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Multiscale multifractal analysis of traffic signals to uncover richer structures
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Multifractal detrended fluctuation analysis (MF-DFA) is the most popular method to detect multifractal
characteristics of considerable signals such as traffic signals. When fractal properties vary from point to point
along the series, it leads to multifractality. In this study, we concentrate not only on the fact that traffic signals
have multifractal properties, but also that such properties depend on the time scale in which the multifractality
is computed. Via the multiscale multifractal analysis (MMA), traffic signals appear to be far more complex
and contain more information which MF-DFA cannot explore by using a fixed time scale. More importantly,
we do not have to avoid data sets with crossovers or narrow the investigated time scales, which may lead to
biased results. Instead, the Hurst surface provides a spectrum of local scaling exponents at different scale ranges,
which helps us to easily position these crossovers. Through comparing Hurst surfaces for signals before and
after removing periodical trends, we find periodicities of traffic signals are the main source of the crossovers.
Besides, the Hurst surface of the weekday series behaves differently from that of the weekend series. Results also
show that multifractality of traffic signals is mainly due to both broad probability density function and correlations.
The effects of data loss are also discussed, which suggests that we should carefully handle MMA results when
the percentage of data loss is larger than 40%.
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I. INTRODUCTION

Urban traffic congestion is one of the most serious chal-
lenges that affects all aspects of the quality of everyday life
in metropolitan areas. Traffic systems, especially urban traffic
systems, are enforced by well-defined periodicity, together
with the existence of unpredictable perturbation and highly
variable physical and human elements which may lead to
extreme traffic events. Thus traffic flow often exhibits irregular
and complex behavior [1–3]. The proper representation of all
dynamics in a model is complex: while certain relationships
can be developed through analysis, the incorporation of
immeasurable quantities, such as laws and social codes, creates
further complications [4]. Studies to understand the properties
of traffic signals are an important area of research. There have
been successful attempts by many researchers when analyzing
or forecasting traffic signals in recent decades from different
aspects [5–10]. Further, the fractal time series analysis of traffic
signals is a developing research area [11–15], which helps to
better understand the characteristics of traffic systems.

The simplest type of multifractal analysis is based on stan-
dard partition function multifractal formalism, which has been
developed for the multifractal characterization of normalized,
stationary measurements [16–19]. Unfortunately, this standard
formalism may give incorrect results for nonstationary time
series that are affected by trends or that cannot be normalized.
Thus, in the early 1990s, an improved multifractal formalism
was developed, i.e., the wavelet transform modulus maxima
(WTMM) method [20], which is based on wavelet analysis and
involves tracing the maxima lines in the continuous wavelet
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transform over all scales. The other method, the multifractal
detrended fluctuation analysis (MF-DFA) [21] in the statis-
tical physics field, has become a widely used technique to
characterize multifractality of time series in the presence of
nonstationarity. It is a generalization of detrended fluctuation
analysis (DFA) [22], which was originally established to avoid
spurious detection of long-range correlations that are artifacts
of nonstationarity in the time series. MF-DFA, as a robust
and powerful technique, identifies and quantifies the multiple
scaling exponents within a time series. It has been successfully
applied in different and heterogeneous scientific fields to study
multifractality [14,23–30].

However, when analyzing the multifractality of time series,
the well-known MF-DFA usually assumes a much wider
time scale, i.e., the scale s ∈ [10,N/4] [21,31], where N

is the length of the series. One problem which may exist is
the presence of crossovers in the log-log plot of fluctuation
function Fq(s) versus scale s of conventional MF-DFA, i.e.,
the change of average slope of the fluctuation functions at some
scale s, which is commonly found in traffic series. A crossover
is usually interpreted as a result of different correlation proper-
ties for small and large scales in the signals [32]. When analyz-
ing time series with crossovers, researchers usually narrow the
range of investigated scales only to large or only to small scales.
A recent study highlighted that a single exponent is inadequate
to describe the heart rate (HR) dynamics, showing that α

calculated by DFA is poorly reproducible and does not reliably
reflect the autonomic influences on HR [33]. A “two coeffi-
cient” model [34] has been proposed to estimate short-term and
long-term scale coefficients, α1 and α2, but it has been viewed
as an oversimplification of a more complex phenomenon. The
common practice of fixing a priori scaling ranges in such
methods as DFA and MF-DFA may lead to artifacts in some
cases, i.e., if a crossover falls within the scaling range by
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FIG. 1. (Color online) (a) The locations of detectors 3054–3057. (b) Part of the profiles of traffic velocity (Km/h) collected by detector
3057 (upper panel). One-day series at weekday and weekend separately (lower panel, black line for weekend, gray line for weekday in printed
black-white version); dashed lines show the periods at rush hours: morning peak during 7:00–9:30 and evening peak during 17:00–19:30.

mistake, the results will be biased. In order to avoid mistakes
due to improperly predefined scaling ranges, and to obtain
all information about the fractal properties among the entire
time scales, we applied the multiscale multifractal analysis
(MMA) [32] to detect the multiscale structure of traffic signals.

In this study, we focus on the detection of the intriguing
long-range correlation nature and multifractal properties
of traffic signals, applying a modified MMA model. The
structure of the paper is as follows. In Sec. II, we briefly
introduce the traffic data used in this study, i.e., MF-DFA,
MMA, and, finally, some modifications of MMA. In Sec. III,
we employ MMA to analyze traffic speed signals, including
a description of multiscale multifractal analysis related
to conventional methods, using artificial monofractal and
multifractal series. In addition, some discussions on the
effects of periodic trends, weekday and weekend patterns, the
generating mechanism of multifractality for traffic signals,
and data loss on MMA results are included in this section.
Finally, a summary is presented in Sec. IV.

II. DATA AND METHOD

A. Data description

Traffic systems have numerous parameters that can be
measured, among which, traffic speed, volume, and occupancy
are mostly studied. In this study, we use the data observed
from detectors 3054 to 3058 which lie on the North 3rd
Ring Road (Beijing, China) over a period of about 11 weeks,
from August 11 to October 26, 2012. We choose the data
from the North 3rd Ring Road as it is located in important
areas of the economy, culture, and entertainment of Beijing;
the traffic states in this area are closely related to daily
life and receive more attention by the people in Beijing.
The data were downloaded from the Highway Performance
Measurement Project (HPMP) run by the Beijing STONG
Intelligent Transportation System Co. Ltd. Here, we focus
on the traffic speed time series. The raw data for speed are

collected every 20 seconds at each detector location, which
are located approximately every half a kilometer. Raw data are
screened for errors and then aggregated into two-minute data
for average speed. The one-hour recorded traffic speed time
series are about 30 data points, and the total number of data
points for the whole series is about 55 440.

Figure 1(a) shows the locations of the detectors, and
Fig. 1(b) illustrates part of the traffic speed series (about
16 days, upper panel) and one weekday and weekend series
(lower panel) collected by detector 3057. As MMA results
are similar for the time series recorded by the four detectors,
we mainly show the results for the time series collected by
detector 3057 in the next section.

B. MFDFA method

Multifractal detrended fluctuation analysis (MF-DFA), a
generalization of detrended fluctuation analysis (DFA), was
developed by Kantelhardt et al. [21] for the multifractal
characterization of nonstationary time series. Suppose that xk

is a series of length N ; determine the profile X(i) = ∑i
k=1 xk ,

where i = 1, . . . ,N , and then divide the profile X(i) into Ns =
int(N/s) nonoverlapping segments of equal length s. So the ith
element within the vth segment is Xv(i) = X[(v − 1)s + i] for
each segment v = 1, . . . ,Ns . Assume that the local trending
functions of {Xv(i)} are {X̃v(i)}. Then determine the variance,

F 2(v,s) = 1

s

s∑
i=1

{Xv(i) − X̃v(i)}2. (1)

Average over all segments to obtain the qth order fluctuation
function,

F (q,s) =
{

1

2Ns

2Ns∑
v=1

[F 2(v,s)]q/2

}1/q

. (2)

Finally, determine the scaling behavior of fluctuation functions
by analyzing log-log plots of F (q,s) versus s for each value of
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q. If series xk is long-range power-law correlated, then F (q,s),
for large values of s, increases as a power law,

F (q,s) ∼ sh(q). (3)

The generalized Hurst exponent h(q) can be interpreted
as follows [31]: h ∈ (0,0.5) indicates antipersistency of the
time series, h = 0.5 indicates uncorrelated noise, h ∈ (0.5,1)
indicates persistency of the time series, h = 1.5 indicates
Brownian motion (integrated white noise), and h � 2 indicates
black noise.

It is of great importance to choose the proper range of scale
s, for which the family of curves F (q,s) should be calculated.
An inappropriate choice of the range of scale s may bring
about a biased fitting exponent, referring to [32]. A too large
scale s results in the division of the time series into a too
small number of windows. It is found that a division into
fewer than 50 data windows often causes the F (q,s) curves to
converge at the scale of saturation. Too small scale s causes
the detrending procedure to be executed on a set of only a few
points. For instance, for very small scale s < 20 (data points),
after the detrending procedure, the calculated variance often
is of the order of the accuracy of the MATLABdata type double,
which may result in an arithmetic underflow. In our tests of the
traffic speed time series, the often obtained drastic decrease
of the values of F (q,s) for s < 20 is a result of an arithmetic
underflow. Therefore, we set the usable range of scales in this
study to be s ∈ [20,N/50], where N denotes the length of the
time series. In the case of the traffic speed time series analyzed
here, N was usually about 55 000. Thus, all of our calculations
are made and presented for scales s ∈ [20,1100], which is also
[40 min, 2200 min], as the time interval is two minutes.

C. Multiscale MFDFA method

As a single scaling exponent is inadequate to describe the
internal dynamics of signals, Echeverrı́a et al. introduced an αβ

filter, based on the Kalman filter approach, to estimate the local
exponents and applied it to human cardiac data [35]. Then,
Govindan et al. quantified the long-range correlation of short
fetal cardiac data sets by computing the mean value of the local
exponents, associated with the phase randomized surrogate
technique [36]. Castiglioni et al. introduced an estimation of
the temporal spectrum of scale exponents αDFA(s) to study
heart rate variability and blood pressure [37–39]. The authors
applied the well-known monofractal DFA method but, instead
of defining fixed scale ranges, they continuously varied the
scale for which they calculated the DFA exponent αDFA(s),
where αDFA(s) was defined as the derivative of log[F (s)]
with respect to log[n]. Inspired by their work, J. Gieraltowski
et al. [32] went further and calculated a multifractal spectrum
with variable scale ranges, called multiscale multifractal
analysis (MMA).

After calculating all F (q,s) by MF-DFA, we use a moving
fitting window, sweeping through the whole range of scale
s along the F (q,s) plot. Figure 2 shows the computing
procedure. Suppose one fitting window Ri (i = 1,2, . . . ,n),
where hRi corresponds to the local scaling exponent calculated
in Ri. Then we can calculate the whole temporal spectrum
of scale exponents, h(s) = {hR1,hR2, . . . ,hRn}, for a fixed q,
which allows us to study quasicontinuous changes of the h(q)
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FIG. 2. (Color online) The log-log plots of fluctuation functions
F (q,s) vs scale s (color points) calculated for the traffic speed series
presented in Fig. 1(b). The curves correspond to q between −5 and
5 in steps of 1 (from red lower points to rose-red upper points).
Vertical dashed lines mark three examples of the fitting windows:
small scale range s ∈ [40 min, 120 min] (R1), s ∈ [60 min, 180 min]
(R2), and large scale range s ∈ [720 min, 2160 min] (Rn). Take the
F (q = 5,s) curve (the top curve) for example, where the local scaling
exponent hR1 for q = 5 corresponds to the slope of the fitting line
within window R1. Then we can plot the fitting lines within R2,
R3, and Rn and calculate their corresponding local scaling exponent
hR2,hR3, . . . ,hRn. The subplot shows the h(q) dependence calculated
for the small and large scales s: e.g., red lower curve scales show
h(q) calculated in R1, while blue upper curve shows h(q) calculated
in Rn, indicating a significant difference at the large and small scales.
Two parameters, “window width” and “slide length,” are also shown.
All scales s are presented in units of minutes for the traffic signals in
this study.

dependence versus the range of scale s. Then repeat the above
procedures for different q. We can define the generalized
dependence h(q,s) (Hurst surface, Fig. 3) as follows:

h(q,s) = log[�F (q,s)Ri]

log(�sRi)
, (4)

where F (q,s)Ri and sRi represent points falling into window
Ri. As fluctuation functions F (q,s) are presented in log-log
coordinates, the moving fitting window expands logarithmi-
cally, so that it seems to be of constant width.

The fit is made only for points currently inside the moving
window. The starting window includes scale s ∈ [40 min,
120 min], the second subwindow includes scale s ∈ [60 min,
180 min], and then it is moved and expanded to reach the final
subwindow s ∈ [720 min, 2160 min] (see Fig. 2). In the Hurst
surface (Fig. 3), the scale axis is calibrated so as to show the
beginning of the fitting window—it starts from s = 40 min
(i.e., the beginning of the first subwindow [40 min, 120 min])
and ends at s = 720 min (beginning of the final subwindow
[720 min, 2160 min]). For clarity, the points of the h(q,s)
graph are connected to form a colored surface. Notably, the
Hurst surface is presented using a linear axis, different from
the plot of F (q,s) versus s, which is plotted using a logarithmic
axis for the scale s.

Similarly, for q < 0, the h(q,s) plot corresponds to those
fragments of the signal that have a low variance (small
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fluctuations), while for q > 0, it characterizes the signal
fragments with a large variance (large fluctuations). The results
for q > 0 are much more stable and encumbered by smaller
errors, while the results for q < 0 should always be used with
caution.

D. Modifications of MMA method

In the MMA model, there are two important parameters:
“window width” (WW) and “slide length” (SL), shown in
Fig. 2, which may change the shape of h(q,s) (Hurst surface).
As F (q,s) are presented in log-log coordinates, the moving
fitting window should expand logarithmically, so that it seems
to be of constant width. Window width is defined as the ratio
between the right endpoint and left endpoint of window Ri,
e.g., for window [40 min, 120 min], [720 min, 2160 min], WW
is 3; for window [20 min, 40 min], [40 min, 80 min], WW is
2. WW determines the length of the moving window, inside
which the local scaling exponents are calculated. Too large
values of WW may result in ignoring some variations of the
local exponents. Conversely, too small values of WW may lead
to suspicious results due to noises, especially for those F (q,s)
with big fluctuations at negative q’s (e.g., big fluctuations exist
at s ∈ [600 min, 1400 min] for q = −5 in Fig. 2). Figures 3,
4(a), and 4(b) illustrate the results of h(q,s) using the same SL
but WW = 3, 2, and 4, separately. For positive q’s, the shapes
of the Hurst surfaces with WW = 2,3,4 are similar. Hurst
surfaces with higher resolutions for smaller WW may provide
more accurate positions of crossovers. On the other side, for
negative q’s, the change of the shape of the Hurst surfaces
is more pronounced. An obvious drop exists in h(q,s) for
windows beginning from 440 min to 680 min when WW = 2
[Fig. 4(a)], whereas Hurst surfaces, when WW = 3 (Fig. 3)
and 4 [Fig. 4(b)], do not show such a drop. This is due to
large fluctuations in the log-log plot of F (q,s) versus s at such
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FIG. 3. (Color online) Hurst surface h(q,s) calculated for the
traffic speed time series collected by detector 3057 of length 55 440.
Parameters here are WW = 3 and SL = 20 min. The black dots show
Hurst curves h(s) for q = 2. The black thick line at the right side of
the plot corresponds to h(q) calculated with the standard MF-DFA.
Note that we use the same color bar standard for all h(q,s) in this
study.

windows, which may give unreliable results. On the contrary,
fluctuation functions are more stable for positive q’s, hence
the h(q,s) are more stable. We need to take the MMA results
at negative q’s when WW = 2 with caution.

Another parameter is slide length (SL), which gives the
shift length of windows. When too large values are given to
SL, e.g., SL is larger than the length of the moving window, the
local scaling exponents are calculated within entirely different
windows, which may result in big variations in the values of
h(q,s), and then big fluctuations in the Hurst surface. When
too small values are given to SL, e.g., SL = 1 data point,
the windows are nearly overlapped. As a result, appropriate
values (SL ∈ [10, 0.5 window length]) for SL are necessary.
Figures 4(a), 4(c), and 4(d) plot the Hurst surface using
SL = 10, 20, and 30, from which the shapes are similar but
with different resolutions. From the analysis above, we choose
SL = 10 (20 min traffic series) and WW = 3 in the following
parts; in particular, when we need to find the exact positions
of crossovers, we may choose WW = 2.

III. RESULTS

A. Correspondence with earlier multifractal
analysis methods

The MMA method is tested for two artificial series with
known generalized Hurst exponent h(q), which has been
analyzed by earlier multifractal analysis methods [21,40–
42]. First, it is tested on a monofractal series gener-
ated by the autoregressive fractionally integrated mov-
ing average (ARFIMA) process [43]: z(t) = Z(d,t) + ε(t),
where d ∈ (0,0.5) is a memory parameter and ε is an
independent and identically distributed Gaussian variable,
and Z(d,t) = ∑∞

n=1 an(d)z(t − n) in which an(d) = �(n −
d)/[�(1 − d)�(n + 1)]. Then the Hurst exponent hz is hz =
0.5 + d [40,44]. A monofractal series with h(q) = 0.7 (setting
d = 0.2) of length 55 440 is generated, and we obtain
satisfying results [Figs. 5(a) and 5(b)]. As expected, for every
scale s, we obtain a flat Hurst surface [Fig. 5(b)], situated at
0.7.

A multifractal time series generated by multifractal bino-
mial measures with known analytic multifractal properties [45]
is obtained in an iterative way: start with the 0th iteration k = 0,
where the data set z(i) consists of one value, z(0)(1) = 1. In the
kth iteration, the data set {z(k)(i) : i = 1,2, . . . ,2k} is obtained
from z(k)(2i − 1) = pz(k−1)(i) and z(k)(2i) = (1 − p)z(k−1)(i)
for i = 1,2, . . . ,2k−1. When k → ∞, z(k)(i) approaches to a
binomial measure, whose scaling exponent h(q) has an ana-
lytic form [45]: h(q) = 1/q − log2[pq + (1 − p)q]/q. Here,
we have performed k = 16 iterations with p = 0.25, and also
gained satisfying results [Figs. 5(c) and 5(d)]. The shapes of
h(q,s) for all available scales are very similar to the standard
shape of the multifractal h(q) dependence [embedded plot in
Fig. 5(c)], but with slight fluctuations at negative q’s. Some
fluctuations are obvious for negative q’s in the log-log plot
ofF (q,s) versus s [Fig. 5(c)], leading to the variations of the
Hurst surface at negative q’s, as the Hurst surface is very
sensitive to fluctuations in the fluctuation functions. But we can
still get a multifractal characterization and an accurate estimate
of the scaling exponent for the binomial multifractal series
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FIG. 4. (Color online) Hurst surface h(q,s) dependence calculated for the traffic speed time series for different values of parameters:
window width (WW) and slide length (SL). The black points corresponds to h(q = 2,s).

from the Hurst surface. The above results indicate that the
MMA method can successfully reproduce the results obtained
from earlier multifractal analysis methods.

B. Effect of periodical trends

We first focus on the MMA results for original traffic signals
X. The Hurst surface (Fig. 3) calculated for signal X shows
abundant information, which may be hidden by traditional
MF-DFA. The Hurst surface shapes like a hill, experiencing
(a) a rising stage, i.e., a transition from the color blue to red
for negative q’s and a transition from the color blue to green
for positive q’s; (b) a stable stage, i.e., red areas for negative
q’s and yellow or yellow-green area for positive q’s, where the
values of h(q,s) are stable only with small variations; and (c) a
decreasing stage, i.e., a transition from red to green for negative
q’s, and a transition from yellow-green to blue for positive
q’s. The Hurst surface also helps us to locate the crossovers.

We mainly focus on h(q > 0,s) with parameters WW = 2
and SL = 10 [Fig. 4(a)] as it provides results with higher
resolutions. Through observing the log-log plot of F (q,s)
versus s (Fig. 2) and its corresponding Hurst surface (Fig. 3),
we find that when the color of the Hurst surface consecutively
changes, it corresponds to windows containing crossovers;
when the color stabilizes at a certain color, it corresponds to
windows which just step over the crossover. Then we can locate
the crossovers when the color of the Hurst surface starts to stay
at a certain color: i.e., we can find that the color of h(q > 0,s)
is stable in two areas, i.e., yellow green (approximately at
s = 180 min) and light blue (roughly at scale s = 360 min),
corresponding to 3-hour and 12-hour periods for traffic speed
signals [Fig. 6(a)].

Then, we turn to focus on curves of h(q,s) from the
perspectives of q and s, respectively. For a fixing scale s

(i.e., in the same window Ri), when q changes from −5 to
5, there are downtrends for all h(q,sRi) curves, showing the
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FIG. 5. (Color online) (a) The fluctuation function F (s) vs scale s calculated using MF-DFA for a monofractal series generated by the
ARFIMA model [d = 0.2, h(q) = 0.7, length of series 55 440]. Inset: corresponding h(q) dependence. (b) The h(q,s) dependence calculated
for the monofractal series in (a). (c) F (s) vs s for a multifractal series generated by multifractal binomial measures (parameter p = 0.25, length
of series 65 536). Inset: corresponding h(q) dependence. (d) The h(q,s) dependence calculated for the multifractal series in (c).

multifractal properties for the traffic signal, which is consistent
with former results [14,15]. For a fixed q (e.g., q = 2, black
points in Fig. 3), when the window moves from small scales
to large scales, all curves of h(q = 2,s) first show a rapid
rise to their peak values, then become stable for a while,
and finally decrease to certain values. The above information
could be covered by traditional MF-DFA as it only calculates
one scaling exponent for each q at the whole scale range,
but, actually, abundant structure exists, with different local
exponents shown in the corresponding Hurst surface.

The traffic system is enforced by well-defined periodicity
as well as the existence of unpredictable perturbation. Such
periodic trends may have some undesired effects, such as the
crossovers in the log-log plot of F (q,s) versus s, rendering
the variations on the Hurst surface. From the time domain
to frequency domain using Fourier transform [Fig. 6(a)], the
periods of original traffic speed signal X are consistent with

the real case, such as 7 days, 24, 12, 8, 6, 3 hours, which is
similar to [15]. There is a simple way for us to remove the
periodic trends of signal X using Fourier transform [15,46]:
first, transform the signal X to Fourier space, and locate
the corresponding frequency fk(X) of the dominant periodic
trends embedded in the signals; set |F (f ∗(X))| to 0 at
frequency fk(X) for convenience [47] and inverse transform
F (f ∗(X)); then, signal Y [Fig. 6(b)] is finally derived without
periodic trends.

The Hurst surface h(q,s) [Fig. 6(d)] calculated for signal
Y ranges from 0.7177 to 1.4794, which is much smaller
compared to that of signal X ([0.7981, 1.9499]), but still
indicates a long-range correlation and multifractal property.
The Hurst surface still has a hill-like shape, but the peak
(highest values) shifts to smaller scales, and blue areas
dominate the surface. Comparing the log-log plot of F (q,s)
versus s for signal X (Fig. 2) and signal Y [Fig. 6(c)], the
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FIG. 6. (Color online) (a) Dominant frequencies and amplitudes for the traffic speed series after Fourier transform. Dominant periods of 7
days, 24, 12, 8, 6, and 3 hours can be observed. After removing the dominant periods via Fourier transform, we obtained signal Y shown in (b).
(c) Fluctuation function F (q,s) vs scale s calculated for signal Y. (d) The Hurst surface h(q,s) calculated for signal Y.

bending degree drops for all curves and some crossovers
disappear after removing periodic trends, indicating that some
crossovers are caused by the periodicities in the signal. But
the bump at negative q’s of the Hurst surface or the remaining
bending curves in Fig. 6(c) indicate that there are other
interesting factors or underlying traffic mechanisms which
dominate traffic signals.

C. Effect of weekday and weekend patterns

We investigate two important patterns in traffic signals:
weekday (or working day) and weekend (or holiday) patterns.
The traffic speed series at weekday exhibit a two-sudden-drop
pattern at rush hours, indicating a periodic pattern with some
slight variations from Monday to Friday [lower subplot in
Fig. 1(b)]. Different from that of the weekday speed series, the
data at the weekend do not display such periodic pattern, which
may reflect on the Hurst surface. We then divide the whole

original traffic series X into two parts: weekday (Xweekday) and
weekend (Xweekend), and analyze their periodicities separately.
The dominant periodicities of signal Xweekday are similar to
signal X, showing a dominant period of 7 days, 24, 12, 8, 6
and 3 hours; while that of signal Xweekend only shows period
of 12 and 24 hours. We also remove the periodic trends of the
two subseries using Fourier transform (shown in Sec. III B)
and obtain signal Yweekday and Yweekend to investigate the effect
of weekday and weekend patterns on the Hurst surface h(q,s).

It is observed that the Hurst surface for signal Xweekday is
similar to that for signal X, but with the shape of a steeper hill:
higher values at higher area and lower values at lower area,
ranging in [0.7885, 2.4114] [Fig. 7(a)]. The Hurst surface for
signal Xweekend, on the contrary, appears to be a smoother shape
compared to that for signal X, ranging in [0.7897, 1.7945]
[Fig. 7(b)]. We know that the weekday signal before removing
periodic trends (Xweekday) has a more typical periodicity than
the whole signal X. And signal X can be considered as
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(a) Signal Xweekday (b) Signal Xweekend

(c) Signal Yweekday (d) Signal Yweekend

FIG. 7. (Color online) The Hurst surface h(q,s) calculated for weekday (left side) and weekend (right side) traffic speed signals. Upper
plots shows results before removing periodic trends (represented in Xweekday/weekend), while lower plots shows h(q,s) for signals after removing
periodic trends (Yweekday/weekend). Note that the weekend series also include holidays such as the Chinese National Day holiday from 01/10 to
05/10. The length of the weekday and weekend data is 35 318/19 176. We still use the same range of scale s in order to compare with signal X.

a combination of both weekday and weekend parts. Thus
the Hurst surface for whole signal X (Fig. 3) represents
the features of both weekday and weekend signals. After
removing dominant periodicities, the Hurst surfaces [shown
in Figs. 7(c) and 7(d)] of both weekday and weekend signals
behave differently from results for corresponding signals
before removing trends as follows. (a) The Hurst surfaces for
both signals Yweekday and Yweekend become similar, unlike the
significant difference between the Hurst surfaces for signals
Xweekday and Xweekend, which means the main distinction
between weekday and weekend patterns is their periodic
patterns. (b) The Hurst surfaces for both parts after taking out
their trends become flat, with much smaller values compared to
those before removing trends: h(q,s)Yweekday

∈ [0.4724, 1.2461]
and h(q,s)Yweekend

∈ [0.3621, 1.2929]. (c) For signal Yweekday,
the Hurst surface slowly decreases when q > 0; it first rises
and then gradually decreases when q < 0. For signal Yweekend,

the Hurst surface first shows an increase and then a gradual
decline for all q’s. (d) Multifractality still exists whether or not
the trends are removed for both parts. From the above analysis,
we know that the Hurst surface is very sensitive to the weekday
and weekend patterns of traffic signals, namely, to different
periodic trends. Such rich information contained in the Hurst
surface may be hidden by the traditional MF-DFA method.

D. The generating mechanism of multifractality of traffic signal

There are two different types of multifractality in the time
series: (i) multifractality due to a broad probability density
function (PDF) for the values of the time series, which cannot
be removed by shuffling the series; and (ii) multifractality
due to different long-range correlations of the small and
large fluctuations, which can be destroyed by the shuffling
procedure. If both types of multifractality exist, the shuffled
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FIG. 8. (Color online) Generalized Hurst exponent h(q) as a function of q for original, surrogate, and shuffled time series calculated by
MF-DFA, (a) for data before removing trends and (d) for data after removing trends. Hurst surface h(q,s) calculated for (b),(e) shuffled
series and (c),(f) surrogate series of the traffic speed signals. Presented are results averaged over 500 realizations of the shuffled and surrogate
procedures. Upper figures are results for data before removing trends, while lower figures are results for data after removing trends.

series will show weaker multifractality than the original series.
The easiest way to distinguish between these two types of
multifractality is by analyzing the corresponding randomly
shuffled [21] and surrogate time series [48,49]. The shuffling
of time series destroys the long-range correlation. Hence, if the
multifractality only belongs to the long-range correlation, we
will find hshuf = 0.5. The multifractality nature due to the fat-
ness of the PDF will not be affected by the shuffling procedure.
On the other hand, to determine the multifractality due to the
broadness of the PDF, the phase of discrete fourier transform
(DFT) coefficients of the traffic series are replaced with a set of
pseudoindependent distributed uniform (−π,π ) quantities in
the surrogate method [50,51]. The correlations in the surrogate
series do not change, but the probability function changes to
a Gaussian distribution. If multifractality in the times series is
only due to a broad PDF, then h(q) obtained by the surrogate
method will be independent of q. If both kinds of multifrac-
tality are present in the traffic time series, then the shuffled
and surrogate series will show weaker multifractality than the
original one. As the MMA method is a generalized version of
the MF-DFA method, the Hurst surface will exhibit the same
results after the shuffling procedure with traditional MF-DFA.

To show the source of multifractality of the traffic speed
signals analyzed in this study, we first compare the generalized
Hurst exponent h(q) for the original series with the result of the
corresponding shuffled and surrogate series before and after
cancellation of trends, shown in Figs. 8(a) and 8(d). The de-
pendence of hshuf(q) and hsur(q) shows that the multifractality

nature of the traffic speed time series is due to both long-range
correlation and broad PDF. But the multifractality due to
fatness is much weaker than that due to correlation. We then
calculate h(q,s) for the corresponding shuffled and surrogate
series of the traffic speed signals before and after removing
periodic trends. Figure 8 also presents the average results
of 500 realizations of the shuffled and surrogate procedures
of the original traffic speed signals. The shuffled procedure
destroys the correlations—the results closely resemble those
for white noise (〈h(q,s)〉 ≈ 0.5) for both series before and after
removing trends. The generating procedure of the surrogate
series also changes the Hurst surface. Through comparing
the mean value of h(q,s) (Table I), we also find that the
multifractality of the traffic speed signals in this study is
due to both broad PDF and correlation, but the source of
multifractality is mainly correlation, which is consistent with
the results of MF-DFA. We also have tested the source of
multifractality of the traffic speed signals collected from the
other three detectors, which also shows similar results.

TABLE I. The values of h(q,s) of the original series, and average
values for the corresponding shuffled and surrogate series before and
after removing periodic trends.

〈h(q,s)〉 〈hshuf(q,s)〉 〈hsur(q,s)〉
Before 1.4094 0.4993 1.3335
After 1.0096 0.5010 0.9603
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FIG. 9. (Color online) The Hurst surface h(q,s) for the traffic signal X with different level of data loss: (a)–(i) 10%–90% with increments
of 10%. Presented are results averaged over 500 realizations of the test series.

E. Effect of data loss

For real traffic signals, data can be missing or unavailable
to a very large extent which, once recorded in the past, often
cannot be generated again. Knowledge of what the effects of
data loss may have on the correlations and other dynamical
properties of the output signals for a given system is instru-
mental in accurately quantifying and modeling the underlying

mechanisms driving the dynamics of the system [52]. Data
loss of traffic signals can be caused by failure of the data
collection equipment, as well as by the removal of artifacts
or noise-contaminated data segments. Thus, it is necessary
to find out the effect of data loss for traffic signals on the
MMA results. Initially, we calculate h(q,s) for the whole
time series (Fig. 3). We then analyze the variations of Hurst

TABLE II. Mean values 〈h2(q,s)〉 and intersurface distance d between the results for X and X̃ at different p’s. In each case, the mean value
μ and standard deviation δ of the results for the 500 realizations of each test series are given.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d μ 0.0196 0.0276 0.0347 0.0442 0.0572 0.0689 0.0870 0.1237 0.1934
δ 0.0071 0.0097 0.0125 0.0119 0.0159 0.0151 0.0175 0.0209 0.0320

〈h2(q,s)〉 μ 1.4073 1.4000 1.3903 1.3720 1.3577 1.3335 1.2975 1.2430 1.1262
δ 0.2632 0.2618 0.2599 0.2585 0.2574 0.2576 0.2570 0.2645 0.2742
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surfaces for different percentages p (from 10% to 90% with
increment of 10%) of data loss. We prepare groups of test
series by introducing a segmentation approach to generate
surrogate series X̃k by randomly removing data segments from
signal X and stitching together the remaining parts of X [52].
For the removed segment, we use uniform distribution, range
[1, 1000], which is a common distribution of missing segments
of traffic recordings. As the length of two-minute traffic
recordings for a day is about 720, the data loss is usually less
than 720; here, 1000 represents the extreme case for data loss.
The results plotted in Fig. 9 and all of the distances d presented
below are averaged over 500 realizations of the segmentation
procedure and presented together with the standard deviation
of the results.

The Hurst surface for data loss of p = 0.1 [Fig. 9(a)] is very
similar to that for the whole available series X (Fig. 3). As all
results plotted in Fig. 9 are averaged over 500 realizations of
the test series, the Hurst surfaces at different p’s are smoother.
There are some variations between the Hurst surfaces of each
realization. The Hurst surfaces at p = 0.2 and 0.3 are still
very similar, while the results for data loss of p = 0.4 begin
to behave differently, but preserve the shape. As p rises, it
is visible that the Hurst surfaces become flat, with values of
h(q,s) becoming smaller at all scale s and q (from the color of
the Hurst surface). Moreover, the red areas [higher h(q,s)’s]
start to shift to smaller s ranges, with a visible “left shift,” while
the blue areas at large scales expand gradually. Especially for
p = 90%, the changes are even more pronounced, losing the
similarity in shape.

To reliably describe the differences between two Hurst
surfaces, intersurface distance d, a generalized mean distance
between two h(q,s) surfaces is calculated [32]: (1) Calculate
the mean 〈h(q,s)〉 for each surface. (2) Adjust the values of
one of the Hurst surfaces so that the means of both surfaces
are the same by shifting the surface up or down, shown in
equation h′

2(q,s) = h2(q,s) + [〈h1(q,s)〉 − 〈h2(q,s)〉], where,
for example, h1(q,s) is the reference surface for all data X;
h2(q,s) is the result for test series X̃k; h′

2(q,s) is the shifted
surface of equal mean value with h1(q,s); and 〈·〉 denotes the
mean (in this way, we are able to focus only on the differences
in the shape of the surfaces). (3) Then calculate the intersurface
distance d using the equation as follows:

d = {〈[h1(q,s) − h′
2(q,s)]2〉} 1

2 /[〈h1(q,s)〉]−1. (5)

Here, we set d = 0.05 as the threshold so that if d � 0.05, we
consider two surfaces to have similar shape, and if d � 0.05,
we consider them to have different shape.

Table II shows the generalized distance d between Hurst
surfaces for signal X (full length series) and signal X̃ (series
with data loss at p’s). The mean distances between the results
(taking into account the standard deviation) for X and X̃ at
level p = 0.1 to 0.3 are less than 0.05, which is thus below the
preassumed threshold. The mean distance for X̃ at p = 0.4 is
also less than 0.05, but the standard deviation δ for this case
shows that some of the test series yielded h(q,s), exceeding
the threshold criterion of 0.05. Both μ and δ of intersurface
distances d increase with p, which means deviations become
larger with p; and increase of δ illustrates that the deviations of
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FIG. 10. (Color online) Hurst surface for the traffic speed series when randomly removed at percentage (a1),(a2) p = 30%, (b1),(b2)
p = 40%, and (c1),(c2) p = 90%. Presented are results of the MMA of a randomly selected test series at different p.
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each realization at the same data loss level become distant as p

rises. We also plot the Hurst surface of some randomly selected
test series at the same data loss level p in Fig. 10. Through
comparing with the results averaging 500 realizations, the
Hurst surfaces of the selected test series at p = 30% are almost
consistent with its average results. It is observable that the
results of the selected series at p = 40% sometimes differ
from its average results. More significant deviations from its
average results are observed at the Hurst surface of the selected
series at p = 90%, and the shapes of the Hurst surface of each
case vary greatly. The above analysis reminds us to take the
MMA results with data loss p � 40% with caution.

IV. CONCLUSION

In this study, we applied multiscale multifractal analysis
(MMA) to investigate the fractal properties of traffic signals
using a spectrum of local Hurst exponents: h(q,s) (Hurst
surface). On this surface, the results of standard DFA are
represented as one or two single points, and the results
of standard MF-DFA are represented as a single line. The
MMA method allows us to perform multifractal analysis
without initial assumptions about the time scale of the problem
investigated. And it is able to characterize the multifractality
of the time series in a wide range of frequencies (scales)
simultaneously. The Hurst surface is also a far better way of
analyzing time series with crossovers, and can easily position
the crossovers; therefore, we do not have to avoid data sets
with crossovers or narrow the range of scales to only large or
small scales.

We focus on the results of the MMA for traffic speed
signals and obtain some interesting findings. First, traffic speed
signals show multifractal properties and strong long-range
correlations, which is consistent with previous studies. Second,
the Hurst surface presents a rising phase at small scales, a stable
phase, and then a decreasing phase at large scales, which shows
crossovers exist in Hurst curves at different q’s. To position
the crossovers, we adjust values of window width and slide
length, and find crossovers are approximately at s = 180 min
and 720 min, corresponding to 3-hour and 12-hour periods.
And this cannot be easily obtained from Hurst curves of
MF-DFA. We also study the effect of periodical trends on
the Hurst surface. By comparing Hurst surfaces before and

after removing dominant periodicities, we find that crossovers
are mainly coming from periodicities. But traffic signals after
removing such trends still have multifractality and long-range
correlations. Third, regarding two special traffic patterns, i.e.,
the weekday and weekend pattern, we divide the whole data
into a weekday series and a weekend series, and obtain that
the Hurst surfaces behave differently. In addition, it is shown
that multifractality of the traffic speed signals is stemming
from both broad PDF and correlations (the main source), via
comparing the original series with their shuffled and surrogate
series. We also discuss the effect of data loss on MMA
results for traffic series. Through a segmentation approach,
we generate test series of different percent p of data loss by
randomly removing data segments from its original series. It
shows that MMA results with data loss of percentages from
0.1 to 0.3 are consistent with the full-length data, while some
deviations occur when p � 0.4, which suggests taking MMA
results for time series with data loss p � 0.4 with caution.

However, there are still some areas that need further study.
The MMA method can be applied to different time series of
various fields, such as economics, finance, climate systems,
etc. Similar to MF-DFA, we can also generalize MF-DCCA
(multifractal detrended cross-correlation analysis [41]) to
multiscale MF-DCCA to investigate the cross correlations
between two time series. Besides, in this study, we simply
analyzed the effect on the MMA results of data loss at different
percentages. However, it is of great importance to discuss the
average length of the removed data segments as well as the
functional form of the distribution of length of the removed
data segments, e.g., Gaussian or exponential distribution. In
addition, we only discuss the effect of data loss for the traffic
speed time series, which is strongly positively correlated; it is
also necessary to apply it to an anticorrelated series, and to the
time series of some certain distributions.
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