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Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems
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We introduce a method for the calculation of finite-time Lyapunov exponents in time-delayed nonlinear
dynamical systems. We apply the method to the Mackey-Glass model with time-delayed feedback. We investigate
the standard deviation of the probability distribution of the finite-time Lyapunov exponents when the finite
time or the delay time is changed. It is found that the standard deviation decreases in a power-law scaling with
the exponent ∼0.5 as the finite time or the delay time is increased. Similar results are obtained for the finite-time
Lyapunov spectrum.
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I. INTRODUCTION

Nonlinear dynamical systems with time-delayed feedback
show very rich complex behaviors because the systems are
considered as infinite-dimensional systems [1,2]. Neuronal
networks, electronic circuits, and laser systems are typical
examples of time-delayed dynamical systems [3–6]. Recently,
the use of time-delayed dynamical systems has been reported
for applications of fast physical random number generators [7],
reservoir computing [8], and optical secure communications
[9,10]. The estimation of the dimensionality and the entropy
of the dynamical system is important for these applications.

The dimensionality and the entropy of dynamical systems
can be quantified with Lyapunov exponents [1,2,11–13]. Lya-
punov exponents characterize average growth rates of small
perturbations to an orbit of an attractor in the phase space and
a positive value of the maximum Lyapunov exponent indicates
deterministic chaos. Many methods for the calculation of
the Lyapunov exponents have been well established for both
discrete and continuous dynamical systems [14–21]. One of
the most trusted methods for the estimation of the Lyapunov
exponent in continuous dynamical systems is the use of
linearized model equations that govern the evolution of small
perturbations to an orbit in the phase space [14–16].

The Lyapunov exponents are asymptotic in time and aver-
aged over an attractor. On the contrary, finite-time Lyapunov
exponents have been proposed to investigate finite-time behav-
iors on a chaotic attractor [22,23]. The finite-time Lyapunov
exponents are exponential growth rates of small perturbations
on the attractor for finite-time intervals. They have been also
known as local Lyapunov exponents [24,25] and finite-size
Lyapunov exponents [26], where the growth rates are measured
in a finite size in the phase space, instead of a finite time. The
analysis of the finite-time behaviors is quite important for the
classification of chaotic dynamics [27,28], controlling local
chaotic dynamics [29], unpredictability of physical random
number generators [30], and information capacity of reservoir
computing [8]. The finite-time Lyapunov exponents may
significantly differ from the average Lyapunov exponents,
depending on phase-space locations. The standard deviation
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of the probability distribution of the finite-time Lyapunov
exponents is one of the useful quantities to identify statistical
property of the finite-time Lyapunov exponents [22]. However,
the finite-time Lyapunov exponents in time-delayed dynamical
systems have not been reported yet, because the construction of
the phase space for the calculation of the finite-time Lyapunov
exponents has not been clearly understood.

In this study, we introduce a method for the calculation of
the finite-time Lyapunov exponents in time-delayed nonlinear
dynamical systems. We treat a time-delayed system as a finite-
dimensional system by discretizing time-delayed components
with a short time step and derive a calculation method
of the finite-time Lyapunov exponents by linearizing the
system. We apply the method to the Mackey-Glass model
with time-delayed feedback and investigate the dependence
of the standard deviation of the probability distribution of the
finite-time Lyapunov exponents on the finite time and the delay
time. We also investigate the characteristics of the finite-time
Lyapunov spectrum.

II. CALCULATION METHOD FOR FINITE-TIME
LYAPUNOV EXPONENTS IN TIME-DELAYED

DYNAMICAL SYSTEMS

We derive a calculation method for the finite-time Lyapunov
exponents for any time intervals in time-delayed dynamical
systems. A time-delayed dynamical system with N -state
variables xT (t) = [x1(t),x2(t), . . . ,xN (t)], where T represents
transpose, is described as follows:

dxj (t)

dt
= fj [x(t),x(t − τ )], (1)

where j = 1,2, . . . ,N , x(t − τ ) is the time-delayed compo-
nent and τ is the delay time. The dynamical system with
time-delayed feedback is considered as an infinite-dimensional
system since the state of Eq. (1) is determined by the variable
x on the continuous-time interval [t,t − τ ]. The state can be
approximated by a new variable y(t) that consists of M + 1
samples of the variable x(t) taken at a small interval h = τ/M

[1,2], i.e., yT (t) = [xT (t),xT (t − h),xT (t − 2h), . . . ,xT (t −
Mh)]. This approximation indicates that an N -dimensional
system with time-delayed feedback is considered as an N (M +
1)-dimensional ordinary dynamical system. The dynamical
evolution of Eq. (1) is transformed into the following map by
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discretization with a small time step h:

y(t + h) = F[ y(t)]. (2)

The time evolution from y(t) to y(t + h) is considered for the
calculation of finite-time Lyapunov exponents. The variable
y(t) is constructed for every τ step [i.e., y(t), y(t + τ ),
y(t + 2τ ), . . .] to represent spatiotemporal behaviors [31–33]
and to calculate the maximum Lyapunov exponent [1,2].
However, the introduction of Eq. (2) enables us to investigate
the calculation of finite-time Lyapunov exponents for the short
time step h.

To calculate the Lyapunov exponents, we consider a small
(linear) perturbation δx(t) = x(t) − x̄(t), where δxT (t) =
[δx1(t),δx2(t), . . . ,δxN (t)], from an original trajectory x̄(t).
The evolution of the perturbation for Eq. (1) is governed by
the following linearized equation [1,6,12,13]:

dδx(t)

dt
= J t δx(t) + J t−τ δx(t − τ ). (3)

The matrices J t and J t−τ are N × N matrixes whose i-j
elements are ∂fi/∂xj (t) and ∂fi/∂xj (t − τ ), respectively. It
is worth noting that the variables xj (t) and time-delayed
variables xj (t − τ ) are treated as independent variables to
derive Eq. (3) [1]. We consider a new variable for per-
turbation δ y(t) in an N (M + 1)-dimensional phase space,
i.e., δ yT (t) = [δxT (t),δxT (t − h),δxT (t − 2h), . . . ,δxT (t −
Mh)]. The evolution of δ y(t) is described by the following
equation by linearizing Eq. (2):

δ y(t + h) = FD[ y(t)]δ y(t), (4)

where FD is the N (M + 1) × N (M + 1) Jacobian matrix
of F. The formula of FD is shown in Appendix A. In
continuous dynamical systems, the integration of Eqs. (1)
and (3) is required to obtain the tangent map Y (t), which
takes the initial variables δ y(0) into the time-evolved vari-
ables δ y(t), i.e., δ y(t) = Y (t)δ y(0), where Y (t) = FD[ y(t −
h)]FD[ y(t − 2h)] · · · FD[ y(0)]. The average Lyapunov expo-
nents can be obtained as the logarithm of the eigenvalues of
limt→∞[YT (t)Y (t)]1/2t [14–16,18]. The finite-time Lyapunov
exponents for any finite times L can also be obtained
as the logarithm of the eigenvalues of [YT (L)Y (L)]1/2L.
Reorthogonalization and normalization is required by using
QR decomposition [14–16].

The norm of δ y(t) has been often used for the calculation of
Lyapunov exponents in continuous-time dynamical systems,
instead of Y (t) [1,6,12,13]. By integrating Eqs. (1) and (3)
simultaneously, we can obtain the evolution of δ y(t) and δx(t)
in [t,t − τ ]. The norm d(t) of δ y(t) is defined as follows:

d(t) = ||δ y(t)|| =
√√√√

N∑
j=1

M∑
i=0

|δxj (t − ih)|2. (5)

The finite-time Lyapunov exponents for any time intervals
L = kh (k is an integer and h is the integration time step) can
be defined as follows:

λf (L) = 1

L
ln

d(t + L)

d(t)
= 1

kh

k∑
j=1

ln
d(t + jh)

d[t + (j − 1)h]
. (6)

Note that δx(t) needs to be normalized by the norm d(t) for
each integration time step h to maintain a small amount of
δx(t).

We use Eqs. (5) and (6) for the calculation of the finite-time
Lyapunov exponents in the following sections. The calculation
method of the finite-time Lyapunov exponents from the
eigenvalues of the Jacobian matrix FD will be described in
Appendix A.

III. NUMERICAL RESULTS OF FINITE-TIME LYAPUNOV
EXPONENTS IN THE MACKEY-GLASS MODEL

First we consider the finite-time property of the maximum
Lyapunov exponent in this section. The finite-time property of
the second (and more) Lyapunov exponents can be calculated
by using other sets of Eq. (4) and orthogonalization of δ y(t)
[22], which will be described in Sec. IV.

We used the Mackey-Glass model [34] to show the validity
of our method:

dx(t)

dt
= ax(t − τ )

1 + xb(t − τ )
− cx(t), (7)
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FIG. 1. (Color online) Finite-time Lyapunov exponents plotted
on (a) the temporal waveform and (b) the two-dimensional projection
of the chaotic attractor in the Mackey-Glass model. Red points
indicate large positive values of the finite-time Lyapunov exponents.
The integration time step is set to h = 0.02. The delay time τ = 5
and the finite time for the calculation L = 0.02 (= h) are used for the
numerical simulations.
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where x(t − τ ) represents the time-delayed variable, τ is the
delay time, and a, b, and c are the fixed parameters. From
Eq. (3), the Mackey-Glass model of Eq. (7) is linearized with
a new variable for perturbation δx(t) = x(t) − x̄(t) from an
original trajectory x̄(t) as follows:

dδx(t)

dt
= −cδx(t) + a + a(1 − b)xb(t − τ )

[1 + xb(t − τ )]2
δx(t − τ ). (8)

A time series of the perturbation δx is obtained from numerical
integration of both Eqs. (7) and (8). The finite-time Lyapunov
exponents of Eq. (6) can be calculated from the time evolution
of the norm of Eq. (5).

We set the parameter values to a = 2, b = 10, and c = 1,
respectively. The integration time step h is set to 0.02 in our
numerical simulations for the Mackey-Glass model. The delay
time is set to τ = 5. For these parameter values, the Mackey-
Glass system is approximated by a 251-dimensional ordinary
dynamical system (i.e., N = 1, M = τ/h = 250).

Figure 1 shows the temporal waveform and the finite-time
Lyapunov exponents projected on the two-dimensional chaotic
attractor of the Mackey-Glass model. The finite time L is
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FIG. 2. (Color online) Probability distributions of the finite-time
Lyapunov exponents for the delay time τ = 5. The finite times are set
to (a) L = 0.02 and (b) L = 1, 5, and 100, respectively. The maximum
Lyapunov exponent is λmax = 0.058. Note that the horizontal axis of
(b) is expanded from that of (a).

set to be 0.02 (=h). Red points represent large values of
the finite-time Lyapunov exponents. The finite-time Lyapunov
exponents on the temporal waveform x(t) are changed in time
as shown in Fig. 1(a). We found that the finite-time Lyapunov
exponents depend on the locations of the chaotic attractor in
the phase space in Fig. 1(b).

Figure 2(a) shows the probability distribution of the
finite-time Lyapunov exponents over the chaotic attractor for
L = 0.02 (= h), as used in Fig. 1. The finite-time Lyapunov
exponents show the distribution ranging from −1.5 to 1.5. The
maximum Lyapunov exponent λmax, which is the mean value
of the finite-time Lyapunov exponents, is 0.058. Compared
with λmax, the finite-time Lyapunov exponent has larger
absolute values. When the finite time L is increased, different
probability distributions are obtained, as shown in Fig. 2(b).
The delay time τ = 5 is used and three examples are shown
in Fig. 2(b) (L < τ , L = τ , and L > τ ). We found that the
distributions become narrower as the finite time L is increased
in Fig. 2(b). We also found that the peak value of the probability
distributions for L = 5 and 100 matches λmax. The peak value
is shifted from 0 to λmax at L ≈ τ when L is increased.
The shape of the distribution is drastically changed from the
skewed distribution [the case for L = 1 in Fig. 2(b)] to the
Gaussian distribution (the case for L = 100). The change in
the probability distributions is observed for other values of τ .

We calculated the standard deviation of the probability dis-
tribution of finite-time Lyapunov exponents to quantitatively
evaluate the dependence of the distribution on the finite time
L. Figure 3 shows the standard deviation as a function of
L for the delay times τ = 5, 10, and 20. We found that the
standard deviation decreases for all the cases and the decay
of the standard deviation obeys a power law in terms of the
finite time L, denoted by L−p. The curve for τ = 20 has a
little distortion at L ≈ τ , which results from the transition
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FIG. 3. (Color online) Standard deviation of the probability dis-
tribution of the finite-time Lyapunov exponents as a function of the
finite time L on the double-logarithmic plot. The delay times τ = 5,
10, and 20 are used. The power-law scaling is found for all the cases,
denoted by L−p . The scaling exponents of p = 0.48, 0.50, and 0.51
are obtained for the delay times τ = 5, 10, and 20, respectively, in
the range 20 � L � 1000.
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FIG. 4. (Color online) Probability distributions of the finite-time
Lyapunov exponents for the finite times (a) L = 1 (L < τ ) and
(b) L = 200 (L > τ ). The delay times τ = 10, 20, and 40 are
used. The maximum Lyapunov exponents λmax are 0.036, 0.019, and
0.010 for τ = 10, 20, and 40, respectively. The peak values of the
distributions are located at λmax in (b) for L > τ .

from the skewed distribution to the Gaussian distribution, as
shown in Fig. 2(b). In the range of L ≈ τ , the peak value of the
distribution shifts from 0 to λmax, which causes the distortion
of the curve in Fig. 3. The scaling exponents p = 0.48, 0.50,
and 0.51 are obtained for τ = 5, 10, and 20, respectively, by
applying the least-squares method to the curves in Fig. 3. It
has been reported in the literature that p ranges from 0.5 to 1.0
in ordinary dynamical systems without time-delayed feedback
[22]. Our results show that a similar scaling exponent p can
be obtained in the Mackey-Glass model with time-delayed
feedback.

Next we investigate the dependence of the probability
distribution of the finite-time Lyapunov exponent on the delay
time τ . Figure 4 shows the probability distribution of the
finite-time Lyapunov exponent for the delay times τ = 10, 20,
and 40. We set the finite times L = 1 and 200 for Figs. 4(a)
and 4(b), respectively. The widths of the distributions become
narrower with the increase of τ for both Figs. 4(a) and 4(b).
The peak value remains the same at λpeak = 0 in Fig. 4(a). On
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FIG. 5. (Color online) Standard deviation of the probability dis-
tribution of the finite-time Lyapunov exponent as a function of the
delay time τ in the Mackey-Glass model on the double-logarithmic
plot. The finite times L = 1, 10, 50, and 200 are used. The power-law
scaling is found for all the cases, denoted by τ−q . The exponent of q =
0.51 is obtained for L = 1 in 10 � τ � 1000, q = 0.50 is obtained
for L = 10 in 100 � τ � 1000, q = 0.59 and 0.46 are obtained
for L = 50 in 10 � τ � 50 and 200 � τ � 1000, respectively, and
q = 0.54 is obtained for L = 200 in 10 � τ � 200.

the contrary, the peak value corresponding to λmax is decreased
when τ is increased in Fig. 4(b).

Figure 5 shows the standard deviation of the finite-time
Lyapunov exponents as a function of the delay time τ . Both
the horizontal and vertical axes are logarithmic scales, as
in Fig. 3. The standard deviation decreases in a power-law
scaling in terms of τ , denoted by τ−q . For the cases of L = 50
and 200, a power-law scaling is found in the range τ < L.
The scaling exponents are q = 0.59 and 0.54 for L = 50 and
200, respectively. When τ exceeds L, the distribution changes
from the Gaussian distribution to the skewed distribution. The
power-law scaling cannot be observed in the transition between
the two types of distributions. However, the power-law scaling
is obtained again for larger τ . For example, the exponents of
q = 0.51 and 0.50 are obtained for L = 1 and 10 for τ > L,
respectively. From these results, it is found that the standard
deviation of the probability distribution of the finite-time
Lyapunov exponents can be fitted with a power law in terms
of the delay time τ except for the range of L ≈ τ . The scaling
exponents are q ≈ 0.5, as in the case of the scaling for the
finite time L. Similar results are observed for another example
of a time-delayed dynamical system, i.e., an optoelectronic
time-delayed feedback system, as shown in the Appendix B.

IV. FINITE-TIME LYAPUNOV SPECTRUM

In the previous section, we considered the finite-time
property of the maximum Lyapunov exponent. A set of n

Lyapunov exponents can be obtained in an n-dimensional
dynamical system, which is known as the Lyapunov spectrum.
In this section, we consider the finite-time property of the
second-largest and more Lyapunov exponents (i.e., Lyapunov
spectrum) in the Mackey-Glass model. We investigate the
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FIG. 6. (Color online) Probability distributions of the ith largest
finite-time Lyapunov exponents λi

f , where i = 1, 2, 3, and 10. The
finite times L = 1 and 100 are used for (a) and (b), respectively.
The black solid curve represents the maximum finite-time Lyapunov
exponents λ1

f . The red dotted, blue dashed, and green long-dashed
curves represent λ2

f , λ3
f , and λ10

f , respectively. The delay time τ = 10
is used.

standard deviation of the probability distribution of several
finite-time Lyapunov exponents.

Figure 6 shows the probability distributions of four finite-
time Lyapunov exponents λ1

f , λ2
f , λ3

f , and λ10
f , where λi

f

represents the ith largest finite-time Lyapunov exponents.
The delay time of the Mackey-Glass model is set to τ = 10,
where five positive average Lyapunov exponents are obtained.
The finite times L = 1 and 100 are used in Figs. 6(a) and
6(b), respectively. For L < τ in Fig. 6(a), the peaks of the
four probability distributions are located at λi

f ≈ 0. However,
positive components of the probability distributions of the
finite-time Lyapunov exponents are decreased and negative
components are increased, as the index i is increased. On the
contrary, for L > τ in Fig. 6(b), the peaks of the probability
distributions are shifted to the negative direction as the index
i is increased, even though the shapes of the distributions are
almost the same (i.e., similar to the Gaussian distributions).
In fact, the peaks are located at the average Lyapunov
exponents for the ith largest Lyapunov exponents. We found
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FIG. 7. (Color online) Standard deviation of the probability dis-
tribution of the ith largest finite-time Lyapunov exponents λi

f as
functions of (a) the finite time L and (b) the delay time τ on the
double-logarithmic plot. The black solid, red dotted, blue dashed, and
green long-dashed curves represent λ1

f , λ2
f , λ3

f , and λ10
f , respectively.

(a) The scaling exponents p = 0.49, 0.48, 0.47, and 0.48 are obtained
for λ1

f , λ2
f , λ3

f , and λ10
f , respectively, by fitting the standard deviation

to the power law L−p in 20 � L � 1000. The delay time τ = 10 is
fixed. (b) The scaling exponents q = 0.51, 0.51, 0.51, and 0.54 are
obtained for λ1

f , λ2
f , λ3

f , and λ10
f , respectively, by fitting to the power

law τ−q . The finite time L = 1 is fixed.

that the finite-time Lyapunov spectrum has similar probability
distributions.

We also investigate the standard deviations of the prob-
ability distributions of the ith largest finite-time Lyapunov
exponents λi

f as the finite time L or the delay time τ is changed.
Figure 7(a) shows the standard deviations of the probability
distributions of the finite-time Lyapunov exponents λ1

f , λ2
f , λ3

f ,
and λ10

f when the finite time L is changed. The vertical and hor-
izontal axes are logarithmic. The standard deviations for all the
finite-time Lyapunov exponents obey the power-law scaling
L−p, as shown in Fig. 7(a). We can obtain the scaling exponents
p = 0.49, 0.48, 0.47, and 0.48 for λ1

f , λ2
f , λ3

f , and λ10
f , respec-

tively, by fitting the standard deviations to the power law L−p.
Figure 7(b) shows the standard deviations of the probability
distributions of λ1

f , λ2
f , λ3

f , and λ10
f when the delay time τ is

changed. Similarly, the standard deviations for all the finite-
time Lyapunov exponents obey the power law τ−q . The scaling
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exponents are q = 0.51, 0.51, 0.51, and 0.54 for λ1
f , λ2

f , λ3
f ,

and λ10
f , respectively. Therefore, the power-law scaling with

the exponent ∼0.5 is found for the standard deviations of the
probability distributions of the finite-time Lyapunov spectrum.

V. DEPENDENCE OF STANDARD DEVIATION ON
DELAY-TIME DISCRETIZATION

The state variables x(t) within the delay time [t − τ,t] are
discretized by the integration time step h to convert from an
infinite-dimensional system to a finite-dimensional system,
where the dimensionality is N (M + 1) (N is the number
of the variables for the original model and M = τ/h). In
this section, we investigate how many points of delay-time
discretization are required for reliable estimation of the finite-
time Lyapunov exponents in the Mackey-Glass model. We
introduce a sampling time Ts for this calculation and the
integration time step h is fixed to avoid the change in the
original trajectory x(t), where Ts � h. The number of delay-
time discretization is defined as M ′ = τ/Ts and the norm of
the linearized equations are calculated by using M ′ instead of
M (where M ′ � M). In this case, we consider the N (M ′ +
1)-dimensional state variable δ yT (t) = [δxT (t),δxT (t −
Ts),δxT (t − 2Ts), . . . ,δxT (t − M ′Ts)] by discretizing the
original state variable x(t) in [t − τ,t] with the sampling time
Ts . We change M ′ (or Ts) and investigate the characteristics
of the probability distributions of the maximum finite-time
Lyapunov exponent for different M ′ (or Ts). It is expected that
larger M ′ (smaller Ts) results in more reliable estimation of
the finite-time Lyapunov exponents.

Figure 8(a) shows the standard deviations of the probability
distributions of the maximum finite-time Lyapunov exponents
when M ′ is changed for τ = 6 and 60. The integration time step
h = 0.01 is fixed. For τ = 6, the standard deviation converges
into a constant value (0.039) in the range of M ′ � 8. On the
contrary, for τ = 60, the standard deviation converges into a
constant value (0.015) in the range of M ′ � 80. Therefore, it is
required to increase the number of the points of the delay-time
discretization as the delay time is increased to obtain correct
estimation of the finite-time Lyapunov exponents.

Figure 8(b) shows the standard deviations of the probability
distributions of the maximum finite-time Lyapunov exponents
when Ts is changed. In this case, the standard deviations have
constant values in the range of Ts � 0.75 for both delay times
τ = 6 and 60. Therefore, the sampling time Ts needs to be less
than a constant value (i.e., 0.75 in this example), regardless of
the delay time, to obtain reliable estimation of the finite-time
Lyapunov exponents.

VI. CONCLUSION

We introduced a method to calculate the finite-time Lya-
punov exponents in time-delayed nonlinear dynamical sys-
tems. We calculated the probability distribution of the finite-
time maximum Lyapunov exponents for the Mackey-Glass
model and found that the shape of the distribution changes
from skewed to Gaussian distributions as the finite time is
increased. The transition of the two distributions occurs when
the finite time is close to the delay time. The power-law scaling
is observed for the standard deviation of the probability distri-
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FIG. 8. (Color online) Standard deviation of the probability dis-
tribution of the finite-time Lyapunov exponents as functions of
(a) the number of the discretized state variables M ′ (M ′ = τ/Ts) and
(b) the sampling time Ts for the discretization. The black solid and red
dotted curves represent the delay times τ = 6 and 60, respectively.
The integration time step h = 0.01 is fixed.

bution of the finite-time Lyapunov exponents for both the finite
time L and the delay time τ , except for the transition of the
two distributions. Both of the scaling exponents p and q (L−p

and τ−q) are close to 0.5. Similar characteristics of the prob-
ability distributions and the scaling exponents of the standard
deviations are obtained for the finite-time Lyapunov spectrum.

The finite-time Lyapunov exponents are good quantitative
measures for the evaluation of unpredictability for random
number generators with chaotic dynamics and for the eval-
uation of complexity in reservoir computing systems. Our
method could be useful for these applications.
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APPENDIX A: DERIVATION OF THE JACOBIAN MATRIX
USING THE EULER METHOD IN A CONTINUOUS-TIME

DYNAMICAL SYSTEM

The Jacobian matrix FD in Eq. (4) can be derived
by discretizing a continuous-time dynamical system. The
following discretized map can be obtained from Eq. (3) by
using the Euler method:

δx(t + h) = (I + hJ t )δx(t) + hJ t−τ δx(t − τ ), (A1)

where h is the discretized time step and I is the N × N identity
matrix. The variable of linear perturbation δ y(t + h) at time
t + h can be obtained from the mapping of FD with the
variable δ y(t) at time t as shown in Eq. (4). The Jacobian
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(b) Linearized equation

FIG. 9. Probability distribution of finite-time Lyapunov expo-
nents obtained from (a) the discretized map FD and (b) the norm
of Eq. (5) by using the linearized equation [same as Fig. 2(a)]. The
time step is set to h = 0.02.

matrix FD can be described from Eq. (A1) as follows:

FD[ y(t)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I + hJ t 0 · · · 0 hJ t−τ

I 0 · · · 0 0

. . .
. . .

...
...

0 0

0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where FD is the N (M + 1) × N (M + 1) matrix and 0 is the
N × N zero matrix. The first column of FD corresponds to
Eq. (A1) and the other columns indicate shift operation of
the components δx(t − h),δx(t − 2h), . . ., and δx[t − (M −
1)h].

An example of FD for the Mackey-Glass model is derived
as follows. The Mackey-Glass model of Eq. (7) is linearized
with a new variable for perturbation δx(t) = x(t) − x̄(t) from
an original trajectory x̄(t) [Eq. (8) is rewritten]:

dδx(t)

dt
= −cδx(t) + a + a(1 − b)xb(t − τ )

[1 + xb(t − τ )]2
δx(t − τ ).

(A3)

After the discretization of Eq. (A3) by using the Euler method,
the Jacobian matrix FD for the Mackey-Glass model is
described as follows:

FIG. 10. (Color online) Standard deviation of the probability
distribution of the finite-time Lyapunov exponents as a function
of the delay time τ in the optoelectronic time-delayed feedback
system [4,11]. The power-law scaling exponent q is obtained from
fitting to τ−q . The exponent q = 0.50 is obtained for L = 1 in
10 � τ � 1000. The exponents q = 0.62 and 0.45 are obtained
for L = 50 in 10 � τ � 50 and 200 � τ � 1000, respectively. The
exponent q = 0.55 is obtained for L = 200 in 10 � τ � 200.
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FD[ y(t)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + hJt 0 · · · 0 hJt−τ

1 0 · · · 0 0
. . .

. . .
...

...
0 0

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

Jt = −c, (A5)

Jt−τ = a + a(1 − b)xb(t − τ )

[1 + xb(t − τ )]2
, (A6)

where FD is the (M + 1) × (M + 1) matrix.
The finite-time Lyapunov exponents for any finite times

L can be obtained as the logarithm of the eigenvalues of
[YT (L)Y (L)]1/2L, where Y (t) is the tangent map, i.e., Y (t) =
FD[ y(t − h)]FD[ y(t − 2h)] · · · FD[ y(0)]. The numerical re-
sults of the finite-time Lyapunov exponents calculated from
Y (t) are shown in Fig. 9(a). The probability distribution of the
finite-time Lyapunov exponents agrees well with that obtained
from Eq. (6) with the norm d(t) of δ y(t) by using the linearized
equation, as shown in Fig. 9(b) [which is the same result as
Fig. 2(a)].

APPENDIX B: FINITE-TIME LYAPUNOV EXPONENTS IN
THE OPTOELECTRONIC FEEDBACK SYSTEM

To show the universality of our findings in the Mackey-
Glass model, we used a different model, i.e., the optoelectronic
time-delayed feedback system [4,11]

dx(t)

dt
= −x(t) + β sin2[x(t − τ ) − ϕ], (B1)

where β is the feedback strength and ϕ is the feedback phase.
The second term in this equation represents electronic delayed
feedback and τ is the delay time. These parameters are fixed
to β = 20 and ϕ = π/4 in our numerical simulations. The time
t and the delay time τ are normalized with τ0 = 2 × 10−11.

Figure 10 show the standard deviation of the probability
distribution of the finite-time Lyapunov exponents as a
function of the delay time τ in the optoelectronic feedback
system. The results show the power-law scaling and the
scaling exponent q = 0.50 is obtained with τ−q for L = 1
in Fig. 10. For other cases, we can observe the distortion
of the power-law scaling at the region L ≈ τ , which can be
also found in the Mackey-Glass model. The scaling exponents
q ≈ 0.5 are obtained for other regions except for L ≈ τ . These
results show that the probability distribution of the finite-time
Lyapunov exponents in the optoelectronic feedback system
shows behavior similar to that in the Mackey-Glass model.
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