focusing distances, intensity amplifications, and density channel depletions, whereas PCGO
succeeds. Bundles of Gaussian thick rays can be used to model realistic non-Gaussian ICF beams. The PCGO
approach is expected to improve the accuracy of ICF simulations and serve as a basis to implement diverse LPI
effects in large-scale hydrocodes.
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I. INTRODUCTION

Theoretical and numerical studies of inertial confinement
fusion (ICF) are supported by experiments in laser facilities
worldwide. In particular, the shock ignition scheme has been
studied and tests on a laser system are planned. Shock ignition
requires high laser intensities, resulting in nonlinear laser-
plasma interactions (LPIs) where the optical wave couples
to electron and ion plasma waves, notably resulting in
stimulated Raman scattering, stimulated Brillouin scattering,
and cross-beam energy transfer. These nonlinear processes
are commonly studied at microscopic and mesoscopic scales
in particle-in-cell and paraxial electromagnetic codes, but
often are omitted in larger-scale hydrodynamical codes. The
importance of such effects has been highlighted by recent ex-
periments on the National Ignition Facility and OMEGA laser
facilities and supported by theoretical work and numerical
simulations [1–5], constituting a strong motivation to continue
including nonlinear LPI in large-scale models.

The modeling of nonlinear LPIs is based on the knowl-
edge of the wave’s electric field in the plasma. Radiative-
hydrodynamic codes usually rely on ray-tracing (RT) models
[6], which describe beams as bundles of needlelike rays.
The RT technique is widely used in ICF codes to model
the deposition of laser power in the plasma. These models
are robust and easy to implement but require large amounts
of CPU time. Furthermore, it is possible to model beam
diffraction for vacuum or constant density conditions, using
a properly adapted distribution of rays. However, because
rays have no thickness, beam intensity cannot be directly
computed. Consequently, this quantity is usually estimated
from the inverse bremsstrahlung power absorbed by the
plasma. Because rays are independent and diffraction is only
modeled as an initial condition, unphysical spatial modulations
arising from the mesh scale are often observed in intensity
reconstructed maps. Although this behavior is not observed in
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simple plasma profiles, it can become very prominent in some
cases. Although physical processes represented in large-scale
hydrocodes often smooth out spatial modulations of laser
energy deposition, nonlinear LPI processes are especially
sensitive to the laser beam intensity. Therefore, it is of
particular importance to describe this quantity with accuracy
and robustness.

Ray-tracing models have the advantage of reducing the
wave equation to a simple set of ordinary differential equations.
Conversely, solving the full wave equation for the laser light
in a plasma is out of the question in large-scale codes because
of the numerical costs involved. There is, however, an in
between, as modeling the full beam thickness and diffraction
processes can be achieved by reducing the Gaussian beam
diffraction problem to a set of ordinary differential equations.
This type of wave problem has a large scope, including
fields such as optics, geophysics, acoustics, radio physics, and
plasma physics. Except for the particular case of Hamiltonian
complex ray tracing [7], most available techniques reduce the
above problem to complex-valued nonlinear Riccati equations.
Among these methods, we note Babich and Lazutkin’s solution
of the abridged paraxial wave equation [8], the paraxial
WKB approximation [9], complex-valued dynamic ray tracing
[10,11], eikonal-based paraxial complex geometrical optics
[12], and ray-based paraxial complex geometrical optics [7]
(see [13] for a review).

The ray-based paraxial complex geometrical optics
(PCGO) model relies on a central needlelike ray whose
trajectory is determined by standard geometrical optics (GO)
laws, i.e., by a RT code. The wave’s electric field amplitude
is then reconstructed on the central ray by integration of
nonlinear Riccati-type equations. This approach is equivalent
to considering a ray with a finite thickness instead of a
needlelike ray. Because the PCGO method relies partially on a
RT scheme, it is convenient for implementation in hydrocodes
already using RT models. It is also likely to be more CPU
efficient than the complex ray-tracing model because of the
numerical methods that need to be implemented in that case
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[14]. The standard PCGO model is usually written in a
framework where the relative permittivity is real, i.e., there
are no absorption or gain processes.

We present in Sec. II the principles of PCGO and its
adaptations to include absorption or gain from the medium
in a self-consistent way. Validation of our implementation of
PCGO in the CHIC radiative hydrocode [15] against several
academic text cases is presented in Sec. III. We present in
Sec. IV and Appendix A an efficient projection algorithm
that allows coupling of PCGO to a hydrodynamical mesh.
Applications of this projection to the inverse bremsstrahlung
absorption and the modeling of the ponderomotive force as
an example of nonlinear LPIs are presented in Sec. V, along
with comparisons to standard RT-based results. As individual
PCGO rays are limited to Gaussian modes, we present in
Sec. VI an application of the use of thick rays for modeling
realistic ICF beams, taking advantage of the speckles induced
by laser smoothing techniques. A summary and outlook are
presented in Sec. VII.

II. RAY-BASED PARAXIAL COMPLEX
GEOMETRICAL OPTICS

A. Basic equations of geometrical optics

Both the RT and PCGO methods rely on GO principles.
The starting point of GO is the Helmholtz equation. For a
monochromatic wave, the equation for the scalar wave field
u(t,r) takes the form [14]

�u(ω,r) + k2
0ε(ω,r)u(ω,r) = 0, (1)

where u(ω,r) is the electric field amplitude at frequency ω,
r is the spatial coordinate, k0 = ω0/c is the vacuum wave
vector (ω0 being the vacuum frequency), and ε is the relative
permittivity of the medium. The Helmholtz equation describes
wave dispersion and gain via the frequency-dependent relative
permittivity, composed of a real and an imaginary part and
modeled by

ε(ω,r) = ε′(ω,r) + iε′′(ω,r) = 1 − ne

nc

(1 + iνei/ω0), (2)

where nc is the critical density, ε′(ω,r) is the real part and
ε′′(ω,r) the imaginary part of the relative permittivity, and νei

is the electron-ion collision frequency.
For a monochromatic wave, the general solution to the

Helmholtz equation takes the form of an almost-plane wave

u(r) = A(r) exp[ik0ψ(r)], (3)

where A(r) is a slowly varying amplitude and ψ(r) is the
eikonal, or optical path. It is worth mentioning that in standard
GO, the eikonal is a real number. The necessary conditions for
this formalism to be correct are detailed in Sec. II D. The scalar
field can then be expanded in inverse powers of the vacuum
wave number (Debye expansion)

u(r) =
[
A0(r) + A1(r)

ik0
+ A2(r)

(ik0)2
+ · · ·

]
exp[ik0ψ(r)]. (4)

Substituting this model into the Helmholtz equation yields
equations at different orders. The zeroth order is called the
eikonal equation and reads

(∇ψ)2 = ε(r). (5)

Higher-order terms are called transport equations and read

2∇A0 · ∇ψ + A0�ψ = 0,

2∇A1 · ∇ψ + A1�ψ = −�A0,

...

2∇Am · ∇ψ + Am�ψ = −�Am−1. (6)

The eikonal equation belongs to the Hamilton-Jacobi vari-
ety. Using the characteristic technique yields the Hamiltonian
H of the system

H = 1
2 [ p2 − ε(r)] = 0, (7)

where p = ∇ψ is identified as the momentum of the ray

d r
dτ

= p,
d p
dτ

= 1

2
∇ε(r), (8)

where τ is linked to the elementary arclength ds by the relation
dτ = ds/

√
ε′. These equations describe the standard trajec-

tory of a ray and constitute the basis of the RT method. It is
usually assumed that the imaginary part of the refractive index
does not contribute to the trajectory of the ray. Accounting
for the imaginary part of the relative permittivity can be done
when n′′ � n′ using a perturbation technique for the eikonal
and rays. A set of equations for the perturbed ray trajectory can
then be solved [14]. For the sake of simplicity, we will neglect
this effect, as is done in most RT models applied to ICF.

In RT models, a large number of rays arranged to mimic
spatial power profiles of realistic beams propagate in the
plasma following Eqs. (8). Conversely, a Gaussian beam
modeled with PCGO relies on a single ray with a nonzero
thickness, resulting in the former rays sometimes being called
fat rays or thick rays.

B. Principles of paraxial complex geometrical optics

The principle of PCGO is to use a central ray that follows
GO trajectories as a coordinate system for the higher-order
transport equations (6), which are neglected in GO. We
now consider that the eikonal of the wave presented in
Eq. (3) is a complex number, so the electric field possesses
a decaying component in addition to the oscillatory one. In
standard PCGO, we consider only the real part of the relative
permittivity ε′.

From a central ray trajectory, computed using traditional
GO, we define a new coordinate system {q1,q2,τ }, where
the vector q is orthogonal to the ray and τ is tangent to it.
In a three-dimensional (3D) framework, this new coordinate
system must account for torsion and curvature of the ray in
order to constitute a rotationless orthogonal basis, providing
parallel transport along the ray. Such a basis was proposed in
[16] and is often referred to as Popov’s ray-centered coordinate
system.

The eikonal equation (3) written in the central ray coordi-
nate system reads

1

h2

(
∂ψ

∂τ

)2

+
(

∂ψ

∂q1

)2

+
(

∂ψ

∂q2

)2

= ε′(rc) + (q · ∇)ε′(rc) + 1

2
(q · ∇)2ε′(rc) + · · · , (9)
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where h = √
ε′
c(τ ) − (q · ∇)

√
ε′
c(τ ) is the Lamé coefficient

(always real), rc refers to the central ray position, and the real
part of the relative permittivity ε′(r) = ε′(rc + q) has been
expanded in a Taylor series in small deviations of q = r − rc.
The transport equation (6) in the new coordinate system reads

2

h2

∂ψ

∂τ

∂A0

∂τ
+

[
1

h

∂

∂τ

(
1

h

∂ψ

∂τ
+ ∂2ψ

∂q2
1

+ ∂2ψ

∂q2
2

)]
A0 = 0,

(10)

where only the first term in the Debye expansion of the field
is kept [Eq. (4)].

The standard model for the phase of the beam in PCGO
reads

ψ(q1,q2,τ ) = ψc(τ ) + ψ̃(q1,q2,τ ), (11)

where ψc(τ ) is the phase of the central ray and ψ̃(q1,q2,τ ) is
the phase of the wave around the central ray, assumed to vary
quadratically with q:

ψ̃(q1,q2,τ ) = 1
2Bij (τ )qiqj , (12)

where B is the so-called curvature matrix. Here B describes the
phase variations around the center of the beam and relates to
the curvature of the wave front ρ and the beam cross section w:

w(τ ) =
√

2

k0Im[B(τ )]
, ρ(τ ) =

√
ε′
c

Re[B(τ )]
. (13)

C. Paraxial complex geometrical optics and absorbing media

In order to model absorption consistently, we introduce
another term in Eq. (11) and consider a complex relative
permittivity

ψ(q1,q2,τ ) = ψc(τ ) + ψ1(q1,q2,τ ) + ψ̃(q1,q2,τ ), (14)

where ψ1(q1,q2,τ ) is a complex phase perturbation, small
compared to ψc. The dependence on τ reflects the variation
associated with the central ray and the dependence on q
represents the effect of the perturbation on the beam thickness.
We assume that the latter contribution can be neglected in our
conditions, i.e., that the absorption of the medium does not
contribute significantly to changes in beam thickness, only to
beam intensity. Consequently, we have ψ1(q1,q2,τ ) � ψ1c(τ )
and ψ1c(τ ) � ψc(τ ).

For the sake of simplicity, we will now assume that the
geometry is two dimensional, so there is only one component
in q and there is no torsion on the central ray. The following
analysis can be readily extended in three dimensions, as it
is explained in Ref. [14] with more details on 3D PCGO in
general. Introducing Eq. (14) in the eikonal equation (9) yields

1

h2

[(
∂ψc

∂τ

)2

+ 2
∂ψc

∂τ

∂ψ̃

∂τ
+ 2

∂ψc

∂τ

∂ψ1c

∂τ

]
+ (Bq)2

= ε′
c + iε′′

c + q
∂ε′

c

∂q
+ q2

2

∂2ε′
c

∂q2
, (15)

where we have neglected second-order terms in ψ and higher
than second-order terms in q and only ε′

c is Taylor expanded.
In this equation, it is worth detailing the terms in h2:

h2 = |h · h| = ε′
c − (q · ∇)ε′

c + 1
4 [(q · ∇)ε′

c]2. (16)

Equation (15) is a mixture of different orders in ψ and q.
To zeroth order in q we get

1

h2

[(
∂ψc

∂τ

)2

+ 2
∂ψc

∂τ

∂ψ̃

∂τ
+ 2

∂ψc

∂τ

∂ψ1c

∂τ

]
= ε′

c + iε′′
c , (17)

where h2 � ε′
c and we have expanded εc in real and imaginary

parts. Equating terms at zeroth order in ψ in this equation
yields

∂ψc

∂τ
= ε′

c. (18)

This is the standard equation for the central ray phase in PCGO.
To first order in ψ and using (18) we get

∂ψ1c

∂τ
� i

Im(εcε
′
c)

2ε′
c

= i
ε′′
c

2
, (19)

which relates the complex phase perturbation to the imaginary
part of the relative permittivity, i.e., to the absorption or gain
of the medium. To second order in q and using Eqs. (18) and
(19) we get the Riccati equation

B2 + ∂B

∂τ
= − 3

4ε′
c

(
∂ε′

c

∂q

)2

+ 1

2

∂2ε′
c

∂q2
= α(τ ), (20)

where we have used h2 = ε′
c − q

∂ε′
c

∂q
+ q2

4ε′
c
( ∂ε′

c

∂q
)2 and n′′ � n′.

This equation is identical to the one found in traditional
PCGO and accounts for the beam diffraction and refraction.
The introduction of the complex (and purely imaginary)
perturbation phase ψ1c on the central ray has no effect on
the Riccati equation for B. Consequently, the expression for
thickness and curvature radius of the wave follows the same
form as in traditional PCGO [Eq. (13)].

The energy conservation equation for the amplitude A,
which follows from the transport equation, is unchanged:

|Ã0(τ )| = |Ã0(0)|
√

w0

w(τ )
, (21)

where Ã0(τ ) = [ε′
c(τ )]1/4A0(τ ) and w0 = w(0) is the initial

Gaussian beam thickness. The full form of the electric field
given by the model is then

u(q,τ ) = |Ã0(0)|
[ε′

c(τ )]1/4

√
w0

w(τ )

× exp

[
ik0

(
Re(B)

2
q2 −

∫ τ

0
ε′
c(τ )dτ

)]

× exp

[
−k0

(
Im(B)

2
q2 +

∫ τ

0

ε′′
c (τ )

2
dτ

)]
. (22)

This equation highlights the decaying factor in the electric field
modeled with the contribution of ε′′

c . The on-axis ray intensity
then reads

I0(τ ) = c
√

ε′
cε0

2
|u(0,τ )|2

= cε0

2
|Ã0(0)|2 w0

w
exp

(
−k0

∫ τ

0
ε′′
c dτ

)
, (23)
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where ε0 is the vacuum permittivity. Along with the intensity,
width, and radius of curvature transported along a PCGO
ray, the local beam frequency can be readily computed from
the Doppler shift induced by plasma velocities described in
the hydrodynamical part of the codes in which PCGO is
implemented.

D. Validity domain

The PCGO model is based on several assumptions that must
be carefully respected. There are three conditions, derived in
detail in Ref. [14]. The first one, common to all GO methods
(and complex GO), states that the wavelength should be small
compared to the characteristic scale Lch of the inhomogeneities
of the plasma

λ

Lch
� 1. (24)

For ICF, the wavelength of a typical 3ω beam is 0.35 μm
and the characteristic scale of inhomogeneities is ∼10 μm,
so this assumption generally holds in large-scale hydrocodes.
The second condition relates to the small-angle wave approx-
imation

λ

w
� 1. (25)

Typical ICF beams have a 350-μm radius at a focal spot with
imposed small-scale modulations ∼2–3 μm, which are well
over λ. Although it appears to be an easily respected condition,
we will see that it limits other parameters. The third condition
is the most restrictive one and is related to the preservation of
the Gaussian profile along the propagation:

w

Lch
� 1. (26)

This assumption is incorrect for a 350-μm beam in a typical
ICF plasma but not for the speckles. Although this limitation
forbids the modeling of a whole ICF beam by a single thick
ray, the use of phase plates splits the beam into beamlets with
different phases, thus providing an opportunity for realistic
beam splitting in the PCGO model. We present in Sec. VI the
principles behind this technique along with an example of a
speckled beam modeled with PCGO. The full beam splitting
algorithm is not within the scope of this paper.

The last assumption used in this model is ε′′ � ε′, which
may not be valid near the critical density. It should be noted,
however, that this assumption is very common in all radiative-
hydrodynamic codes for ICF.

III. VALIDATION: SIMPLE CASES

The PCGO technique presented in this paper has been
implemented in two dimensions in the CHIC radiative-
hydrodynamic code [15]. The central ray trajectory equations
are computed by the RT model of CHIC [6], solving Eqs. (8).
The Riccati equation for B is solved in variations, i.e., by
defining P and Q such that B = P/Q and solving two
separate equations. Resulting equations in P and Q are
integrated using an adaptive time-step Runge-Kutta scheme.
First-order and second-order derivatives of the density field
are computed from the hydrodynamical grid using standard
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FIG. 1. Normalized radius of a thick ray incident at θ0 = 30◦ on a
linear density ramp (θ0 is defined with respect to the gradient axis z).
Ray radius and τ coordinate are defined as in Ref. [14]. Initial
conditions follow the same reference, with w0 = 10λ, ε = 1 − bz

(with b = 1/1000πλ), and z0 = 0. The wavelength used here is
λ = 0.05/1000π m, so ε = 0 for z = 5 cm. Results from PCGO in
CHIC are shown as a solid line and numerical integration of the Riccati
equation using the analytical form for α is shown as pluses. The
latter integration is performed with MATHEMATICA with convergence
monitoring and a high-accuracy goal.

least-squares fits and interpolation techniques. In terms of
computer performances, the integration of the Riccati equation
is very efficient, especially because only one ray is required.

Straightforward validations of the PCGO model in CHIC

against theoretical diffraction solutions for Gaussian beams
in vacuum and constant density media have been conducted
(not shown here for conciseness). A more advanced case of a
thick ray incident at 30◦ with respect to the normal of a linear
density ramp is presented in Fig. 1. On the ascending trajectory
diffraction competes against refraction, broadening the beam
until refraction prevails before the turning point and on the
descending trajectory where the beam starts focusing. After
the focusing, with a beam waist smaller than the initial beam
width, the beam width starts increasing again. The result is
compared to a numerical integration of B from the analytical
solution for α (see [14]) and is found to be in perfect agreement,
thus validating the computation of α performed in the model.

For a beam with a plane initial wave front propagating along
the axis of a waveguide medium of the form ε′ = ε′

0 − x2/L2,
one can solve analytically the Riccati equation (20) for B:

BWG
th = 1

L⊥

i L⊥
aR

− tan τ
L⊥

i L⊥
aR

tan τ
L⊥

+ 1
, (27)

where L⊥ is a characteristic length and aR is the Rayleigh
length. Figure 2 shows the thickness of such a ray, as computed
by our model in CHIC. Simulations are conducted for three
values of the characteristic length L⊥, for which the beam
width oscillates when L⊥ 	= aR or is constant when L⊥ = aR

(i.e., diffraction is exactly compensated by the waveguide).
Paraxial complex geometrical optics results from CHIC are
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FIG. 2. Normalized radius of a thick ray propagating along the
axis of a waveguide for different values of the characteristic length L⊥
of the density gradient. Theoretical solutions are shown as symbols
and results from the PCGO model in CHIC as lines (see the legend).
The beam wavelength for this case is λ0 = 100 μm with initial radius
w0 = 10λ, so the Rayleigh length is aR = π/100.

found to be in perfect agreement with the theoretical solution
of the Riccati equation.

IV. FIELD PROJECTION

The use of PCGO rays coupled to hydrocodes opens
many possibilities for large-scale simulations of nonlinear
LPI. It poses, however, several technical challenges such
as the efficient projection of the Gaussian beam parameters
onto an irregular mesh, the configuration of which is only
determined by hydrodynamical processes. It is convenient to
describe the projection technique with the problem of inverse
bremsstrahlung absorption.

Let us consider the case of a planar 2D geometry. The power
P

q

abs deposited in the plasma by inverse bremsstrahlung in a
quadrangle q of area Aq can be written

P
q

abs = −
∫∫

Aq

∇ · I =
∫∫

Aq

νei

ω2
p

ω2
0

ε0

2
|u|2dA, (28)

where ωp is the plasma frequency and νei is the electron-ion
collision frequency. It is convenient to split each quadrangle
q into two triangles j and l to simplify density interpolations
inside cells. We now refer to triangle j as the triangle in which
the central ray is for τ ∈ [τ0,τ1], the coordinates at which it
enters and leaves triangle j . We refer to triangle k as the triangle
in which we perform the projection (e.g., energy deposition).
These triangles can potentially be the whole hydrodynamical
grid, depending on the beam configuration.

For efficient computations, we limit the beam parameter
projection to triangles whose barycenters fall in the ±2w beam
envelop. The interval [τ0,τ1] and the corresponding ±2w beam
envelope define a 2D surface Aj that intersects the Lagrangian
mesh. We consider triangle k to be covered by Aj if there is
a τ = τjk ∈ [τ0,τ1] at which the normal to the central ray in
triangle j passes by the barycenter of triangle k. Searches

on triangles k are conducted on cells neighboring the central
ray, until selected triangles are further than ±2w away. More
details on the selection criterion are included in Appendix A 1.

Once a triangle k has been selected, the power P k
abs

deposited by the beam in triangle k is simply

P k
abs =

∫∫
Ak

ν
j

ei

ω2
p

ω2
0

ε0

2
|u|2dA, (29)

where Ak designates the area of triangle k and we use
the value of νei from the central ray, i.e., from triangle
j , and |u|2 = |u0(τ )|2e−2r2/w2(τ ). The natural basis in which
this expression can be integrated is the ray coordinate basis
[q(τ ),τ ]. In order to integrate this equation, we make the
assumption that u, w, and νeine/nc vary linearly in [τ0,τ1].
Furthermore, we assume that the ray trajectory is straight
in triangle j so that we can integrate in (qs,τ ), where qs

designates the normal to the straight ray. These assumptions
allow us to solve analytically the first part of the surface integral
along the ray-normal coordinate q. The resulting integral is
computed numerically using Romberg’s method. Details on
the mathematical formulation and techniques used are given
in Appendix A 2.

Because the projection algorithm depends on a neighbor
search algorithm, its performance in terms of CPU time
depends on the relative thickness of the beam compared to
the mesh resolution. In the worst case scenario (which should
be avoided), the beam is as large as the entire mesh, in which
case the PCGO technique is of the order of RT models.
Conversely, computation of energy deposition for narrow
beams (with respect to the simulation domain) is much faster
with PCGO than RT. The in-between performances depend on
the number of RT rays used.

V. COMPARISON OF ABSORPTION AND
PONDEROMOTIVE FORCE IN PCGO AND RT

A. Absorption: Density ramp

Comparisons of RT and PCGO in constant-density media
(not presented here) yield similar total power deposited by
the beam to the plasma. When diffraction is not introduced in
RT simulations, significant differences naturally arise between
initially parallel RT rays and a PCGO thick ray. The difference
is larger for beams that are narrow with respect to the
total simulation domain size. Ray-tracing models commonly
compensate for this flaw by using a spread in the ray’s
initial k vectors to locally model diffraction of the beam.
Rays arranged in such a configuration reproduce the global
envelope of a beam as well as its intensity profile. Using
this technique, similar results for the spatial profile of power
deposited between PCGO and RT are obtained. It is worth
mentioning that modeling diffraction of a Gaussian beam
in RT codes requires a significant number of rays (we have
checked that in that case, about 5000 rays are necessary),
whereas the PCGO model requires only one. In general, ICF
beams are very large and so is their Rayleigh length. However,
nonlinear LPI effects crucially depend on diffraction modeling
as a mechanism that acts against or with refraction to change
the beam width and intensity. It is important to note that this
method of reproducing diffraction using an initial condition
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FIG. 3. (Color online) Power absorbed by inverse bremsstrahlung in a linear density ramp ne/nc = 1 − 20x (x in cm). The initial beam
width is w = 21 μm with zero curvature at the plasma boundary. The beam is incident from the right on the density ramp at θ0 = 0◦ (top) and
θ0 = 50◦ (bottom) (see the arrow for beam direction). Figures are from a standard ray-tracing model (left) and the PCGO model (right).

on the ray’s vectors is exact only for vacuum conditions (or a
constant density plasma). Any departure from these conditions
will not be reflected with a change in diffraction strength for
the beam modeled with RT. Because rays are independent,
RT-based diffraction remains that of the initial condition, i.e.,
that of a beam in a vacuum. This difference is highlighted in
what follows with an example of inhomogeneous plasma.

We compare energy deposited in a linear density ramp of the
form ne/nc = 1 − X/L, where L = 0.5 mm. The simulation
domain is 100 × 100 grid points in a box of 0.5 × 0.5 mm2

for an incident beam at an angle θ0 = 0◦ and 0.5 × 1.0 mm2

for θ0 = 50◦. The beam’s initial thickness is w0 = 21 μm. The
RT model is initialized so as to reproduce the caustic of the
beam, with a focal length f = 40 m and diameter of the lens
of D = 1.27 m. Ten thousand rays are used for the RT model.
The beam’s initial power is P0 = 1.209 × 1013 W/cm. The
energy deposited in the mesh by a beam normal to the density
gradient at θ0 = 0◦ reads [17]

P th
abs = P0

[
1 − exp

(−32νei(nc)L

15c

)]
, (30)

where the value of νei(nc) in CHIC for these conditions is
νei(nc) = 4.578 × 1011 s−1 and L = 500 μm, which yields a
theoretical absorption coefficient ηth

abs = P th
abs/P0 = 80.4%.

The top line in Fig. 3 shows the simulation results for
θ0 = 0◦. The total power deposited with both codes yields
an absorption coefficient identical to and conforming with the
theory, i.e., ηabs = 80.4%. The discretized nature of the RT
model (top left) leads to a slightly sharper energy deposition
and underestimation of the spatial distribution of the beam. The
PCGO ray thickness, corresponding to theoretical solutions, is
shown in Fig. 4 (top). Diffraction effects broaden the beam and
the spatial distribution of deposited power is larger for PCGO
(top right).

The bottom line in Fig. 3 shows the simulation results for
θ0 = 50◦. The total absorption coefficient with both codes
is identical: ηabs = 16.4%. Results from the PCGO model
(bottom right) conform to the theory (see Sec. III), showing a
peak power offset from the maximum density with P PCGO

max �
1.52 × 1010 W/cm [see Fig. 4 (bottom)]. This shift is the
consequence of modeling refraction and diffraction of a single
Gaussian beam, compared to many needlelike independent
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FIG. 4. The PCGO ray normalized radius (dotted lines) and
normalized on-axis intensity (dashed lines), normalization with
respect to initial values, for the linear density ramp with θ0 = 0◦

(top) and θ0 = 50◦ (bottom). The ray coordinate τ is normalized with
respect to the maximum τ , at which the ray leaves the plasma. Here
τ/τmax = 0.5 corresponds, respectively, to the reflection (top) and
turning point (bottom) of the ray.

rays. In the RT model (bottom left), all rays converge to the
same x̂ coordinate, leading to a beam waist at maximum
ne/nc (minimum x̂). The RT model produces an artificial
beam waist following from the geometrical configuration of
the rays and does not reproduce the shifted waist of the
beam. The peak deposited power in RT is overestimated, with
P RT

max � 1.66 × 1010 W/cm, due to the discretized nature of
the rays. Diffraction modeling in RT models is exact only for
constant density media. Once variations appear in the density
profile, because each ray independently follows its trajectory,
diffraction may be locally underestimated or overestimated.
Although the PCGO model corresponds to the exact solution
in this specific case, the peak deposited power between RT and
PCGO is different by only 9%. From the energy deposition
standpoint only, the difference between RT and PCGO is
relatively minor and likely to be smoothed by other physical

processes. The underlying intensity difference and the lack
of exact diffraction modeling more strongly impact nonlinear
LPI modeling, as is shown in the following section.

B. Ponderomotive self-focusing

Self-focusing is a nonlinear LPI process in which spatial
gradients of dielectric permittivity induced by the wave field
lead to the beam refraction [18]. There are two contributions
to self-focusing: thermal and ponderomotive. Both processes
stem from electric field nonuniformities. In thermal self-
focusing, this nonuniformity leads to temperature gradients
between the beam center and its wings, creating thermally
induced pressure. Hydrodynamical processes lead to on-axis
density depletion, which causes beam self-focusing through a
lenslike index of refraction. In ponderomotive self-focusing,
the on-axis density depletion is caused by the ponderomotive
force expelling the electrons.

We study the case of ponderomotive self-focusing, modeled
using the RT and PCGO approaches. In order to estimate
the laser intensity in RT models, it is common to use the
power absorbed by the inverse bremsstrahlung as a proxy,
along with the cells surface area. This technique allows us
to approximate the laser intensity field and is used in most
RT-based hydrocodes that include nonlinear LPI effects. The
RT intensity reconstruction is implemented in CHIC for a
comparison with the PCGO model. We describe in this section
an implementation of the ponderomotive force directly based
on the electric field modeled by the PCGO technique and
compare it to the ponderomotive force estimated from RT
intensity reconstruction.

1. Ponderomotive force

In a hydrodynamical approach, the ponderomotive force
FP = −∇U acting on the electron fluid can be expressed as a
gradient of the ponderomotive potential U ,

U = e2

4meω
2
0

|u|2. (31)

In this form, the ponderomotive force can be modeled in a
hydrocode as an additional pressure term U in the plasma
equation of motion. We compute the mean value of U in
quadrangle q from the triangle mesh

〈Uq〉 = Sq1〈U 〉q1 + Sq2〈U 〉q2

Sq1 + Sq2

, (32)

where 〈U 〉q1 and 〈U 〉q2 are mean values corresponding to each
triangle in cell q. The ponderomotive potential in triangle i of
cell q reads

〈U 〉qi
= e2

4meω
2
0

1

Sqi

∫∫
Sqi

|u|2dS, (33)

where the integral over triangle i is computed in the same way
as for Eqs. (A8) and (A10), assuming ε′′ to be constant within
a cell.

2. Estimating LPI in RT codes

In RT methods, the notion of ray intensity does not exist.
A straightforward way to estimate the electric field associated
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with a distribution of needlelike rays rely on the conservation
equation for the laser energy

∂�

∂t
+ ∇ · IL = −νei

ne

nc

�, (34)

where IL is the Poynting vector and � the electromagnetic
energy density � = ε0|u|2/2. At a given hydrodynamical time
step, the laser propagation is stationary, so the first term can be
neglected. We integrate over triangle k by assuming constant
u, � and ne/nc. Using the Stokes formula, Eq. (34) then reads∫∫

dSk∇ · IL =
∫

dl · IL = −�P k
abs = −νei

ne

nc

ε0

2
|u|2�Sk,

(35)

with �P k
abs the total power absorbed in triangle k and �Sk the

area of triangle k. Rearranging, the ponderomotive potential
estimated from RT absorption reads

〈U 〉qi
= 1

2νei

�P
qi

abs

�Sqi

. (36)

This method can be adapted to other nonlinear LPIs that require
the knowledge of the electric field, such as cross-beam energy
transfer.

3. Comparisons of ponderomotive self-focusing
between PCGO and RT

We consider a Gaussian beam in a 2D geometry with a focal
spot size w0 = 20λ and λ = 1.05 μm. In such a configuration,
the initial diffraction of the beam is relatively low, as it would
be for an ICF beam. The hydrogen plasma with Te = 10Ti =
5 keV and ne/nc = 0.1 is described by 180 × 180 grid points
in a box of 2 × 0.2 mm2 size. Based on the work of [19,20],
we have derived in Appendix B 2 an expression for the
critical power of a Gaussian beam undergoing ponderomotive
self-focusing in an initially constant density plasma. The
theory described in Appendix B is valid for ne/nc � 1 and
the steady-state regime. The simulation is run for 200 ps,
when the self-focusing has reached a steady state. Under these
conditions, the critical power for a purely ponderomotive self-
focusing is PC = 445.3 MW. We consider five cases where
P/PC = [1; 2; 3; 4; 5]. Ray-tracing runs are conducted with
10 000 rays and diffraction modeling. Simulations yield very
similar results using 5000 rays, suggesting a weak dependance
on the number of rays above 5000.

a. Intensity profiles. Figure 5 (top) illustrates the RT
maximum intensity in the transverse direction as a function
of propagation direction z, at t = 200 ps, reconstructed from
absorption. Although there is no clear intensity peak, partial
self-focusing occurs for all cases. The self-focusing distance
decreases when power increases for simulations ranging from
P/PC = 1 to 3 and remains similar at higher powers. The
intensity amplification peak is also similar for all cases with
P/PC � 2. Theoretical values for intensity amplification and
self-focusing distance, derived in Appendix B 1, are super-
imposed as colored pluses. Theoretical values show a clear
dependence on the beam power to intensity amplification ratio
and self-focusing distance, a dependence that the RT-based
model does not reproduce. The RT intensity reconstruction
requires a large number of rays per cell. Even when this
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FIG. 5. (Color online) Plot of the RT-based reconstructed max-
imum intensity (top) and PCGO central ray intensity (bottom),
as a function of the beam propagation direction z, after 200 ps
of simulation for the five cases. Intensities are normalized to the
initial central ray intensity I0(τ = 0). Theoretical values for intensity
amplification and self-focusing distance, derived in Appendix B 1,
are superimposed as colored pluses.

condition is fulfilled, rays tend to get trapped in density
channels, thus creating local waveguides, the thicknesses of
which are determined by the mesh resolution (see Sec. IIIB3b).
Although this phenomenon resembles filamentation, RT is
not expected to model that process and it is a numerical
artifact. Furthermore, once RT filamentation has started,
rays tend to stay trapped because there is no more energy
deposition outside the channels. Because of these limitations,
the ponderomotive force from intensity reconstruction presents
spatial modulations and large inaccuracies, leading to the
observed discrepancies in self-focusing length and intensity
amplification.

Results using PCGO are illustrated in Fig. 5 (bottom),
showing the normalized central ray intensity I0/I

0
0 as a

function of propagation direction z at t = 200 ps. We note that
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for P/PC = 1, the beam intensity is constant, corresponding
to an equilibrium between diffraction and refraction from the
waveguide created by the ponderomotive force. We find that
self-focusing distances are well reproduced with thick rays and
intensity amplification ratios are underestimated. Because the
ponderomotive force acts along the whole beam thickness,
the width of the created waveguide is of the same order.
Consequently, the assumption of a small beam thickness com-
pared to plasma inhomogeneity (w � Lch) is less accurate.
This leads to an underestimation of the density curvature
in the waveguide and of the refraction process. Although
intensity amplification is underestimated, it follows the same
tendency of higher amplification for higher powers as predicted
by the theory. Furthermore, a departure from w � Lch

due to the ponderomotive force is unlikely for realistic ICF
beams modeled with PCGO, as the latter contain spatial
intensity modulations and are constructed from smaller thick
rays (see Sec. VI). We note that in simulations with paraxial
electromagnetic codes (see, for example, [21]), the beam
structure after focusing is strongly distorted. Nevertheless,
the focusing length and the intensity amplification are in
agreement with our model.

b. Density channel. In the setup described above, simula-
tions are run with the modulation wavelength equal to 20 De-
bye lengths and Z = 1, so acoustic wave damping can be ne-
glected. For a nonisothermal plasma (Te  Ti) with a weak ion
damping, one transverse direction, and no thermal effects, the
paraxial wave equation possesses an analytical solution for the
density perturbation caused by the ponderomotive force [22]:

δn(t,x) = 1

2cncTe

[
−I (x) + 1

2
[I (x + cst) + I (x − cst)]

]
,

(37)

where δn(t,x) = ne(t,x)/ne(0) − 1. Hence, we expect
a central channel formation with a depletion factor of
−0.5I0/cncTe and two positive density perturbations (bumps)
propagating away from the beam axis with a factor 0.25I (x +
cst)/cncTe. Figure 6 (top) illustrates the density perturbation
along the transverse direction of a PCGO ray for z = 0.3 mm,
normalized to cncTe/I0. The density perturbation is in good
agreement with the theory for all cases. Figure 6 (bottom)
shows corresponding results using the RT model. Although
results are similar to the theory for P/PC = 1, increasing beam
power leads to the formation of local waveguides modulated
by the mesh resolution. Rays are trapped in the minima for
δn and self-focusing does not occur at the beam scale.

Both RT and PCGO models predict similar density deple-
tions at a low power, but the RT model quickly grows unstable
with respect to the self-focusing instability. Intensity profiles
modeled using PCGO are smooth and remain Gaussian, which
allows for a better code robustness. Conversely, nonlinear
LPI effects modeled with RT codes are potentially subject
to the same kind of instabilities and spatial modulations,
which constitute the main motivation for the development
of alternatives such as PCGO. This kind of spiked profile
RT-based code can also be observed due to thermal effects from
inverse bremsstrahlung absorption. When energy deposition
is taken into account, large-scale hydrocodes usually include
electronic conduction schemes that greatly smooth out these
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FIG. 6. (Color online) Density perturbation δn(t,x) = [ne(t,x)/
nc − 0.1]/0.1 along the transverse to the beam, normalized to
cncTe/I0, at z = 0.3 mm, after 100 ps. The results are from PCGO
(top) and RT (bottom) models. The density anomaly in the RT case
is normalized to the maximum intensity, as there is no central ray
intensity. The initial beam power with respect to PC ranges from
1 to 5.

profiles, hence reducing the impact of this behavior. We stress
here that in the purely ponderomotive case, this profile is a
direct consequence of the spiked reconstructed intensity, which
is the key quantity for LPI modeling.

VI. REALISTIC BEAM MODELING

The thick-ray model has been applied so far to single
Gaussian beams. Modeling a typical ICF beam by a single
thick ray is not realistic and does not respect the assumptions
presented in Sec. II D. We briefly describe in this section the
application of multiple thick rays with Gaussian profiles for
ICF beam modeling. Typical ICF beams have top-hat profiles
at the lens or grating and go through phase plates, resulting in
various speckled intensity profiles at a focal point. Ray-tracing
codes can reproduce the super-Gaussian intensity envelope
observed at the focal spot and account for a global beam

033101-9
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FIG. 7. (Color online) Intensity distribution obtained with the 2D
PCGO model, mimicking the SG4 OMEGA beam near its focal point.
Here 140 thick rays are randomly focused in a box surrounding
the focal spot, the dimensions of which are characterized by the
theoretical interaction of the small and large scales of the beam. The
intensity is normalized to 1011 W/cm. An arbitrary power of 250 MW
was used for the simulation.

diffraction using the same technique as in Sec. V, but do not
model statistical intensity fluctuations.

As an example, we consider a high-order Gaussian beam
smoothed by a kinoform phase plate (KPP) and focused
through a lens to the focal spot. The propagation of such
a beam can be characterized by two scales [23]: the global
envelope scale, where variations are determined by a modified
Rayleigh length, and the scale of statistical fluctuations of the
field, related to the length of speckle spots in the longitudinal
direction. These two scales characterize the propagation of a
partially coherent beam.

Knowing the shape of the super-Gaussian envelope at
the lens, the profile of the beam envelope is computed at a
distance close to the focal spot, e.g., at the hydrodynamical
mesh boundary. The resulting profile is subdivided into a sum
of Gaussian modes that are randomly focused following a
pseudorandom multivariate normal distribution for focal spots
positions. Each of these beamlets is modeled as a thick ray
whose waist size is several times the speckle radius and profile
is Gaussian.

Figure 7 illustrates the intensity distribution obtained with
this technique in vacuum, using the OMEGA beam profile at
the focal spot with the exponent order n = 4.1 and a radius
w = 352 μm. We note that although the result is displayed
on the hydrodynamical mesh of CHIC, this intensity map is
actually obtained in vacuum. The global envelope of the beam
is reproduced and corresponds to the thickness of a partially
coherent beam. Intensity fluctuations are broader than the
actual correlation length of the real OMEGA beam. This is
inherent to the size of the hydrodynamical mesh grid and
larger than the speckle width, which spatially smoothes the
intensity field. Consequently, instead of reproducing the exact
beam speckle pattern at the focal spot, we choose to reproduce
its main features, i.e., its caustics and the overall statistics of
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FIG. 8. (Color online) Intensity profiles comparisons between
PCGO [gray (red)] and MIRO (black), at the focal spot. Results from
MIRO are convoluted to the hydrodynamical mesh resolution. An
arbitrary power of 250 MW was used for the simulation.

the speckles, through the contrast. The latter parameter can be
set by tuning the rays’ thicknesses at the focal spot. Figure 8
illustrates an intensity slice taken along the transverse direction
at the focal spot. Paraxial complex geometrical optics results
are compared to the laser propagation code MIRO [24–26],
resolving the nonlinear Schrödinger equation. Results from
MIRO are obtained using the same KPP and are convoluted
with the hydrodynamical mesh resolution. Both profiles have
similar contrasts, with CPCGO = 0.62 and CMIRO = 0.57, where
the contrast is defined as

C = 〈I 2〉 − 〈I 〉2

〈I 〉2
. (38)

For the chosen focusing setup (focal length f = 1.8 m and
lens diameter � = 270 mm), the estimated speckle radius at
the focal spot is 2.3 μm, so the number of modes is about 140.
Results presented above are obtained using 140 thick rays with
individual waist sizes of 23 μm, i.e., a ten-speckle radius and
about 65λ, which is well within the limitations of the PCGO
presented in Sec. II D.

VII. CONCLUSION

Nonlinear laser-plasma interactions have been imple-
mented in a large-scale radiative hydrocode. We adapted the
paraxial complex geometrical optics method to the description
of laser energy deposition. Modifications needed to include
absorption effects and an efficient technique for projecting the
beam field onto a Lagrangian hydrodynamical mesh have been
introduced.

The thick-ray model presented here and implemented in the
hydrocode CHIC allows us to evaluate the beam electric field,
radius of curvature, thickness, and intensity at all points in the
plasma. The model consistently takes into account diffraction
and absorption by inverse bremsstrahlung and is validated
against several comprehensive test cases. Comparisons with
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the standard RT highlights the advantages of a laser description
that takes into account diffraction and refraction on index
gradients. Considering energy deposition only, the RT is found
to yield robust results compared to PCGO and its shortcomings
are not fundamentally detrimental to large-scale hydrocodes,
notably because of other processes that act to smooth energy
deposition, such as electron thermal conduction.

Application to modeling nonlinear LPI was illustrated with
the ponderomotive self-focusing in both the RT and PCGO
frameworks. A pressure term corresponding to the pondero-
motive potential was added in the hydrodynamical core. The
PCGO model was validated against theoretical results for
transverse density depletion and yielded the correct pondero-
motive self-focusing critical power, self-focusing distance,
and an intensity amplification with a correct tendency. These
results were compared to the standard intensity reconstruction
technique used in RT codes. It was found that the needlelike
nature of RT rays leads to artificial filamentation of the beam
inside local waveguides, which prevents the correct modeling
of self-focusing distance and beam intensity amplification.
Although RT codes can include diffraction modeling, the
latter is exact only for constant density cases and does not
compensate for shifts in the beam focus and curvature radius
due to nonconstant refraction indexes. These shortcomings
lead to incorrect estimations of laser light intensity and
decrease the accuracy of nonlinear LPI modeling using RT
models.

The comparisons presented in this paper were conducted
using a single Gaussian beam. We presented adaptations that
can be made in order to use several smaller thick rays to
model one full speckled ICF beam, thus reproducing the
beamlet pattern induced by the use of a phase plate. Such
an adaptation yields similar spatial intensity maps at the focal
point compared to the MIRO code for the OMEGA SG4 beam,
thus linking a single Gaussian thick ray to realistic ICF beam
modeling in hydrocodes.

The thick-ray model is expected to be an improvement in
accurately modeling nonlinear LPI in large-scale hydrocodes.
This model can be used to reproduce ICF beams in realistic
conditions of direct drive implosion and study cross-beam
energy transfer in 2D geometries.
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APPENDIX A: DETAILS ON BEAM
PARAMETER PROJECTION

1. Triangle selection criterion

We have defined in Sec. IV the surface Aj defined by
the interval [τ0,τ1] when the central ray is in triangle j and
the corresponding ±2w beam envelope. Figure 9 illustrates

FIG. 9. Illustration of the selection process for a triangle k when
the ray is in triangle j . The ray is illustrated for τ ∈ [τ0,τ1] as a curved
arrow. Other triangles of the hydrodynamical grid are shown in gray.
Dashed lines represent the ray normals at τ0 and τ1.

the selection criterion: A triangle k must be accounted for
in the beam parameter projection of surface Aj if there is a
τ = τjk ∈ [τ0,τ1] at which the normal to the central ray in
triangle j passes by the barycenter of triangle k.

The central ray trajectory in triangle j is known analytically
for a constant density gradient. The eikonal equation yields the
central ray position (x,y) and velocity (vx,vy):

x(τ ) = ax(τ − τ0)2 + vx0(τ − τ0) + x0,

y(τ ) = ay(τ − τ0)2 + vy0(τ − τ0) + y0,
(A1)

vx(τ ) = 2ax(τ − τ0) + vx0,

vy(τ ) = 2ay(τ − τ0) + vy0,

where velocities are normalized to c = 1 and ax and ay are
hydrodynamical characteristics of the triangles, defined by

ax = − 1

4nc

∇xne, ay = − 1

4nc

∇yne. (A2)

The barycenter of triangle k, (xb
k ,y

b
k ), is on the ray normal for

τ = τjk that satisfies

Tc(τ ) ·
(

xk − x(τ )
yk − y(τ )

)
= 0, (A3)

where Tc(τ ) is the tangent vector to the central ray at τ . This
equation can be expressed as a third-order polynomial in τ :

−2τ 3
(
a2

x + a2
y

) − 3τ 2(axvx0 + ayvy0) + τ
[
2ax

(
xb

k − x0
)

+ 2ay

(
yb

k − y0
) − v2

x0 − v2
y0

]
+ (

xb
k − x0

)
vx0 + (

yb
k − y0

)
vy0 = 0, (A4)

where we have assumed τ0 = 0 for simplicity. This equation
possesses a general solution, provided the ray curvature
is small enough. When the ray is almost straight, it is
straightforward to show that τjk reads

τjk � vx0
(
xb

k − x0
) + vy0

(
yb

k − y0
)

v2
x0 + v2

y0

. (A5)

The general solution for Eq. (A4) can otherwise be used (it is
not written here, for conciseness). The triangle k is considered
to be covered by the envelope of the beam if τjk ∈ [τ0,τ1]
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(see Fig. 9). A neighborhood search algorithm allows us
to perform this computation on triangles neighboring j to
improve performances. The distance rjk from the barycenter of
triangle k to the central ray in triangle j is then straightforward
to compute. The search and energy deposition is considered
complete when the triangles found in the intersection are at
distances rjk further than ±2w.

2. Integrations over triangles

The maximum power that can be deposited by the beam
while the central ray is in triangle j follows from the integration
of the imaginary part of the relative permittivity along the path
of the central ray

�P
j

abs = P
j

1 − P
j

0 =
√

π

2
(I1w1 − I0w0)

=
√

π

2
I0w0

[
exp

(
−2k0

∫ τ1

τ0

ε′′
c (τ )dτ

)
− 1

]
, (A6)

where I designates the on-axis intensity. Subscripts 0 and
1 stand for the entrance and exit of the ray in triangle
j , respectively. Here �P

j

abs is the maximum power that
can be deposited from the ray, independently of the mesh
configuration. Mesh boundaries can eventually crop the beam,
resulting in a total power deposited in the mesh less than �P

j

abs.
Assuming triangle k has been selected according to the

criterion defined in Appendix A 1, the power P k
abs deposited in

triangle k is

P k
abs =

∫∫
Ak

ν
j

ei

ω2
p

ω2
0

ε0

2
|u|2dA, (A7)

where Ak designates the area of triangle k and we use the
value of νei from the central ray, i.e., from the triangle j , and
|u|2 = |u0(τ )|2e−2r2/w2(τ ). We note that the sum of all P k

abs over
selected triangles always is less than or equal to �P

j

abs.
In order to integrate Eq. (A7), we make the assumption

that u, w, and νeine/nc vary linearly in [τ0,τ1], between
u0,w0,(νeine/nc)0 and u1,w1,(νeine/nc)1. This approximation
remains correct as long as high gradients of laser intensity
occur in regions where the mesh is reasonably refined. Once
a triangle has been selected, the integration is performed over
its entire surface, even if parts of the triangle lie outside of
the [τ0,τ1] range. This is illustrated on Fig. 10 along with the
notation used.

Contrary to the triangle selection algorithm detailed in
Appendix A 1, we assume for the computation of P k

abs that the
ray trajectory between τ0 and τ1 is straight. Given a triangle
k defined by points (A,B,C), we compute the coordinates
(τA,τB,τC) at which the ray normal intersects the triangle
points (see Fig. 10). These values are linearly interpolated
(or extrapolated) from the given values of τ0 and τ1 and
the coordinates of the ray. We now rename (A,B,C) so that
(τA,τB,τC) is in ascending order. In this framework, P k

abs reads

P k
abs = ε0ω0

2

(∫ τB

τA

∫ DAC (τ )

DAB (τ )

√
ε′
j (τ )ε′′

j |u|2dq dτ

+
∫ τC

τB

∫ DAC (τ )

DBC (τ )

√
ε′
j (τ )ε′′

j |u|2dq dτ

)
, (A8)

FIG. 10. Illustration of a triangle configuration for the integration
of PCGO variables on the hydrodynamical mesh. The central ray is
approximated by a straight line and crosses triangle j between τ0 and
τ1. Dashed lines correspond to normals to the central ray at different
values of τ . Distances D introduced in Eq. (A8) are always taken
along the ray normal, as illustrated here with DBC(τ ).

where we have used ν
j

eiω
2
p/ω2

0 = ε′′
j ω0 and DAB(τ ) is the

distance between the central ray at τ and the segment AB along
the normal of the ray (this notation stands for any segment in
triangle ABC). Distances D are linear expressions of τ by
construction:

DAB(τ ) = (DB − DA)(τ − τA)/(τB − τA) + DA, (A9)

where DA is the distance between the central ray at τA

and the coordinates of the point A, along the ray normal.
Equation (A8) can be simplified to

P k
abs = ε0ω0

4

√
π

2

{∫ τB

τA

√
ε′
j (τ )ε′′

j (τ )|u0(τ )|2w(τ )

×
[

erf

(√
2DAC(τ )

w(τ )

)
− erf

(√
2DAB(τ )

w(τ )

)]
dτ

+
∫ τC

τB

√
ε′
j (τ )ε′′

j (τ )|u0(τ )|2w(τ )

×
[

erf

(√
2DAC(τ )

w(τ )

)
− erf

(√
2DBC(τ )

w(τ )

)]
dτ

}
,

(A10)

with

F(τ ) = [F(τ1) − F(τ0)](τ − τ0)/(τ1 − τ0) + F(τ0), (A11)

where F is u0, w, or ε′′
j . This expression cannot be integrated

analytically for linearly varying parameters. Here P k
abs is

computed using a numerical integrator based on Romberg’s
method that is of a higher order than the traditional Simpson
rule [27–29].

APPENDIX B: TWO-DIMENSIONAL GAUSSIAN
BEAM SELF-FOCUSING EQUATIONS

We present here a brief description of a Gaussian
beam undergoing ponderomotive self-focusing in a initially
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homogeneous plasma. Such a model was derived for
Gaussian beams in cylindrical coordinates in Refs. [19,20].
The formalism developed in Ref. [20] is adapted to a
simpler 2D geometry so that the PCGO and RT models
can be compared to the theory. Appendix B 1 presents an
equation for the evolution of the width of a Gaussian beam
undergoing ponderomotive self-focusing in a 2D framework.
The corresponding critical power is derived in Appendix B 2.

1. Derivation of the beam width equation

Starting from the wave equation for the electric field as
shown in Ref. [19], the electron density on the beam axis is
depleted according to

n = n0 exp
(−βE2

0

)
, (B1)

where β = e2/4mew
2
0(Te + Ti) and n0 is the initial electron

density. This formalism holds for length scales L such as L 
λD and time scales long compared to L/cs , where λD is the
Debye length and cs is the sound speed. For a plane wave
and assuming ne/nc � 1 so that absorption can be neglected,
one can derive the following equation for the complex field
amplitude u in the paraxial approximation [20]:

−2ik0c
2 ∂u

∂z
+ c2�⊥u − �2u + ω2

p0u(1 − exp −β|u|2) = 0,

(B2)

where ω2
p0 is the unperturbed plasma frequency, �2 = k2

0c
2 −

ω2
0 + ω2

p0 represents the nonlinear wave-number shift due to
the amplitude depression on the beam axis caused by the
ponderomotive force, and z is the propagation axis. Here u

is written in term of amplitude u0 and eikonal S:

u = u0(x,z) exp[−ik0S(x,z)], (B3)

where x is the transverse direction of the paraxial wave.
Introducing Eq. (B3) in Eq. (B2) and assuming a 2D

geometry, we get

2

(
∂u0

∂z
+ ∂S

∂x

∂u0

∂x

)
+ u0

∂2S

∂x2
= 0, (B4)

c2 ∂2u0

∂x2
− k2

0c
2u0

[
2
∂S

∂z
+

(
∂S

∂x

)2]

−�2u0 + ω2
p0u0

[
1 − exp

(−βu2
0

)] = 0, (B5)

which is similar to Eqs. (7) and (8) in Ref. [20], except for
the missing cylindrical components of the Laplacian. We now
assume a 2D Gaussian profile for u:

u0(x,z) = (E0/
√

f ) exp
(−x2/w2

0f
2), (B6)

S(x,z) = x2

2

1

f

df

dz
+ φ, (B7)

where φ(z) is the phase and f (z) is the Gaussian beam shape
factor f (z) = w(z)/w0. Note that for a cylindrically symmetric
Gaussian beam,

√
f is replaced by f in the expression of u0.

We can verify that this model is consistent by checking that

Eqs. (B6) and (B7) always satisfy (B4). Substitution of this
model in Eq. (B5) yields, to zeroth order in r/w0f ,

f 2[−2c2k2
0φ

′−�2 − ω2
p0 exp

(−βE2
0

/
f

) + ω2
p0

] −2c2

w2
0

= 0.

(B8)

The next order in the expansion is the order 2 in r/w0f :

f
{
f

[
c2k2

0(2φ′ − w2
0ff ′′) + �2 − ω2

p0

]
+ω2

p0 exp
(−βE2

0

/
f

)(
f − 2βE2

0

)} + 6c2

w2
0

= 0. (B9)

Equation (B8) describes the wave phase, similar to Eq. (12) in
Ref. [20], to a factor 1/2 for the first term on the right-hand
side:

φ′ = − 1

w2
0k

2
0f

2
+ ω2

p0 − �2

2c2k2
0

− ω2
p0 exp

(−βE2
0

/
f

)
2c2k2

0

.

(B10)

Injecting the above solution for the phase in Eq. (B9) gives
us the shape factor equation

f ′′ = 4

w4
0k

2
0f

3
− 2βE2

0ω
2
p0 exp

(−βE2
0

/
f

)
w2

0c
2k2

0f
2

. (B11)

Equation (B11) differs from the cylindrically symmetric case
by a factor f in the second term on the right-hand side and
in the exponential term. These changes reflect the fact that the
total power of the beam in a 2D framework varies with 1/f and
not 1/f 2. This equation can be solved numerically to find the
self-focusing distance zsf of a 2D Gaussian beam propagating
in an initially constant density plasma, as well as the intensity
amplification ratio I0/I0(τ = 0) = 1/f (zsf ).

2. Critical power

An expression for the critical power above which a Gaussian
beam propagating in an initially constant density media will
undergo self-focusing can be derived from Eq. (B11). This
threshold corresponds to the power for which the diffraction
of the beam is exactly compensated by the refraction due to the
density waveguide created by the ponderomotive expelling of
electrons from the wave field. Such an equilibrium is obtained
for f = 1 and df/dz = d2f/dz2 = 0. It is straightforward
to find the expression for the equilibrium radius wE using
Eq. (B11):

wE =
√

2
c

ωp0

exp
(
βE2

0

/
2
)

√
βE2

0

. (B12)

The same expression is obtained in Ref. [20] for a cylindri-
cally symmetric Gaussian beam. The total power carried by a
cylindrically symmetric Gaussian beam is P = (π/2)I0w

2
0.

Using E2
0 = 2I0/(cε0

√
1 − ne/nc) and replacing β by its

expression, we get a relation between I0 and w0 for P = PC ,
where PC is the critical power. Introducing this relation in the
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expression for P we get

PC = −cnc

√
1 − ne/ncπ (Te + Ti)w

2
0W

(
−2c2

w2
0ω

2
p0

)
, (B13)

where W(z) is the real-valued Lambert W function, i.e., the
real solution v such that v exp (v) = z. For a given initial beam
thickness w0, we compute the initial intensity I

C;w0
0 of a 2D

Gaussian beam, whose power equals the critical power:

I
C;w0
0 = −cnc

√
1 − ne/nc

√
2π (Te + Ti)w0W

(
−2c2

w2
0ω

2
p0

)
,

(B14)

where I
C;w0
0 is expressed in units of W/m.
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