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Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions
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In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically
computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed
configuration of the columns are considered under Darcy flow conditions. The stress distributions change when
the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing
type is independent of the pressure difference that drives the flow and presents a common pattern. The three
parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds
within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold
geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe
the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
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I. INTRODUCTION

Motion of colloidal particles, microparticles and nanopar-
ticles through porous media has been found to be important
in many engineering disciplines such as tissue engineering,
environmental engineering, and petroleum engineering. In
tissue engineering, deposition of biocolloids (cells) on the
surface of a porous scaffold and cell proliferation is a desired
process. This process is strongly affected by the flow-induced
stresses that can either enhance the attachment of the sus-
pended particles to the pore surfaces or wash attached particles
away from the surfaces [1–4]. In environmental applications,
nanoparticles released to the subsurface during the disposal
of nanomaterials might penetrate the soil and contaminate
the water table and aquifers. Several types of nanoparticles
have been reported to be toxic to many animal species and
humans [5–11]. In petroleum engineering, the evolution of
nanomaterials has opened up an opportunity for developing
nanosensors that can be helpful in enhanced oil recovery
(EOR) [12–15]. Those nanoparticles should be specifically
fabricated so they can propagate through the reservoir rock.
By measuring their responses to external signals, detailed
information about the reservoir can be obtained [12–15]. In
addition, surfactant-based EOR depends on the stability of
colloidal particles propagating through a hydrocarbon reser-
voir [16], while the self-assembly of surfactants into micelles
is strongly sensitive to flow-induced shear stresses [17,18].

The stability and mobility of micro- and nanoparticles in
the above scenarios depend on flow-induced stresses. These
stresses can cause aggregation of nanoparticles and micelles
and, in turn, result in sedimentation or size exclusion of large
particles, while moving through the pores [17,19–23]. These
are unwanted phenomena in applications where suspension
stability, mobility, and long travel distance of nanoparticles
are crucial prerequisites (e.g., EOR). It is therefore important
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to either predict or measure the stress distribution in the flow
field occurring in a porous material when releasing particles
into that field. Unfortunately, knowing how stresses distribute
from experimental measurements is a cumbersome task [24].
On the other hand, simulation results have been recently
obtained that present the distribution of flow-induced stresses
on the fluid-solid interface in the pore space of media with
different geometric configurations, ranging from fiber webs
to packed beds [25–33]. Based on such results, a common
three-parameter (3P) γ distribution describing normalized
surface stress distributions has been proposed [30]. While a lot
of attention has focused on surface stresses, neither simulation
models nor mathematic models address how bulk stresses
distribute in the open pore spaces of the geometry. This is
critical, because particles in stable suspensions might not settle
on the solid surfaces, but instead they might be anywhere in
the geometry. As stated earlier, this is especially important for
those processes that require particles of high mobility that do
not deposit and do not aggregate.

In this work, normalized stress distributions inside the open
spaces (in the bulk of the fluid) of ideally packed beds with
spherical beads [i.e., face centered cubic (fcc), body centered
cubic (bcc), simple cubic (sc), and random packing], consol-
idated Berea sandstone, and structured fiber-web geometries
were numerically investigated. The contributions of this paper
are to (a) examine whether the stress distributions can be
described by a common form of a probability density function
(pdf); (b) explore the physical reason behind the observation of
a common pdf, if it exists; and (c) determine how the stresses
within the open space of porous media can be theoretically
predicted.

II. NUMERICAL METHOD AND SIMULATION SETUP

A. Lattice Boltzmann method

The lattice Boltzmann method (LBM) used herein is for
a single phase, Newtonian, and incompressible fluid. In the
lattice Boltzmann algorithm, the discrete Boltzmann equation
is solved iteratively given the number of directions in space, m,
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and the number of velocity lattice vectors, n (usually denoted
as DmQn) [34,35]. In this study, the D3Q15 LBM is employed.
The fluid flow is simulated by calculating the collisions and
interactions between fluid particles that move on a uniform
rectangular lattice. The fluid particles undergo three steps:
propagation, collision, and forcing, that are modeled by the
change of the particle distribution function at every time step
as follows:

fi(�x + �ei�t,t + �t) = fi(�x,t)︸ ︷︷ ︸
STREAMING

+ �i(�x,t)︸ ︷︷ ︸
COLLISION

± Fi︸︷︷︸
FORCING

, (1)

where f is the particle distribution function, �x is position, t

is time, �t is the time step, �e is the lattice velocity, � is the
collision operator, F is the forcing factor (pressure drop over
length), and the subscript “i” is the lattice direction index,
taking values from 0 to n − 1. The single relation time ap-
proximation model of Bhatnagar-Gross-Krook (BGK model)
is used to characterize the particle-particle collision [35],

�i(�x,t) = − 1

κ

(
fi − f

eq
i

)
, (2)

where f eq is the particle equilibrium distribution function and
is given as

f
eq
i (�x) = wiρ

[
1 + 3

�ei
�U

c2
+ 9

(�ei
�U )2

c4
− 3

2

�U 2

c2

]
, (3)

where c = �x
�t

is the lattice speed, �x is the lattice constant, w
is a lattice specific weighing factor, and U is the macroscopic
velocity. The time κ appearing in Eq. (2) is the time scale
with which the local particle distribution function relaxes to
equilibrium and is often referred to as the relaxation time. It is
related to the kinematic viscosity, ν, of the fluid as follows:

ν = 1
3

(
κ − 1

2

)
. (4)

No slip boundary condition at the wall is achieved by applying
the half-way bounce back technique, in which a particle will
return to its original position with opposite direction if it hits
the wall [34]. Conservation of mass and momentum allows
the calculation of macroscopic properties (i.e., fluid density,
ρ, and flow velocity, U ) from discrete microscopic properties
(fi and ei)

ρ =
n−1∑
i=0

fi, (5)

ρ �U =
n−1∑
i=0

fi �ei, (6)

where n is the number of allowable directions that the fluid
particles are allowed to move, including the zero position (the
rest node). Our algorithm has been previously validated for
use in porous media [30,36,37].

B. Simulation setup

Stress distributions in the open spaces of ideally packed
spheres (sc, bcc, and fcc) and randomly packed spheres were
mainly investigated. Among these, the random sphere packing
was created by using event-driven molecular dynamics and

a modified Lubachevsky-Stillinger algorithm [38]. Packed
spheres were rigid, impermeable, and 1 mm in diameter.
To simulate an infinite array of spheres, periodic boundary
conditions were applied in the three space directions, X, Y ,
and Z. In addition, other porous media configurations that
may be found to describe synthetic scaffold geometries that are
structured were generated. In biomedical applications, like tis-
sue engineering, porous scaffolds serve as three-dimensional
structures on which seeded stem cells can attach, proliferate,
and finally form three-dimensional (3D) extracellular matrix
producing functional tissue for transplantation. It has been
found that all of these processes are promoted by flow-induced
stresses, so flow perfusion bioreactors are often used for the
dynamic culturing of the cell-seeded scaffolds [32,39–42].
These cases were analyzed using commercial, finite volume-
based computational fluid dynamics (CFD) software [43–45].

Furthermore, the stress distribution within the pore space
of a consolidated reservoir rock, in this case Berea sandstone,
was also computed with LBM. The digital 3D geometry
of the Berea rock sample was reconstruced from micro-
computed tomography (μCT) images obtained by use of an
Xradia MicroXCT 400 machine. Over 900 grayscale images,
each representing a slice of the rock, were taken with a
resolution of 4.5 μm. These images were then converted into
binary images with only two intensities, 0 and 1, containing
information of either empty nodes or solid nodes, and
reattached to form virtual 3D geometry by a custom-written
code in MATLAB. A thin slab of the virtual 3D geometry was
used as the representative elementary volume of the porous
medium.

Details of the geometry characteristics and the flow con-
ditions of all studied cases are summarized in Table I. An
incompressible and Newtonian fluid with a viscosity of 0.001
Pa s, which is equivalent to that of water, was employed as the
working fluid. Three different pressure drop values of 10, 100,
and 1000 Pa/m were applied for all the sphere-packing cases.
A pressure drop of 100 000 Pa/m was used for flow in the six
porous scaffolds and a pressure drop of 10 000 Pa/m was used
for flow in the Berea sandstone.

The flow-induced stress tensor τ was calculated from the
rate of strain as follows:

τ = 1
2η(∇U + ∇UT ), (7)

where η is the dynamic viscosity of the fluid and U is the
velocity vector. The largest eigenvalue of this tensor was then
considered to be the most important flow-induced stress, as
previously done in Porter et al. [46] and in prior work in
our laboratory [35]. The calculation of the pdf of the fluid
stresses in the open spaces excluded the surface stresses on
the fluid-solid interfaces. The stresses obtained from Eq. (7)
were then normalized by subtracting the mean stress, τ̄ , and
dividing by the standard deviation, σ τ , of the stress distribution
as follows:

τ ∗ = (τ − τ̄ )

στ

. (8)

Note that this dimensionless variable is defined similarly to
the random variable of the standard normal distribution (in that
case the variable has a mean of zero and a standard deviation
equal to 1). It is justified to use this normalization here, since
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FIG. 1. (Color online) Contours of stresses in the open pore space for different sphere packing geometries. Stresses at three different
positions, marked by 1, 2, and 3 are shown in slices from left to right. The units of the color scale bar are in g/cm2 s2. This is the case when a
pressure drop of 100 Pa/m is employed. Spheres in (a) fcc packing, (b) bcc packing, (c) random packing, and (d) sc packing are shown.

we want to obtain a general form of the stresses that can be
applicable in different porous media geometries rather than a
case-specific distribution. The obtained dimensionless stresses
were then partitioned into 100 bins of equal width, and the
stress pdf was calculated by dividing the fractional occurrence
of normalized stresses in a particular bin by the width of
that bin. A Kolgomorov-Smirnov (KS) goodness-of-fit test,
conducted using the software EASYFIT version 5.4 [47], was
used to examine whether the stress pdf followed a known form
of pdf.

III. RESULTS AND DISCUSSION

A. Distributions of dimensional and normalized stresses in
columns packed with spheres

In Fig. 1 we plot four different geometries of sphere
packings with contours of the associated stresses in the pore
space. In each case, the contours of the pore stresses in three
different planes that are perpendicular to the flow direction
are shown. It can be seen from the color maps in Fig. 1 that
stresses in the low range are dominant. In fcc and randomly
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FIG. 2. Normalized stress distributions of four tested sphere packing types at three different pressure drop values. Spheres are packed in
(a) bcc, (b) fcc, (c) sc, and (d) random configurations. Under Darcy flow conditions, the pattern of the distribution in each particular sphere
geometry is unchanged.

packed spheres, it seems like there are large areas with low
stresses and small areas of high stresses. On the other hand, in
the bcc and sc sphere-packing cases, the low stresses and the
high stresses cover almost equal areas.

Figure 2 is a presentation of the stress distributions in
dimensionless form of the four sphere-packing types at three
different pressure drops in the Darcy flow regime. The stress
data were normalized by utilizing Eq. (8). A common feature in
all the distributions observed in Fig. 2 is the positive skewness,
i.e., the tail of the (pdf) to the right is longer. It is also seen
that the normalized stress distribution corresponding to each
particular configuration of packed spheres is characteristic to
that specific configuration, i.e., the fcc packing and the random
packing result in distributions with a single mode, whereas

those of the bcc packing and the sc packing are bimodal and
trimodal, respectively. Knowing this distribution is critical to
quantitatively predict the probability of finding a certain range
of stresses in the flow field. When the dimensional mean stress
and the standard deviation of the stress pdf are known, then
obtaining a dimensional stress distribution from a normalized
one is straightforward. The difference in the number of modes
might be attributed to the nonuniformity of the pore sizes,
in the sense that a continuous pore size distribution without
modes leads to a bulk stress distribution with a single mode (see
Fig. 8 in the appendix for the pore size distributions of the four
sphere packing types). By that logic, the multiple modes of the
bcc and sc sphere packing are expected, because the pore size
distribution in these cases is multimodal and can be represented
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with capillary tubes with distinct but almost uniform diameters.
Although the shape of these distributions differs from packing
to packing, there is no change in their shape when a particular
type of packing undergoes different pressure drops, because
of the linear dependence between the pressure drop and the
stresses in the Darcy flow regime [33]. Voronov et al. [37],
based on a numerical investigation of flow of an incompressible
Newtonian fluid through salt-leached porous scaffolds, have
proposed the following empirical correlation for the average
stress in the open pore space,

τ̄ = (0.0851 ± 0.0064)

(
�P

L

)0.503±0.015

U 0.497±0.015
S , (9)

where �P/L is the pressure drop and US is the superficial
velocity. In flow following Darcy’s law, �P/L is proportional
to the superficial fluid velocity, US . Equation (9) then leads
to a linear relation between τ̄ and �P/L, which is consistent
with expectations, for example, with the Wang and Tarbell
equation for flow around spheres and cylinders [48,49]. Note
also that the constant involved in the expression is proportional
to

√
η.

Another important consideration is to find a common
pdf model that can fit the normalized distributions within
statistically acceptable accuracy. Such common pdf models,
describing different physical phenomena ranging from the
distribution of rain droplet sizes to the distribution of friction
coefficients (among others), have been obtained in other
cases [50–52]. In order to reveal a common pdf, normalized
stress data presented in Fig. 2 were tested with 65 different
common pdf models, available in the EASYFIT software,
version 5.4 [47]. The goodness-of-fit test between the pdf
models and our data was conducted using the (KS) test. The
null hypothesis was as follows: “the normalized stress pdf
follows the tested pdf model.” The level of significance, α,
was chosen to be 0.2. By choosing a = 0.2, the acceptance
of the null hypothesis is more rigorous than acceptance at
the usual choice of a = 0.05. Note that, in the KS test, the
critical value of the KS statistic decreases when α increases
and that the null hypothesis is rejected when the critical value
is smaller than that of the test statistic of a data sample. Thus,
at a given value of the calculated test statistic, testing for
the null hypothesis at a higher α increases the probability
of rejecting the null hypothesis. Such a high level of α

has been used for testing null hypotheses in other published
works [30,53,54]. Table II is a summary of pdf models that
best describe the actual dimensional and normalized pdf data
along with the KS statistic, the corresponding p values, and
the level of significance for rejecting a true null hypothesis.
The KS test results in Table II indicate that eight listed
pdf models can predict the normalized stress distributions
of packed beds with spheres within the prescribed statistical
accuracy. Among those listed, the three-parameter γ (3P-γ ),
the three-parameter log-logistic (3P-log-logistic), and the
three-parameter lognormal (3P-lognormal) were found to be
also valid for all the dimensional distributions shown in which
a true null hypothesis cannot be rejected at α = 0.2. The p

value for the case of randomly packed spheres is one for these
cases.

B. Relation between the pore size and space stress distribution
and prediction of the common pdf

At this point one may inquire which one among the three
models is the most appropriate to use. One way to answer
this question is to explicitly show how the stresses distribute
in the pore space through the use of analytical results. The
governing equations for creeping flow over an array of spheres
are usually obtained in integral form from a transformation
of the Navier-Stokes equation [26,55]. Unfortunately, solving
these equations is not simple. Instead we draw a connection
between the pore size distribution and the stress distribution
by utilizing a simplified model of the pore network as a bundle
of capillary tubes [56–58]. In brief, we assume that the pore
network of an array of spheres can be represented by a bundle
of circular straight capillary tubes with different diameters.
This simplification has been found to be valuable in studies
of flow behavior in unconsolidated porous media [59,60].
Since the pore network is regarded as an ensemble of circular
capillary tubes, the stress profile in any one individual tube is
found as follows [61]:

τ = �P

L

r

2
, (10)

where τ is the fluid stress and r is the radial distance from
the tube center. Statistically, if the pdf of r is known, then
knowing the pdf of the dependent variable τ can be calculated
from the pdf of r , the inverse function of Eq. (10) and its
derivative [62]. According to published reports [63–65], the
pore size distribution of soil and some types of ultrafiltration
membranes follows the log-normal law. In other words, the
pore radius is log-normally distributed and is formulated as

f (r) = exp
[− 1

2

( ln r−μ′
σ ′

)2]
rσ ′√2π

, (11)

where f (r) is the probability density function of the pore
radius and μ′ and σ ′ are the continuous parameters of the
distribution (σ ′ > 0) [the log-normal is denoted by log-normal
(μ′, σ ′) for convenience]. Applying the transformation method
for Eq. (10), the pdf of the dependent variable, τ , is found as
follows [62]:

f (τ ) = exp
[− 1

2

( ln τ−μ

σ

)2]
τσ

√
2π

, (12)

where σ = σ ′ and μ = μ′ − ln( 2
�P/L

). It is obvious from
Eq. (12) that the pattern of f (τ ) is identical to that of f (r) in
which σ ′ is unchanged and μ = μ′ − ln( 2

�P/L
). Consequently,

the average stress, τ̄ , and the standard deviation, στ , are related
to the two continuous parameters of the distribution as [66]

τ̄ = eμ+ σ2

2

στ = eμ+ σ2

2

√
eσ 2 − 1. (13)

The connection between the pore size distribution and the
stress distribution in a porous medium where the pore network
is represented as a bundle of capillary tubes is strengthened by
an extreme case presented in Appendix A.

It is also important to note here that if the pdf of the
dimensional stresses is log-normal (μ, σ ), then the pdf of
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the normalized stresses, τ ∗, is 3P log-normal (γ ∗, μ∗, σ ) and
the pdf can be written as follows:

f (τ ∗) = exp
[− 1

2

( ln(τ ∗−γ ∗)−μ∗
σ

)2]
σ
√

2π (τ ∗ − γ ∗)
, (14)

where γ ∗ = − τ̄
στ

is the continuous location parameter, μ∗ =
μ − ln στ , and σ remains the same as that of f (τ ). Proof
of this result can be obtained with a procedure analogous to
the transformation of the normal distribution, N (X̄,σ 2

X), of a
random variable X to the standard normal distribution, N (0, 1),
of the random variable (X − X̄)/σX (see Appendix B) [67].
The above relation of γ ∗ to τ̄ and στ implies that one can
calculate γ ∗ from the minimum normalized stress value, since
the physical interpretation of the location parameter γ ∗ is
that it represents the minimum value of the random variable
(the starting point of the normalized stress distribution). This
relation along with Eq. (13) yields the relationship between γ ∗
and σ as follows:

γ ∗ = − 1√
eσ 2 − 1

. (15)

Furthermore, the expression μ∗ = μ − ln στ leads to the
relation of μ∗ and σ , as follows:

μ∗ = −σ 2

2
− ln

√
eσ 2 − 1. (16)

Therefore, when γ ∗ is known, the parameters of the log-normal
(γ ∗, μ∗, σ ) can be predicted. However, it is somewhat
difficult to analytically estimate the value of γ ∗, since the flow
conditions and the pore structure exert strong influences on τ̄

and στ . Our simulation data can be used to obtain the value
of γ ∗ from the minimum normalized stresses, τ ∗

min, of the
normalized stress distributions. It is seen in Fig. 2 that τ ∗

min for
all the packing morphologies is approximately −2 or γ ∗ = −2.
Subsequently, σ and μ∗ can be calculated from Eqs. (15)
and (16), leading to the result that the common distribution
of the normalized stresses is the log-normal (−2, 0.588, 0.47).
The predicted log-normal (−2, 0.588, 0.47) is depicted in
Fig. 3 with the normalized stress distributions in the open space
of four examined sphere packing geometries. The agreement
is apparent with the naked eye without the aid of statistical
analysis in the case of fcc and randomly packed spheres.

C. Validity of the predicted log-normal pdf
in porous scaffold structures

The above considerations suggest that the 3P log-normal
(−2, 0.588, 0.47) might be a good approximation for the stress
distributions in the open space of packed-sphere beds under
Darcy flow conditions. In order to examine whether this finding
holds for other cases of porous media, stress distributions
in the pore space of highly porous scaffolds were examined
next. A finite volume-based numerical method (available in the
commercial computational fluid dynamics software FLUENT,
version 12.0.12), was used as an alternative approach to the
LBM for the simulation of the flow. Six different porous
scaffold geometries were simulated, such as those that can
be fabricated by rapid prototyping techniques. The porosity
was chosen to be 85%, in the range often used in scaffolds
(see Fig. 4) [45]. The physical properties of the fluid were
the same as those for the packed bed cases simulated with

LBM. The flow was periodic in the X, Y , and Z directions.
The details of these simulations, the computational mesh size
generation, and the stresses on the surface of the solid structure
elements of these scaffolds have been discussed in Ref. [45].
The fluid stresses in the open pore space for these geometries
were also normalized by applying Eq. (8). The normalized
stress distributions of all examined scaffold geometries are
illustrated in Fig. 5 along with the 3P log-normal (−2, 0.588,
0.47) distribution. Despite different geometric morphologies,
the normalized stress distributions exhibit similar features,
such as positive skewness, the same peak position, and single
mode. Within six scaffold geometries, the agreement of the
normalized stress distribution of structures A, B, C, D, and E
with the 3P log-normal (−2, 0.588, 0.47) law was confirmed
by the KS test, when the null hypothesis cannot be rejected
at α = 0.2 (p values were 0.21, 0.26, 0.32, 0.66, and 0.35
for structures A, B, C, D, and E, respectively). For case F, the
level of significance to accept the null hypothesis is α = 0.1
(p value = 0.14).

D. Validity of the predicted log-normal law in Berea sandstone
and obtainment of log-normal law of dimensional

bulk stress distributions

When the normalized stress distribution of a certain
porous medium follows the log-normal (−2, 0.588, 0.47),
it is straightforward to find the log-normal (μ, σ ) of the
dimensional stresses as follows [see Eq. (16) and related
comments]:

μ = 0.588 + ln
τ̄

2
σ = 0.47. (17)

So long as τ̄ is unknown, the dimensional stress distribution
of the porous medium remains unpredicted. To address this
issue, Darcy’s law is rearranged to solve for �P/L, and then
substituted into Eq. (9) to obtain the following expression [note
that the constant in Eq. (9) is considered to be B

√
η]:

τ̄ = B
η√
k
US, (18)

where k is the permeability of the porous medium. It is noted
that the form of Eq. (18) is identical to the Wang and Tarbell
equation, in which the average shear stress for flow around
a periodic square array of cylinders is estimated [47]. In that
equation, B is the constant characterizing the porous medium,
i.e., B = 4/π for an array of cylinders. The B value for the
porous media considered in this study was found by fitting
τ̄ , computed from simulation data, to a linear function of
η√
k
US . The slope of the trend line turned out to be 1.41 with a

coefficient of determination R2 = 0.997 for beds packed with
spheres, and it was found to be 0.526 with R2 = 0.9 for highly
porous scaffolds. Thus far, since the correlation for predicting
the average stress has been revealed, the dimensional stress dis-
tribution of a porous medium, for which the normalized stress
distribution follows the 3P log-normal law suggested above,
is predicted to be log-normal [0.588 + ln(B η

2
√

k
US), 0.47].

Finally, the dimensional stress distribution and the cor-
responding normalized stress distribution in the pore spaces
of a consolidated Berea sandstone slab were determined
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FIG. 3. Normalized stress data in Fig. 2 along with the three parameter log-normal distribution (solid line). The goodness of fit was tested
using the Kolgomorov-Smirnov test. Spheres are packed in (a) bcc, (b) fcc, (c) sc, and (d) random configurations.

and fit to the log-normal [0.588 + ln(B η

2
√

k
US), 0.47] and

log-normal (−2, 0.588, 0.47), respectively. In this case, B =
1.41 was employed. The 3D geometry of the sandstone was
reconstructed from its 2D grayscale images, obtained after
scanning the rock sample by a micro-CT machine (X-Radia,
4.5 μm resolution). A 2D image analysis was also applied
to the pore size distribution. Afterwards, the 3D rock sample
was meshed into 16 000 000 grid points using a structured
mesh. The low permeability, high tortuosity, and randomness
of the pore space of the rock are factors that challenge the
validity of the two proposed log-normal laws (see Table I for
physical properties of the examined rock). To obtain the stress
distributions, the stress field was computed using the LBM
simulation after forcing water to flow through the rock sample
at a pressure gradient of 10 000 Pa/m.

In contrast to the case of sphere-packed beds as well as
highly porous scaffolds, the normalized stress distribution in
the pore spaces of the consolidated Berea sandstone shows a
completely different behavior. The values of the pdf of finding
a certain range of stresses dramatically decreases over the
whole range of normalized stress, from the smallest to the
largest value, and no peak is recognized. It is more likely that
the stress distribution computed from the simulation of the
Berea rock sample follows the exponential distribution rather
than the 3P log-normal distribution (data not shown).

The finding that high pdf frequency values correspond to
low stresses in sandstone can be physically interpreted by the
existence and dominance of flow regions with velocities that
are very slow or even in the negative flow direction. This
is expected, since common Berea sandstones exhibit highly
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FIG. 4. (Color online) Structure of different porous scaffolds with polyhedral mesh. Simulations were conducted based on single periodic
units, presented in magnification in the panel to the right for each case. (Figure adapted from Ref. [45].)

tortuous pore networks that can create pockets of fluid with
circulation patterns and flow retardation. However, the motion
of nanoparticles injected into the empty space of the rock
will not be significantly affected by those regions, since the
particles would tend to follow streamlines that guide them to
the outlet. Such behavior was affirmed by conducting tracer
particle simulations in the Lagrangian framework (not pre-
sented herein). Briefly, after the velocity field was computed

FIG. 5. Normalized stress distributions in the pore space of six
different porous scaffolds along with the common three parameter
log-normal distribution.

by the lattice Boltzmann simulation, a set of conservative
tracers was injected into the pore space of the examined Berea
sandstone sample using the technique described in Ref. [36].
The results of these simulations indicate that the tracer particles
follow the streamlines guiding them to the outlet of the
porous domain rather than entering low velocity regions
within the pore network. Such low-velocity regions include
negative and near-zero velocities that can dramatically delay
the particle effluent time. It is then reasonable to reconstruct
the stress distribution after filtering out stresses caused by
negative velocities. The reconstructed stress distribution of the
examined Berea sandstone in dimensionless and dimensional
form is depicted in Figs. 6(a) and 6(b), respectively. Note that
the stresses over 0.15 Pa are not included in these distributions,
since the probability of finding stresses above that value is
extremely low, and thus they are neglected. The KS test results
with the null hypothesis as follows: “the actual pdf follows the
3P log-normal (−2, 0.588, 0.47) distribution” indicated that
the null hypothesis cannot be rejected at α = 0.2 (p value =
0.92).

It should be noted that this pdf form is found to be similar to
the shape of the pore size distribution for the Berea sandstone
presented as an inset in Fig. 6(a). As was also found using
the model of a bundle of capillary tubes, there is a theoretical
connection between the pore size distribution and the stress
distribution in the pore spaces of a porous medium. The
prediction for the dimensional stresses is log-normal (−3.92,
0.47), obtained by plugging k and US into the predictive
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FIG. 6. Stress distribution in the pore space of a 0.92 × 1.8
mm3 Berea sandstone slab in dimensional and dimensionless form.
(a) Normalized stress distribution in association with the common 3P
log-normal. The inset illustrates the pore size distribution of the Berea
slab. (b) Dimensional stress distribution along with its prediction,
computed from the log-normal [0.588 + ln(B η

2
√

k
US),0.47].

formula, i.e., the log-normal [0.588 + ln(B η

2
√

k
US), 0.47]with

B = 1.41, and is presented in Fig. 6(b). (See Table I for
the permeability of the Berea slab and other geometries.)
It is apparent from Fig. 6(b) that the acceptance of the
null hypothesis [“the dimensional pdf follows the predicted
log-normal (−3.92, 0.47)” at α = 0.2] implies that the
predicted stress distribution holds even for structures with
low porosity and a sophisticated pore network like in Berea
sandstone. While Fig. 6(b) is a presentation of the same data
as in Fig. 6(a) in dimensional form, Fig. 6(b) provides a
visual assessment as to how well the predicted 2P log-normal
fits to the dimensional stress data. It is also apparent from
Fig. 6(b) that further considerations are needed to determine
the value of the geometric factor B for the reservoir-rock-type
geometries.

IV. CONCLUSIONS

Stress distributions in the open space of ideally and ran-
domly packed beds with spheres were numerically computed
in this work. It was found that the distribution is unimodal when
the beds were fcc and randomly packed, whereas it is bimodal
and trimodal in the case of bcc and sc spheres, respectively. For
each particular sphere packing morphology, the distribution
pattern remains unchanged for different pressure drops but
under Darcy flow conditions. Additionally, the KS goodness of
fit test results indicate that the 3P log-normal distribution can
be used to describe the normalized stress distribution computed
for randomly packed spheres and fcc-packed spheres. A
common 3P log-normal distribution exhibits agreement
with the stress data within statistical accuracy. Likewise,
normalized stress distributions of other cases of highly porous
structured scaffolds are also found to considerably agree
with the predicted 3P log-normal distribution. In addition, a
similarity between the pore size distribution and the associated
normalized stress distribution is observed when simulating
flow in the pore space of the Berea sandstone geometry.
Therefore, one can infer that the pore size distribution of
a porous medium profoundly affects the distribution of the
fluid stresses in the void spaces. Findings from this work
can be useful in predicting the pdf of stresses that nano-
and microparticles encounter as they travel through different
types of porous media and in predicting the stability of these
particles.

APPENDIX A: CONNECTION BETWEEN PORE SIZE AND
DIMENSIONAL BULK STRESS DISTRIBUTION IN A PORE

NETWORK ASSUMED AS A BUNDLE
OF CAPILLARY TUBES

Consider a porous medium with circular, straight tubelike
pores. Let the diameter of the pores, D, take values from an
arithmetic sequence between 1 and 50 μm (i.e., each diameter
is larger than the one smaller than itself by �D = 1 μm)
and let us assume that the diameters follow a log-normal

FIG. 7. Stress distribution in a porous medium modeled by a
bundle of circular capillary tubes with different diameters. The
pressure difference across the medium is 1 Pa/μm. The log-normal
(1.6, 0.61) distribution is presented by the black solid line.

033016-9



PHAM, VORONOV, TUMMALA, AND PAPAVASSILIOU PHYSICAL REVIEW E 89, 033016 (2014)

TABLE I. Geometric characteristic of examined porous media.

Geometry Domain size (μm3) Porosity (%) Permeability (m2) Size of structural elementa (μm)

fcc spheres 1414.23 25.95 1.848 × 10−10 1000
bcc spheres 1143.33 31.98 5.226 × 10−10 1000
Randomly packed spheres 20003 39.76 1.116 × 10−9 1000
sc spheres 10003 47.64 2.841 × 10−9 1000
Case (a) 143.23 85 3.701 × 10−10 35
Case (b) 202.52 × 143.2 85 3.606 × 10−10 35
Case (c) 1273 85 3.174 × 10−10 35
Case (d) 113.263 85 2.315 × 10−10 35
Case (e) 141.143 85 3.608 × 10−10 35
Case (f) 162.973 85 3.848 × 10−10 35
Berea slab 9002 × 1800 20.08 2.428 × 10−12 —

aThe structural element is the sphere diameter in sphere-packing cases, the cylinder diameter in Cases (c)–(f), and the edge of the bar cross
section in Cases (a) and (b).

distribution. Fluid is driven through these parallel tubes by
a pressure difference of 1 Pa/μm. Recall that the stress profile
in each pore is linearly correlated to the pore diameter as
described in Eq. (10). In order to estimate the distribution of
stresses in each pore, bins of stresses are created with each bin
interval chosen to be 0.01 Pa (�τ = 0.01 Pa). Given the above,
in each pore the number of stress bins depends on the pore
diameter, so there are 50 bins in a pore with D = 1 and 100,
150 . . . , 2500 stress bins in pores of diameter D = 2, 3 . . . ,
50 μm, respectively. Because the pore diameter follows the
log-normal distribution, the probability of finding a stress bin
in a particular pore is proportional to the probability of finding
that pore in the network. As a result, the global frequency of
finding a stress bin in the pore network is a summation of the
local frequency of finding a bin with similar stress values in
each one of the pores that follow the log-normal distribution.

This summation can be mathematically stated as

f (τ ) =
50∑
i=1

fi(τ ) × fr (Di) (A1)

where f (τ ) is the global frequency of finding a stress in the
network, fi(τ ) is the local frequency finding a stress in a pore
with diameter Di and fr (Di) is the frequency of finding pores
in the network with diameter equal to Di . By doing so, the
pdf of the global stress can be calculated, and the shape of the
pdf curve can be seen in Fig. 7. It is evident from Fig. 7 that
the pdf follows the log-normal pattern, presented by the black
solid line. The fact that the null hypothesis cannot be rejected at
α = 0.2 after testing by the Kolgomorov-Smirnov test indicates
that the stresses in this particular bundle of tubes follows the
log-normal law.

TABLE II. Results from the Kolgomorov-Smirnov goodness-of-fit test for 8 among 65 pdf models. Values obtained from one pressure drop
(dP/L = 10 Pa/m) are presented, as statistics of other cases do not change significantly, because of the linearity between stress and pressure
drop in the examined range. The p values are also shown in parentheses. Note that the values of the critical Kolmogorov-Smirnov statistic for
α = 0.05 and α = 0.2 are 0.1340 and 0.1056, respectively. We accept the null hypothesis when the KS statistic is smaller than the critical value
for the respective level of significance.

Kolmogorov-Smirnov statistic value (p value)

Normalized stress Dimensional stress

pdf model bcc fcc sc Random bcc fcc sc Random

4P-Burr 0.0792 (0.53) 0.0752 (0.59) 0.0748 (0.60) 0.0218 (1.0) 0.0696 (0.70) 0.0764 (0.58) 0.2444 (9.7 × 10−6) 0.0739 (0.62)

3P-Fatigue 0.0755 (0.59) 0.0736 (0.62) 0.0753 (0.59) 0.0273 (1.0) 0.0754 (0.59) 0.1208 (0.099) 0.0753 (0.59) 0.0273 (1.0)

life

3P-γ 0.0909 (0.36) 0.0781 (0.55) 0.0839 (0.46) 0.0331 (1.0) 0.0909 (0.36) 0.0782 (0.55) 0.0838 (0.46) 0.0332 (1.0)

3P-Inverse 0.0734 (0.63) 0.0733 (0.63) 0.0731 (0.63) 0.0273 (1.0) 0.2161 0.1204 (0.101) 0.0727 (0.64) 0.0889 (0.38)

Gaussian (1.4 × 10−4)

3P-Log-logistic 0.0659 (0.75) 0.0583 (0.86) 0.0667 (0.74) 0.0297 (1.0) 0.0659 (0.75) 0.0585 (0.86) 0.0667 (0.74) 0.0298 (1.0)

3P-Lognormal 0.0693 (0.70) 0.0719 (0.65) 0.0703 (0.68) 0.0268 (1.0) 0.0693 (0.69) 0.0721 (0.65) 0.0703 (0.68) 0.0269 (1.0)

3P-Pearson 0.0642 (0.78) 0.0705 (0.67) 0.0648 (0.77) 0.0261 (1.0) 0.2087 0.1504 (0.019) 0.1703 0.1148 (0.13)

type 5 (2.7 × 10−4) (5.2 × 10−3)

4P-Pearson 0.0726 (0.64) 0.0710 (0.67) 0.0762 (0.58) 0.0266 (1.0) 0.0852 (0.44) 0.0764 (0.58) 0.0745 (0.61) 0.2818

type 6 (1.7 × 10−7)
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APPENDIX B: LOG-NORMAL (γ ∗, μ∗, σ ) OF τ ∗ AS A
CONSEQUENCE OF LOG-NORMAL (μ, σ ) OF τ

If τ is lognormal(μ, σ ), what is τ ∗ = τ−τ̄
στ

?
Cumulative pdf: G(z) = P (τ ∗ � z) = P ( τ−τ̄

στ
� z) =

P (τ � zστ + τ̄ ) So,

G(z) =
∫ zστ +τ̄

0

1

στ
√

2π
exp

[
− (ln τ − μ)2

2σ 2

]
dτ . (B1)

But

dτ

dτ ∗ = στ ⇒ dτ = στdτ ∗. (B2)

We also have the following:

ln τ − μ = ln(τ ∗στ + τ̄ ) − μ = ln

[
στ

(
τ ∗ + τ̄

στ

)]
− μ

= ln

(
τ ∗ + τ̄

στ

)
− (μ − ln στ ). (B3)

Substituting (B2) and (B3) into (B1), we obtain

G(z) =
∫ z

0

1

στ

(
τ ∗ + ⇀

τ
στ

)
σ
√

2π

× exp

[
−

[
ln

(
τ ∗ + τ̄

στ

) − (μ − ln στ )
]2

2σ 2

]
στdτ ∗.

So τ ∗ is lognormal(γ ∗, μ∗, σ ), where γ ∗ = − τ̄
στ

andμ∗ =
μ − ln στ .

APPENDIX C: PORE SIZE DISTRIBUTIONS OF FCC
PACKING, BCC PACKING, SC PACKING, AND RANDOM

PACKING SPHERES

Pore size distributions of four sphere packing geometries
are presented in Fig. 8.

FIG. 8. Pore size distributions of the studied sphere packing patterns. Spheres are packed in (a) fcc, (b) bcc, (c) random, and (d) sc random
configurations.
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