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Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow
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Nonadiabatic transitions between the acoustic and the vorticity modes perturbing a plane Couette flow are
examined in the context of higher-order WKB asymptotics. In the case of the Schrödinger equation, it is known
that looking at the solution expressed in the superadiabatic base, composed of higher-order asymptotic solutions,
smoothes quantum state transitions. Then, increasing the order of the superadiabatic base causes these transitions
to tend to the Gauss error function, and, once an optimal order is reached, the asymptotic process starts to diverge.
We show that for perturbations in Couette flow, similar results can be applied on the amplitudes of the vorticity
and acoustic modes. This allows us to more closely track the emergence of the acoustic modes in the presence of
the vorticity mode.
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I. INTRODUCTION

The propagation of acoustic waves in a Couette plane
flow (and a fortiori in shear flows) allows the existence of
subtle phenomena of couplings between acoustic and vorticity
perturbations (for a review, see [1]). For the stability analysis
of this flow, the classical stability analysis based on the
study of the eigenvalues of the linearized equations governing
perturbations is known to give erroneous results, due to the
presence of transient growths [2–4]. Inspired by the earlier
works of Kelvin [5], a new approach, the so called nonmodal
approach, was developed and used to study the coupling
phenomena between vorticity and acoustic perturbations in
a Couette plane flow [1,6–15]. In this particular case, this
approach allows a great number of simplifications. Indeed, the
linearity of the flow allows us to reduce the Euler equations
governing the time evolution of compressible perturbations
into a first-order ordinary differential equation in time of
dimension 3. This process relies on two steps. The first step
is to introduce a convected coordinate frame following the
flow, which turns the linearized Euler equations into equations
with space-independent coefficients. Then, taking advantage
of having space-independent coefficients, the second step is
to apply a space Fourier transform, which gives the above-
mentioned ordinary differential equation governing the time
evolution of each spatial Fourier harmonic.

In previous works, this system was treated by deriving
a second-order inhomogeneous equation on the horizontal
component of the velocity field of the perturbation [7]. It was
first reported, in the case of incompressible perturbations, that
the wave vector of any spatial Fourier harmonic is subject to
a time evolution due to the effect of the flow [6]. The vertical
components of the wave vector decrease linearly over time,
so that at a particular time τ� the wave vector is horizontal. A
direct consequence of this phenomenon is that the wave-vector
amplitude reaches a minimum for that τ� time. An important
parameter involved in the physics of this flow is the ratio of
the shear rate of the flow over the characteristic frequency
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of the perturbations, which we call here ε (it is called R in
Refs. [1,6–15]). In the case of compressible perturbations,
the governing equations permit the existence of two types of
perturbations: two acoustic modes of perturbation were identi-
fied as the solutions of the associated homogeneous equation,
while a vorticity mode of perturbation was identified as the
particular solution of the whole inhomogeneous equation. This
vorticity mode, which corresponds to the transient growth of
the incompressible case, can reach arbitrarily high amplitudes
in finite time. The acoustic modes also display a particular
behavior. A mechanism of energy exchange between acoustic
perturbations and the mean flow has been exhibited [7–9].
The acoustic waves are able to give or extract energy from
the mean flow depending on whether the time is smaller or
larger than τ�. It has also been recovered that acoustic waves
in such a flow acquire a vortical behavior [16], which gets more
important as ε is larger. But the most interesting phenomenon,
which is the main subject of this paper, is the coupling between
these modes, allowing the generation of acoustic waves from
vorticity waves [10].

In another paper [17] we show that using the Wentzel-
Kramer-Brillouin (WKB) method gives an efficient frame to
describe the different types of perturbations in a general linear
planar flow. With this method, we addressed the known prob-
lem of the generation of acoustic waves by the vorticity wave,
but also another coupling phenomenon, namely the generation
of an acoustic wave by the acoustic wave propagating in
the opposite direction. The method we proposed relies on the
existence of a small parameter ε, which is the ratio of the shear
rate of the mean flow to the frequency of the perturbation,
to provide approximate asymptotic solutions. At order ε, the
solutions given by the WKB method are able to describe very
closely the exact solution. The only phenomena which are not
taken into account are sudden emergences of nonexcited modes
which occur near the complex degeneracies of the equation
governing the time evolution of the perturbations. These
emergences are exponentially small quantities of order e−C/ε,
for some constant C, which cannot be taken into account by
asymptotic methods (due to the fact that all derivatives of e−C/ε

with respect to ε are null at zero [18]). Similar phenomena,
called nonadiabatic transitions, have been studied in quantum
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mechanics since the works of Landau [19,20] and Zener [21].
The use of higher-order approximations provides a base of
asymptotic approximate solutions, or modes, which is called
the superadiabatic base [22]. Contrary to the adiabatic base
that is composed of approximations in which only the first term
(or a given number of terms) is retained, the superadiabatic
base is composed of approximations truncated at an optimal
order which depends on ε. Looking at the exact solution
expressed in this superadiabatic base allows for a finer tracking
of the emerging mode amplitudes by smoothing them [22].
At the optimal order, the time evolution of the amplitude of
the emerging mode renormalizes to a general shape, which
is the Gauss error function. Then, as in many asymptotic
processes [18], it starts to diverge once this optimal order
is reached. This has been predicted in the case of a two-state
system by Berry and Lim [22,23] on the basis of the work
done by Dykhne [24] and by Davis and Pechukas [25]. More
recently, a mathematical proof was proposed by Hagedorn and
Joye [26]. Similar renormalizations of amplitudes are depicted,
among others, in Ref. [27] for a two-level system, in Ref. [28]
concerning the case of two successive coupling areas, and in
Ref. [29] concerning a three-level system.

In this paper, we address the coupling phenomenon be-
tween acoustic and vorticity linear perturbations of a planar
Couette flow, where superadiabatic bases can be used. In the
first section, the equations governing the evolution of the
perturbations are derived following the nonmodal approach,
as in Ref. [7]. In Sec. II, the WKB method is applied in such a
context. The first-order asymptotic solution gives us a base of
three modes: two acoustic modes and one vorticity mode. We
show that this base is composed of three modes close to exact
solutions and enables us to track the emergences of nonexcited
modes. In the final section, we derive the superadiabatic bases
corresponding to the following orders. The predictions of
Berry are investigated in our case.

II. MODEL

Let us consider a mean plane Couette flow,

u0(x,y) = Ayêx, (1a)

where A is the shear rate of the flow, as represented in
Fig. 1. The most interesting thing about this choice is that

FIG. 1. Sketch of the studied problem. The bold arrows represent
the mean flow velocity field u0(y) = Ayêx . The convected coordi-
nates (x̃,ỹ) introduced by the change of variables in Eq. (3) “follow”
the flow.

in this case the nonmodal method consists in considering the
evolution of dimensionless spatial Fourier harmonics in the
convected coordinate frame which follows the flow. This can
be reduced to two major steps. The first step is to introduce
a set of independent variables which will be a frame of
convected coordinates, and the second step is to apply the
spatial Fourier transform to the equations. This derivation of
the equations has now become quite classical and is commonly
used [1,6–15,17], and it can be generalized to more general
linear two-dimensional (2D) flows [12,17].

We introduce compressible perturbations of pressure p and
velocity u = (u,v). For small amplitudes, the time evolution
of these perturbations is governed by the linearized Euler
equations(

∂

∂t
+ Ay

∂

∂x

)
u + Av = − 1

ρ0

∂

∂x
p, (2a)

(
∂

∂t
+ Ay

∂

∂x

)
v = − 1

ρ0

∂

∂y
p, (2b)

(
∂

∂t
+ Ay

∂

∂x

)
p = −ρ0c

2
0

(
∂

∂x
u + ∂

∂y
v

)
, (2c)

where c0 is the adiabatic speed of sound linking the density
and pressure of the perturbations by p = c2

0ρ, and where ρ0 is
the mean density in the mean flow. Equations (2) govern the
evolution of acoustic and vorticity perturbations in the mean
flow u0.

As a first step, we define the convected coordinate frame

x̃ = x − Ayt, (3a)

ỹ = y, (3b)

t̃ = t, (3c)

and rewrite Eqs. (2) in terms of these variables,

∂

∂t̃
u + Av = − 1

ρ0

∂

∂x̃
p, (4a)

∂

∂t̃
v = − 1

ρ0

(
∂

∂ỹ
− At̃

∂

∂x̃

)
p, (4b)

∂

∂t̃
p = −ρ0c

2
0

[
∂

∂x̃
u +

(
∂

∂ỹ
− At̃

∂

∂x̃

)
v

]
. (4c)

Since these equations have space-independent coefficients, we
are going to apply a Fourier transform. This is equivalent
to looking for solutions in the form of plane waves in the
convected coordinates:

⎡
⎣u(x̃,ỹ,t̃)

v(x̃,ỹ,t̃)
p(x̃,ỹ,t̃)

⎤
⎦ =

⎡
⎣ũ(t̃)

ṽ(t̃)
p̃(t̃)

⎤
⎦eiα0x̃+iβ0ỹ , (5)

where α0 and β0 are the horizontal and vertical Fourier
wave numbers in the convected coordinates (x̃,ỹ,t̃). As a
consequence, Eqs. (4) become the following system of three
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ordinary differential equations in time:

∂

∂t̃
ũ + Aṽ = − 1

ρ0
iα0p̃, (6a)

∂

∂t̃
ṽ = − 1

ρ0
i(β0 − α0At̃)p̃, (6b)

∂

∂t̃
p̃ = −ρ0c

2
0[iα0ũ + i(β0 − α0At̃)ṽ]. (6c)

To obtain dimensionless forms of Eqs. (6), we use 1/α0

as a reference value for distances, and commonly used
reference values for the other quantities. So we intro-
duce the dimensionless variables X = α0x̃, Y = α0ỹ, T =
c0α0 t̃ , U (X,Y,T ) = 1

c0
ũ(x̃,ỹ,t̃), V (X,Y,T ) = 1

c0
ṽ(x̃,ỹ,t̃), and

P (X,Y,T ) = 1
ρ0c

2
0
p̃(x̃,ỹ,t̃). Eventually, rewriting Eqs. (6) in

terms of these dimensionless variables leads to

U̇ (T ) + εV (T ) = −iP (T ), (7a)

V̇ (T ) = −iβ(εT )P (T ), (7b)

Ṗ (T ) = −iU (T ) − iβ(εT )V (T ), (7c)

where the dimensionless parameter appears,

ε = A

c0α0
, (8)

and where β(εT ) = β0/α0 − εT . This ε, considered as the
small parameter, is the ratio of the shear rate of the mean flow
to the frequency of the perturbation. The system of Eqs. (7)
forms an ordinary differential equation of dimension 3 with
respect to the dimensionless time.

When ε = 0, the classical wave equation can be recovered
from Eqs. (7) [as well as from Eqs. (2)]. Hereafter, in order to
construct asymptotic solutions with use of the WKB method,
we focus on small values of ε, namely ε � 1. This corresponds
to a small shearing assumption, that is, a weak shear rate of
the mean flow compared to the frequency of the perturbations.
In that case, the characteristic time scale of the variation of
β is εT (slow variation), whereas it is known from classical
acoustics that the solution oscillates on the T time scale. Hence
we introduce the slow time defined by

τ = εT , (9)

and rewrite Eqs. (7) in terms of τ . This yields

εẊ(τ ) = [H0(τ ) + εH1]X(τ ), (10)

where X(τ ) = (U (τ ),V (τ ),iP (τ )), and

H0(τ ) =
⎡
⎣0 0 −1

0 0 −β(τ )
1 β(τ ) 0

⎤
⎦, H1 =

⎡
⎣0 −1 0

0 0 0
0 0 0

⎤
⎦.

(11)

Here and hereafter, the overdot denotes the derivative with
respect to the slow time τ .

Note that multiplying Eq. (10) by the imaginary unit i yields
a Schrödinger-like equation whose Hamiltonian (iH0 + iεH1)
is not Hermitian due to the iεH1 part. That system has to be
compared with one of the examples studied by Berry,

iεẊ = H0(τ )X (12)

with

H0(τ ) =
[
τ 1
1 −τ

]
. (13)

As can be seen from Eqs. (10) and (11), the β function
plays a very important role since, being given an initial
condition at a time τi , it fully determines the whole dynamic
of the perturbations. To give a better understanding of what β

corresponds to, let us first write β in terms of the slow time τ :

β(τ ) = β0

α0
− τ. (14)

Then, we point out that the spatial exponential dependence of
the solution in the convected coordinates (x̃,ỹ), described in
Eq. (5), can be rewritten in the original coordinates (x,y)

eiα0x̃+iβ0ỹ = eiα0[x+β(τ )y]. (15)

This means that, while k0 = (α0,β0) is the wave vector with
respect to the convected coordinates x̃ and ỹ, k(τ ) = (1,β(τ ))
acts as an instantaneous wave vector with respect to the original
coordinates x and y (up to the nondimensionalization factor
α0). In fact, it can be seen in Eq. (11) that the H0 matrix
is composed of the two components of k, one of which is
constant in the present case of a Couette flow (in the case of
more general linear flows, the two components may vary in
time [12,17]). This wave vector k evolves in time and is shifted
along the y axis because of the time evolution of its vertical
component, β. At the particular time τ� = β0/α0, β is zero,
k is horizontal, and the norm of k reaches a minimum. As
explained in the following sections, this time τ� will play a
very important role since couplings phenomena occur at this
time.

Equation (14) shows that β only depends on β0/α0 and ε.
The β0/α0 parameter defines the vertical component of the
wave vector at the time τ = 0, but also, as just mentioned, the
time at which the coupling phenomena occur. Considering a
particular value of β0/α0 is equivalent to shifting the τ time
axis. For instance, introducing a change of variable τ̃ = τ −
β0/α0 shows that any case can reduce to the case in which
β0 = 0, provided that the initial condition is also shifted in
time accordingly. Put another way, we can say that choosing a
different β0 only advances or postpones the coupling time τ�.
Therefore, without loss of generality, we can choose arbitrary
β0. Here and hereafter we take β0 = 0 for convenience, so that
τ� = 0. A sketch of the evolution of the wave vector is given
in Fig. 2 for that case. Other illustrations of this phenomenon
can be found in Ref. [17] for other linear flows.

III. THE ADIABATIC BASE

The WKB method (see, for instance, [30]), sometimes
called the WKBJ method (J stands for Jeffrey) or the
“Liouville-Green” method, belongs to multiple scale asymp-
totic methods, and it relies on the use of a small parameter,
here ε. It consists in looking for a solution under the form of
the ansatz

X(n)(τ ) = e
i
ε
σ (τ )[ϕ(0)(τ ) + · · · + εnϕ(n)(τ )], (16)

where the scalar phase σ (τ ) and the vectorial series terms
ϕ(n)(τ ) are the unknowns to be determined. The main idea
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FIG. 2. Sketch of the time evolution of the dimensionless wave
vector k = (1,β(τ )).

behind this method is to describe two phenomena. One
phenomenon is the rapidly oscillating behavior of the solution
which occurs on the fast time scale T and is described by
the exponential factor. The second phenomenon is the slow
variation of the way the solution oscillates which occurs on
the slow time scale τ and is described by the series.

Inserting (16) into (10) yields the successive equations for
each order of power of ε,

(iσ̇ − H0) ϕ(0) = 0, (17)

(iσ̇ − H0) ϕ(n+1) = H0ϕ
(n) − εH1ϕ̇

(n). (18)

According to the order 0 equation [Eq. (17)], iσ̇ is an eigen-
value of the H0 matrix and ϕ(0) is its associated eigenvector.
These eigenvalues are

λH = 0, λ± = ±ik, (19)

where k =
√

1 + β2 is the norm of k. The evolution of the
eigenvalues (purely imaginary) is represented in Fig. 3. As
mentioned in the preceding section, at τ = 0, k reaches a
minimum, and the three eigenvalues are the closest to each
other. As detailed later, this particular time is of crucial interest
as couplings occur at this time.
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FIG. 3. Time evolution of the imaginary parts of the eigenvalues
of the H0 matrix (real parts are zeros) for ε = 0.2.

The associated modes are

ϕ
(0)
H = 1

k2

⎡
⎣ β

−1
0

⎤
⎦, ϕ

(0)
± = 1√

k

⎡
⎣ 1

β

∓ik

⎤
⎦, (20)

where the scalar prefactors come from the compatibility
condition imposed by Eq. (18) at order n = 1. Finally, the three
order 0 WKB approximate solutions, which we call order 0
WKB modes, are

X(0)
± (τ ) = e

∫ τ ± i
ε
k(s)ds ϕ

(0)
± (τ ), (21a)

X(0)
H (τ ) = ϕ

(0)
H (τ ). (21b)

Some subtle phenomena can be understood from the form of
these modes and from the time evolution of their amplitudes
[17]. By looking at the vectorial form of the X(0)

H approximate
solution, we notice that the velocity components are normal to
the wave vector k, and that the pressure perturbation remains
null. This means that the complete approximate solution,
expressed in terms of u, v, and p, is divergence-free and
incompressible, and so we identify X(0)

H as a vorticity mode of
perturbation. On the contrary, the X(0)

± approximate solution
has velocity components collinear to k and an oscillating
pressure. Therefore, the associated complete solutions are curl-
free and compressible, and we identify them as acoustic modes
of perturbation. The fact that the associated velocity field is
curl-free is in contradiction with known results [9,16], and
the consequences are detailed later. These three modes form a
base {X(0)

− ; X(0)
H ; X(0)

+ } called the adiabatic base. Looking at the
exact solution (obtained numerically as explained below) of
Eq. (10) in this adiabatic base gives us the amplitude on each
WKB mode. By writing Y(0)(τ ) = (Y (0)

− (τ ),Y (0)
H (τ ),Y (0)

+ (τ )),
the exact solution X(τ ) in this adiabatic base, and by defining
the transformation matrix �(0)(τ ) = [X(0)

− X(0)
H X(0)

+ ], we get

X(τ ) = �(0)(τ )Y(0)(τ ), (22)

or equivalently X = Y
(0)
− X(0)

− + Y
(0)
H X(0)

H + Y
(0)
+ X(0)

+ . The WKB
approximation predicts that the amplitudes Y

(0)
− , Y

(0)
H , and Y

(0)
+

on each mode of the adiabatic base are constants. On the other
hand, for the exact solution of Eq. (10), these components are
not constant.

In the following, we focus our study on the time evolution
of these mode amplitudes |Y (0)

H |, |Y (0)
+ | and |Y (0)

− |. We first
consider the case of an incident acoustic mode, that is, with
an initial condition imposed on one of the acoustic modes,
X(τi) = X(0)

+ (τi). Figure 4(a) shows the time evolution of the
modulus of each mode amplitude for such an initial condition
imposed at τi = −5 and for ε = 0.2. The choice of this value of
ε = 0.2 is to provide a typical case in which the phenomena can
be observed. In experiments, lower values are to be expected,
e.g., in a mixing layer where the shear rate would be A ∼ U/L,
with U the velocity difference between the two flows and
L the characteristic width of the layer. Supposing that the
layer is sufficiently large to contain several wavelengths, say
k0L ∼ 10, we would have ε = A/(α0c0) ∼ U/c0/10.

The presented results are obtained by integrating numeri-
cally Eq. (10) with a Magnus-Möbius scheme [31–34]. Once
the exact solution X(τ ) is obtained, the mode amplitudes
are computed by inverting Eq. (22). Note that we are not
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FIG. 4. (Color online) Time evolution of the modulus of the mode amplitudes in the WKB adiabatic base for τi = −5 and ε = 0.2, with
initial condition (a) on the acoustic “+” mode, X(τi) = X(0)

+ (τi), and (b) on the vorticity mode, X(τi) = X(0)
H (τi). The mode amplitudes |Y (0)

H (τ )|,
|Y (0)

+ (τ )|, and |Y (0)
− (τ )| are the projections of the reference numerical solution X(τ ) on the adiabatic base composed of the vorticity mode X(0)

H (τ )
and of the two acoustic modes X(0)

+ (τ ) and X(0)
− (τ ) obtained with the WKB method at order n = 0. The mode amplitudes are obtained with the

relation X = Y
(0)
H X(0)

H + Y
(0)
+ X(0)

+ + Y
(0)
− X(0)

− .

looking here at the approximate solutions that constitute the
WKB modes, but at the projection of the exact solution
of Eq. (10) on the base composed of these WKB modes.
This sort of representation is different from the one used in
previous works [1,6–15]. This is intended to provide a different
physical approach of the involved phenomena by displaying
the presence of each mode of perturbation. Our goal is to
build the most appropriate base to represent the solution. In
the hypothetical case, the WKB modes were exact solutions.
These mode amplitudes would be constant over time. A first
look at Fig. 4(a) shows that this is not the case here. It shows
that for negative times, the incident acoustic “+” mode has
an amplitude which stays close to 1, while the amplitude of
the acoustic “−” mode remains zero. This means that the
adiabatic base managed to cling to an exact solution, since
this solution is mostly described by the acoustic “+” mode.
However, the vorticity mode immediately appears after the
initial time and its amplitude oscillates around a mean value,
showing that the current adiabatic base fails to describe an
important phenomenon. This is in fact an asymptotic error of
order ε, also tackled in Ref. [17]. More physically, this is linked
to the fact that the acoustic modes obtained with the WKB
method at order n = 0 are curl-free, while acoustic waves in
shear flows are thought not to be [9,16]. The oscillations of the
vorticity mode amplitude correspond to the vorticity part of the
exact solution, which is not taken into account in the adiabatic
base, leading to an error of order ε

√
τi [17]. Near τ = 0,

the nonincident acoustic “−” mode, which was null before,
emerges. This emergence is very small and is masked by
strong oscillations which finally disappear. Then the amplitude
stabilizes to a final value, which is very small compared to
that of the incident acoustic “+” mode. This emergence is
a nonadiabatic transition that the asymptotic process cannot
predict as it is an exponentially small phenomenon—of order

e−C/ε for some constant C. This result is very similar to the
ones obtained by Berry [23].

Figure 4(b) shows the case of an incident vorticity mode, for
the same values of τi and ε, and using the same representation
as in Fig. 4(a). This case displays behavior comparable to
the preceding case in Fig. 4(a): the exact solution is almost
completely described by the incident vorticity mode (its
amplitude remains 1 and the two others 0), even more precisely
than in the preceding case, where a consistent error was
present. Then, near τ = 0, a nonadiabatic transition occur,
provoking the emergence of two acoustic modes in a similar
manner as one acoustic mode provoked the emergence of
the other acoustic mode in Fig. 4(a). This transition is more
efficient than in the preceding case, and the two acoustic modes
have equal amplitudes, indistinguishable in Fig. 4(b). After
the transition, the vorticity mode amplitude starts to oscillate,
which is the same effect as in Fig. 4(a), here due to the presence
of the acoustic mode that has emerged at τ = 0.

Figure 5 shows the time evolution of the mode amplitudes
but for ε = 0.1. The same phenomenon can be seen in Fig. 5(a)
with the incident acoustic mode, and in Fig. 5(b) with the
incident vorticity mode, but with smaller amplitudes. For a
value of ε which has been divided by 2, the oscillations of the
vorticity mode, due to the presence of the acoustic mode, have
also been divided by 2, confirming the asymptotic character
of that phenomenon. On the other hand, the amplitudes of
the nonadiabatic transitions have diminished on a totally
different scale, and they are so small here that they are
barely distinguishable, confirming their exponentially small
behavior.

In the end, the adiabatic base gives modes which are very
close to exact solutions except that they do not take into
account two types of phenomena. The first one is the vortical
behavior that the acoustic mode is supposed to exhibit, and
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FIG. 5. (Color online) Time evolution of the modulus of the mode amplitudes in the WKB adiabatic base for τi = −5 and ε = 0.1.
(a) Incident acoustic mode and (b) incident vorticity mode. Same representation as in Fig. 4.

which causes the vorticity modes amplitude to oscillate in the
presence of an acoustic mode. The second type of phenomena
are the nonadiabatic transitions which permit the generation
of a mode by another, but that are exponentially small in 1/ε.
Two types of transitions are possible: the generation of the two
acoustic modes by the vorticity mode, and the generation of
an acoustic mode by the other acoustic mode. We wish now to
enhance the adiabatic base to smoothen the oscillations during
the transitions and to reduce the errors responsible for the
oscillations of the vorticity mode amplitude.

IV. THE SUPERADIABATIC BASES

In the following, the WKB modes at order n ≥ 1 are sought,
in the same way as was done by Berry [22,23] in the field
of quantum mechanics. Berry showed that the behavior of the
amplitudes is dominated by the effect of singularities present in
the equations determining the first orders. These singularities
are the complex zeros of the eigenvalues. At higher orders,
by mean of successive integrations, their effect becomes of
significant order even on the real axis. By iterating the order
n of the base used to represent the exact solution, the mode
amplitudes renormalize and tend to a general form which is
the Gauss error function, at a particular order. At the following
orders, the asymptotic development starts to diverge.

To apply this result in our case, we look for next-order WKB
modes. We need to determine the ϕ

(n)
j (with j ∈ {−,H,+}) for

n ≥ 1 in the WKB ansatz (16). The starting point is Eq. (18)
with the expression (20) of each ϕ

(n)
j . To perform this calculus,

it is convenient to express the ϕ
(n)
j vectors in the base of the

eigenvectors ϕ
(0)
j of H0:

ϕ
(n)
j = Sc(n)

j for j ∈ {−,H,+}, (23)

where

S = [
ϕ

(0)
− ϕ

(0)
H ϕ

(0)
+

]
, (24)

and where c(n)
j is the representation of ϕ

(n)
j in this base. Note

that the matrix S differs from the adiabatic base matrix �(0)

because of the exponential terms. Also for convenience, and
following the method of Berry, we express the components of
H0 (which are the horizontal and vertical components of the
wave vector) in polar coordinates:

[
1

β(τ )

]
= k(τ )

[
sin θ (τ )
cos θ (τ )

]
. (25)

Projecting Eq. (18) on this base yields

(λj I − D)c(n+1)
j =

(
S−1H1S − S−1Ṡ − d

dτ

)
c(n)
j (26)

for j ∈ {−,H,+}, where I is the identity matrix and D =
diag(λ−,λH ,λ+) is the diagonal matrix composed of the
eigenvalues λj of H0. A detailed expression of Eq. (26) is
given in Eq. (A1) of the Appendix. This allows us to compute
all the c(n)

j through the scheme

c
(n+1)
j,l = 1

λj − λl

∑
m

Mj,mc
(n)
j,m − ċ

(n)
j,l for j �= l, (27a)

ċ
(n+1)
j,j =

∑
m

Mj,mc
(n+1)
j,m for j = l, (27b)

where Mj,m are the coefficients of the matrix M = S−1H1S −
S−1Ṡ, which has a null diagonal. Of course, expressions of
the c(n)

j at order 0 are c(0)
− = (1,0,0), c(0)

H = (0,1,0), and c(0)
+ =

(0,0,1). The constants coming from the integration of Eq. (27b)
are chosen in order to cancel terms which differ between c(n)

and c(0) at τ = ±∞, so that ideally c(0)(±∞) = c(n)(±∞).
However, some terms appearing while solving the scheme
(27) cannot be canceled because they do not have a finite limit
at ±∞. They are the source of nonuniformities discussed
in Ref. [17]. The order n = 1 components can be easily
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FIG. 6. (Color online) Time evolution of the successive vorticity amplitudes |Y (n)
H (τ )| on the order n WKB vorticity mode of the

superadiabatic base in the case of an incident acoustic “+” mode (of same order), and for τi = −5 and ε = 0.2 [cf. Fig. 4(a)]. The mode
amplitudes |Y (n)

H (τ )|, |Y (n)
+ (τ )|, and |Y (n)

− (τ )| are computed by projection of the exact solution onto the superadiabatic base of order n, composed
of the superadiabatic modes X(n)

H (τ ), X(n)
+ (τ ), and X(n)

− (τ ) obtained with the WKB method at order n. The initial condition is imposed on the
WKB acoustic “+” mode of same order, that is, X(τi) = X(n)

+ (τi). Note that the |Y (0)
H (τ )| curve in (a) is the same as the one in Fig. 4(a).

obtained:

c(1)
− =

⎡
⎣−i cos3 θ/24 + i cos θ − 23i/24

−i sin−1/2 θ

−i cos θ sin2 θ/4

⎤
⎦, (28)

c(1)
H =

⎡
⎣−i sin9/2 θ

0
i sin9/2 θ

⎤
⎦, (29)

c(1)
+ =

⎡
⎣ i cos θ sin2 θ/4

i sin−1/2 θ

i cos3 θ/24 − i cos θ + 23i/24

⎤
⎦. (30)

Because of the successive integrations of Eq. (27), the follow-
ing terms have an increasing complexity and so are computed
with the symbolic computation software MAXIMA [35]. As an
example, expressions of the order n = 2 coefficients obtained
by this method are given in the Appendix.

In the same manner as in the preceding section, we look
at the mode amplitudes in the bases formed by these new
WKB modes at order n. We define the superadiabatic base
of order n as the base formed by the order n WKB modes
{X(n)

− ; X(n)
H ; X(n)

+ }, where each X(n)
j includes now the asymptotic

power series from ϕ
(0)
j to ϕ

(n)
j . We define the transformation

matrix �(n) = [X(n)
− X(n)

H X(n)
+ ] and write similarly to Eq. (22)

X = �(n)Y(n). (31)

To study the effect of the use of the superadiabatic bases, we
first focus on the case of the incident acoustic “+” mode. Each
figure from Figs. 6(a) to 6(d) represents the time evolution of
the order n and order n + 1 WKB vorticity mode amplitudes
from n = 0 to 6 in the case of an incident acoustic “+” mode
for τi = −5 and ε = 0.2 [same configuration as in Fig. 4(a)].
The |Y (0)

H | curve in Fig. 6(a), corresponding to the adiabatic
base (order n = 0), is of course the same as the corresponding
curve in Fig. 4(a), while the |Y (1)

H (τ )| curve corresponds to the
new first superadiabatic base (order n = 1). At order n = 1, the
oscillations disappear and the overall amplitude is diminished
by an order. Figures 6(b)–6(d) exhibit a typical asymptotic
converging behavior with the amplitudes being diminished
by the same factor at each iteration of the order n of the
base. The only exception is near the coupling area at τ = 0,
where, starting from the order n = 4, localized oscillations
start to appear, which comes with no surprise since its the
area where the nonadiabatic transition takes place. We can
see, therefore, that the vortical behavior of the acoustic mode
is accurately taken into account in the superadiabatic base for
orders n � 1.

Figures 7(a)–7(d) show, under the same conditions, the
time evolution of the mode amplitudes of the nonincident
acoustic “−” mode, in the same way as Figs. 6(a)–6(d) do
for the vorticity mode. As in Fig. 6(a), the |Y (0)

− (τ )| curve
in Fig. 7(a) stands for the adiabatic base and is the same
as the corresponding curve in Fig. 4(a). Switching from the
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FIG. 7. (Color online) Time evolution of the successive acoustic amplitudes |Y (n)
− (τ )| on the order n WKB acoustic “−” mode of the

superadiabatic base in the case of an incident acoustic “+” mode (of same order), and for τi = −5 and ε = 0.2 [cf. Fig. 4(a)]. Note that the
|Y (0)

− (τ )| curve in (a) is the same as the one in Fig. 4(a). The optimal order is n = 8 in (d).

adiabatic base to the first superadiabatic base has the effect of
significantly lowering the oscillations in the coupling area near
τ = 0, but also the final amplitude for large time. This latter
result could seem surprising with regard to what was said
before about the superadiabatic bases being supposed to be
unable to take into account nonadiabatic transitions. However,
we must remember that the acoustic mode of the adiabatic base
contains the error responsible for the strong oscillation of the
vorticity mode [Fig. 4(a)]. Injecting the acoustic mode of the
adiabatic base as an initial condition leads in fact to injecting
a small amount of vorticity mode, which compensates for the
error made at order n = 0. Therefore, the transition viewed
in the adiabatic base is in fact the sum of two transitions: the
transition due to the incident acoustic mode and the transition
due to that small amount of vorticity mode. On the contrary, the
order 1 superadiabatic acoustic mode takes into account that
small part of the vorticity that the acoustic mode is supposed
to possess. As can be seen in Fig. 6(a), when injecting that
order 1 superadiabatic acoustic mode, there is no appearance
of the vorticity mode before the coupling area at τ = 0, and
the transition we can see on the other acoustic mode is the
transition actually due to the acoustic mode. In the end, the
difference in the final amplitudes between orders n = 0 and 1 is
in fact due to a converging process asymptotic to εn, and is not
due to an exponentially small quantity being taken into account
by the superadiabatic base. This can be confirmed by looking
at Figs. 7(b)–7(d), which show the renormalization process.
At each iteration of the order of the base, the oscillations
during the transition near τ = 0 are reduced by one order
and get smoothed. But the final amplitude remains the same.

Eventually, at the order n = 8, displayed in Fig. 7(d), the
process of renormalization reaches an optimum and the mode
amplitude tends to the Gauss error function, as predicted.
However, despite using superadiabatic bases the transition
remains present since it is an exponentially small quantity
of order ∼e−C/ε, where C is a constant determined by the
dynamic near τ = 0. This exponentially small behavior makes
it impossible to be described in terms of powers of ε, which
is why an asymptotic method such as the WKB method fails
to predict it. The determination of the constant C has been
performed in the case of the two-dimensional Schrödinger
equation (see, for instance, [22]), but is here more difficult,
and is beyond the scope of this paper. It would constitute a
natural and interesting sequel to this work. Despite not being
able to take into account this transition, the superadiabatic base
provides a frame that emphasizes the transition.

We now consider the case of an incident vorticity mode.
Figures 8(a)–8(d) report the time evolution of the two acoustic
mode amplitudes (they are equal) at successive orders in the
same way as in Figs. 6 and 7, but for an incident vorticity mode.
Here, the curve corresponding to the order n = 0 is the same
as in Fig. 4(b). Similarly to the preceding case, we can notice
the renormalization process which smoothes the oscillations
during the transition, and reaches an optimum at n = 4 in
Fig. 8(c). Then, for orders from n = 5 to 7 in Figs. 6(c) and
6(d), the oscillations reappear, grow again, and the process
starts to diverge. The final amplitude also remains the same
for all orders despite some small variations that can be seen on
the two first orders in Figs. 8(a) and 8(b), and which are due
to the asymptotic convergence of the superadiabatic base. But
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FIG. 8. (Color online) Time evolution of the successive acoustic amplitudes |Y (n)
+ (τ )| on the order n WKB acoustic mode of the

superadiabatic base in the case of an incident vorticity mode (of same order), and for τi = −5 and ε = 0.2 [cf. Fig. 4(b)]. Note that the
|Y (0)

+ (τ )| curve in (a) is the same as the one in Fig. 4(b). The optimal order is n = 4 in (c).

the base rapidly converges, and starting from order n = 3 the
final amplitude does not change.

Figures 9(a) and 9(b) sum up the studied situations by
displaying the mode amplitude of all modes represented in
their optimal base for the same set of parameters τi = −5 and
ε = 0.2. Figure 9(a) corresponds to the case of an incident

acoustic mode, for which the optimal order is n = 8, and
Fig. 9(b) corresponds to the case of an incident vorticity mode,
for which the optimal order is n = 4.

Finally, Fig. 10 shows how the coupling depends on ε. It
represents the final amplitude |Y (8)

+ (+∞)| of the acoustic mode
as a function of ε (bold line). The curve is indeed asymptotic
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FIG. 9. (Color online) Time evolution of the amplitudes on each WKB mode of the superadiabatic base at optimal order nopt. (a) Incident
acoustic mode, optimal order nopt = 8, with initial condition X(τi) = X(8)

+ (τi). (b) Incident vorticity mode, optimal order nopt = 4, with initial
condition X(τi) = X(4)

H (τi). The WKB method predicts constant amplitudes, the incident mode amplitude being 1 and the others 0. This figure
is to be compared to the mode amplitudes in the simple adiabatic WKB base represented in Fig. 4.
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FIG. 10. (Color online) Final amplitude |Y (8)
+ (+∞)| on the

acoustic WKB mode of the superadiabatic base at order n = 8 as
a function of ε for incident vorticity mode (see Fig. 9). Computation
(plain line), fitted Ae−C/ε curve (dashed line).

to Ae−C/ε (thin line). Physically, it represents the amount of
acoustic wave created by a vorticity wave as a function of
the ratio of the shearing of the steady flow to the frequency
of the wave. It is remarkable that for small values of this
ratio (ε < 0.1), the coupling is almost nonexistent. It becomes
noticeable for values of ε greater than 0.1. From 0 to ε = 0.25
the numerical results fit almost perfectly with the predicted
exponential dependence, and then they start to move away
from it by growing more slowly. We also recover here results
similar to the one obtained by Chagelishvili [1].

To discuss the dependence on the other parameter τi , we
have to bear in mind that, in the optimal superadiabatic base,
the WKB modes describe almost exactly the exact solution.
It is only in the coupling area that the WKB modes cannot
follow exactly the solution, which is the reason for the
nonadiabatic transitions. Therefore, if τi > 0, the system will
remain described by the incident mode and nothing particular
happens in terms of mode coupling since the coupling area
at τ = 0 is never crossed. If we take τi < 0, as in the cases
studied here, but with a different value of τi , again the solution
remains described by the incident mode before the coupling
area at τ = 0, and no difference with the presented results
appears. The case in which τi ∼ 0 is more complicated, and
results are a bit erratic in this case. Indeed, one WKB mode
is injected at the moment at which the WKB modes fail to
cling to the solution, and on the other hand, the nonadiabatic
transitions would have already started if the mode was present
before. As our work is meant to be a study of a propagating
wave arriving in the coupling area, without addressing the
question of the generation of that wave, we did not perform a
study of that case.

V. CONCLUDING REMARKS

This study focuses on the coupling phenomena existing
between acoustic and vorticity perturbations in a Couette plane
flow in the context of the WKB method, where the small
parameter ε is the ratio of the shear rate of the mean flow
to the frequency of the perturbations. This method naturally

exhibits three modes of perturbations: two acoustic modes and
one vorticity mode. This approach allowed us to recover the
two major coupling phenomena which exist between acoustic
and vorticity waves in a Couette flow: the generation of
acoustic waves by a vorticity wave and the generation of an
acoustic wave by another acoustic wave. These two coupling
phenomena are closely linked to the time evolution of the
wave vector of the wave, as they happen when the wave
vector is horizontal and of minimal norm at the same time.
They are phenomena of order exponentially small in 1/ε,
with ε representing the ratio of the shearing of the mean
flow to the characteristic frequency of the perturbation. The
WKB modes constitute a well-suited base to represent these
couplings, since examining the time evolution of the modes in
the frame of the superadiabatic bases allows a smooth tracking
of the exponentially small emergences of the nonexcited
modes. For an optimal order of the superadiabatic base, these
emergences take the form the Gauss error function, as can
be seen in Fig. 9. This optimal order depends on ε, which is
typical of superadiabatic approximations. We believe it gives a
simple picture of nonadiabatic couplings between acoustic and
vorticity modes. Despite the fact that they inherently present
a small vortical behavior which depends on the shearing of
the mean flow, the acoustic modes never generate the vorticity
mode under this linear frame.
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APPENDIX: DETAILS OF EQ. (26)

In this Appendix, we give the details of Eq. (26). Let us
consider a given subscript j referring to one of the subscripts

−, H , or +, so that, for instance, ϕ(n)
j stands for either ϕ

(n)
− , ϕ(n)

H ,

or ϕ
(n)
+ . Equation (26) is obtained by decomposing the ϕ

(n)
j on

the base composed of the order 0 components ϕ
(0)
− , ϕ

(0)
H , and

ϕ
(0)
+ as stated in Eqs. (23) and (24), and by rewriting in terms of

k(τ ) and θ (τ ) [Eq. (25)] the matrix S−1H1S − S−1Ṡ appearing
on the right-hand side. This yields

⎡
⎣λj − λ− 0 0

0 λj − λH 0
0 0 λj − λ+

⎤
⎦

⎡
⎢⎢⎣

c
(n+1)
j,−

c
(n+1)
j,H

c
(n+1)
j,+

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

− d
dτ

sin2 θ
k3/2 − cos θ sin θ

2

−k3/2 − d
dτ

−k3/2

− cos θ sin θ
2

sin2 θ
k3/2 − d

dτ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c
(n)
j,−

c
(n)
j,H

c
(n)
j,+

⎤
⎥⎥⎦. (A1)

Then, all the ϕ
(n)
j can be obtained by computing the c

(n)
j,l

coefficients with the scheme given in Eqs. (27). At order 0 the
expressions are simply c

(0)
j,l = δj,l . We give here the expressions
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for orders n = 1 and 2.

c
(1)
−,− = −i

cos3 θ

24
+ i cos θ − 23i

24
, (A2)

c
(1)
−,H = −i sin−1/2 θ, (A3)

c
(1)
−,+ = −i

cos θ sin2 θ

4
, (A4)

c
(1)
H,− = −i sin9/2 θ, (A5)

c
(1)
H,H = 0, (A6)

c
(1)
H,+ = i sin9/2 θ, (A7)

c
(1)
+,− = i

cos θ sin2 θ

4
, (A8)

c
(1)
+,H = i sin−1/2 θ, (A9)

c
(1)
+,+ = i

cos3 θ

24
− icos θ + 23i

24
, (A10)

c
(2)
−,− = − sin6 θ

32
+ sin4 θ

32
− cos6 θ

1152
+ cos4 θ

24
− 23 cos3 θ

576

− cos2 θ

2
+ 23 cos θ

24
− 529

1152
, (A11)

c
(2)
−,H = cos θ sin

3
2 θ

4
− cos3 θ

24
√

sin θ
+ cos θ√

sin θ
− 23

24
√

sin θ
,

(A12)

c
(2)
−,+ = sin6 θ

8
− cos2 θ sin4 θ

4
+ sin4 θ

2
− cos4 θ sin2 θ

96

+ cos2 θ sin2 θ

4
− 23 cos θ sin2 θ

96
, (A13)

c
(2)
H,− = 4 cos θ sin

13
2 θ, (A14)

c
(2)
H,H = −2 sin4 θ, (A15)

c
(2)
H,+ = 4 cos θ sin

13
2 θ, (A16)

c
(2)
+,− = sin6 θ

8
− cos2 θ sin4 θ

4
+ sin4 θ

2
− cos4 θ sin2 θ

96

+ cos2 θ sin2 θ

4
− 23 cos θ sin2 θ

96
, (A17)

c
(2)
+,H = cos θ sin

3
2 θ

4
− cos3 θ

24
√

sin θ
+ cos θ√

sin θ
− 23

24
√

sin θ
,

(A18)

c
(2)
+,+ = − sin6 θ

32
+ sin4 θ

32
− cos6 θ

1152
+ cos4 θ

24
− 23 cos3 θ

576

− cos2 θ

2
+ 23 cos θ

24
− 529

1152
. (A19)
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