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Amplitude death in oscillator networks with variable-delay coupling
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We study the conditions of amplitude death in a network of delay-coupled limit cycle oscillators by including
time-varying delay in the coupling and self-feedback. By generalizing the master stability function formalism
to include variable-delay connections with high-frequency delay modulations (i.e., the distributed-delay limit),
we analyze the regimes of amplitude death in a ring network of Stuart-Landau oscillators and demonstrate the
superiority of the proposed method with respect to the constant delay case. The possibility of stabilizing the
steady state is restricted by the odd-number property of the local node dynamics independently of the network
topology and the coupling parameters.
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I. INTRODUCTION

Control of collective dynamics of populations of coupled
nonlinear oscillators has been a subject of intensive research
from both theoretical and practical aspects in the past decades
[1–5]. Complex oscillator systems whose elements are in
mutual interaction in a prescribed manner within a specific
network topology give rise to a rich variety of emergent
spatiotemporal patterns [6–9]. Depending on the parameters
of the coupling between the individual oscillators, the network
dynamics may exhibit different kinds of synchronized behavior
[10–14], or may show oscillation suppression (quenching)
towards stabilizing a collective steady state [15–22]. In the
latter situation, two structurally different types of oscillation
quenching can be distinguished, depending on whether the
stabilization leads to a homogeneous (amplitude death) or
inhomogeneous (oscillation death) steady state [23,24]. Os-
cillation death is typical for biological systems [25,26], where
it has been recognized as a possible mechanism of pattern
formation and cellular differentiation [27–29]. Amplitude
death, on the other hand, is an important practical mechanism
in stabilizing homogeneous steady states, which is relevant,
for example, in regulating the fluctuations of the output
in coupled laser systems [30–32], or in suppression of the
pathological rhythms in an ensemble of coupled neurons
related to some specific neuronal disorders [19,33–38], e.g.,
epilepsy or Parkinson’s disease. Oscillation quenching has
been observed in various real experiments, such as chemical
[39–41] and electrochemical oscillators [42], electronic os-
cillators [43–45], coupled laser systems [30,46–48], climate
models [49], ecological models [50], epidemical models
[51], neural networks [52,53], etc., suggesting a potential
importance in many practical applications.

The relevance of controlling the collective steady state
in oscillator networks by amplitude death mechanisms is
particularly prominent in those situations when the internal
parameters of the individual network units can not be accessed

*agjurcin@pmf.ukim.mk
†anna.zakharova@tu-berlin.de
‡schoell@physik.tu-berlin.de

or changed by external means. In this case, the control of the
steady state may be achieved by appropriately modifying the
form of interactions between the coupled network elements.
There are several known scenarios that can lead to amplitude
death in this case, the most important one being the parameter
mismatch (e.g., frequency mismatch) between the oscillators
[17,19,42], coupling through dissimilar variables (conjugate
coupling) [54,55], or introducing delays in the interactions
between different units [56–60]. In the latter case, it has been
shown that amplitude death occurs for a much larger set of
coupling parameters when the time delay in the connections
is distributed over an interval with respect to the case when
the delay is fixed at a certain value [61–63]. Taking into
account the propagation delays when modeling real systems
inevitably leads to a more realistic situation than considering
instantaneous connection only since the propagation time of
the signals between different units of the network system is
important, and often distributed or time varying in an interval.
In this context, it has been shown for single systems that using
a time-varying delayed feedback with either deterministic
or stochastic variation of the delay time can considerably
enlarge the stability region of the unstable steady states, thus
making the fixed point stabilization more robust with respect
to changes in the control parameters [64–66]. High-frequency
modulation of the delay time is effectively equivalent to a
distributed-delayed feedback with a related delay distribution
in the interval of delay variation [67], thus rendering the time-
varying delay method an efficient experimental way for real-
izing distributed delays with desired distribution kernels [65].

In this paper, we propose a method for controlling amplitude
death in networks of delay-coupled limit cycle oscillators
with a general variable-delay interconnection between the
oscillators. In the analysis, we employ the formalism of
the master stability function [68], commonly used to analyze
the synchronous dynamics of complex networks. In addition
to the interconnection topology of the coupled system, we also
consider the influence of a variable-delay self-feedback either
at each oscillator or at a single oscillator only. In networks
of delay-coupled laser systems [32,69], the coupling delay
associated with the time of propagation of light between the
units can be modulated by changing the distance between
the units in a periodic fashion. Equivalently, a modulated
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GJURCHINOVSKI, ZAKHAROVA, AND SCHÖLL PHYSICAL REVIEW E 89, 032915 (2014)

self-feedback delay can be accomplished by periodically
changing some characteristic lengths in the individual units,
e.g., the width of the external cavity resonator, by applying
a periodic voltage (piezoelectric effect). Suppressing optical
intensity pulsations (relaxation oscillations) and stabilizing
the cw (continuous wave) emission steady state is often
desirable in such realization [70–72]. On the other hand,
suppression of synchronized oscillations of neural networks is
of practical importance for eventual treatment of various types
of pathological rhythmic neural activities, such as Parkinson’s
disease, tremor, or epilepsy, by quenching the undesired
oscillations by deep-brain stimulation [34,73]. In this case, the
delayed self-feedback can be realized by applying an electrical
stimulus via implanted microelectrodes in the brain, and the
signal delay can be modulated appropriately, e.g., by using
a digital delay line. Further on, in technological networks
[7], such as power grids, sensor networks, communication
networks, etc., high-frequency modulation of the delay times
might be used at purpose to enhance the stability range of the
steady state.

The organization of the paper is as follows. The stability
analysis of the model is performed in Sec. II both for the
general case and for a high-frequency modulation of the
delays. In the latter case, the model system is approximated
by a related distributed-delay system [66], thus enabling a
stability analysis via the master stability function formalism.
Two limitations of achieving amplitude death are pointed out,
which are particularly relevant in practical implementations of
the method. The results of the stability analysis are applied
in Sec. III to investigate the regimes of amplitude death in
various control parameter spaces for a regular ring network
of delay-coupled Stuart-Landau oscillators. The analysis is
performed (i) for the case without self-feedback, (ii) when
the self-feedback is applied at each node, and (iii) when the
self-feedback is at a single node only. Each of these cases
is relevant in experimental realizations of both natural and
man-made networks. We conclude in Sec. IV.

II. LINEAR STABILITY ANALYSIS

A. General master stability equation

We consider a network consisting of N nodes populated
with identical oscillators with a variable-delay coupling
between different oscillators and variable-delay self-feedback.
The model equations are given by

ẋj = f(xj ) + σ1

N∑
n=1

ajnĤ1{xn[t − τ1(t)] − xj (t)}

+ σ2Ĥ2{xj [t − τ2(t)] − xj (t)}, (1)

where xj ∈ Rd is a d-dimensional state vector of the j th
oscillator at vertex j (j = 1,2, . . . ,N ). The intrinsic dynamics
of each oscillator is specified by a d-dimensional nonlinear
vector function f : Rd → Rd . The N × N matrix Â is the
adjacency matrix of the network excluding the self-feedback,
i.e., it determines only the connection topology between
adjacent nodes, and τ1(t) is the time-varying coupling delay.
The element ajn is unity if node n is connected to node
j , and is zero otherwise, i.e., the matrix Â is a Boolean

matrix with zero entries along the diagonal (ajj = 0). The self-
feedback terms are taken in the form of a linear Pyragas-type
control [74] with a variable time delay τ2(t). The parameters
σ1 and σ2 are the strengths of coupling and self-feedback,
respectively. The coupling scheme between different compo-
nents on two adjacent nodes is described by a d × d matrix
Ĥ1, and Ĥ2 is the corresponding d × d matrix of the self-
feedback. We assume that σ1, σ2, Ĥ1, and Ĥ2 are the same at
each node, but they can differ in the general case.

In this paper, we consider networks in which each oscillator
element has the same node degree in the interconnection
topology, i.e., the interconnection adjacency matrix Â has a
constant row-sum μ:

N∑
n=1

ajn = μ, (2)

which is independent of j . In the following, we show that this
condition allows for a substantial simplification in the stability
analysis by using the formalism of the master stability function
[68]. The time-delay functions τ1(t) and τ2(t) are modulated
around average delay values τ01 and τ02. We consider periodic
deterministic modulations in the form

τ1(t) = τ01 + ε1�1(�1t), (3)

τ2(t) = τ02 + ε2�2(�2t), (4)

where �1,2 : R → [−1,1] are 2π -periodic functions with
zero mean, and ε1,2 and �1,2 are the amplitudes and the
angular frequencies of the corresponding delay modulations,
respectively.

In the following, we investigate the stability of the steady
state solution of the oscillator network. Collecting the dy-
namical variables xj of all N oscillators into a single Nd-
dimensional state vector X = (x1,x2, . . . ,xN )T , the collective
dynamics of the network is given by

Ẋ = F[X(t)] − σ1μ(̂IN ⊗ Ĥ1)X(t)

+ σ1(Â ⊗ Ĥ1)X[t − τ1(t)]

+ σ2(̂IN ⊗ Ĥ2){X[t − τ2(t)] − X(t)}, (5)

where ÎN is N × N identity matrix, and F[X(t)] =
[f(x1),f(x2), . . . ,f(xN )]T is an Nd-dimensional vector field.
We assume that the system (5) has a symmetric (homogeneous)
fixed point X∗ = (x∗,x∗, . . . ,x∗)T . The components xj (t) = x∗
of the fixed point are the same at each node j = 1,2, . . . ,N ,
and from Eq. (1) we have f(x∗) = 0. This means that each
coupled oscillator has an identical steady state as in the absence
of any connection between nodes. The existence of such a
homogeneous steady state is a consequence of the chosen
form of interaction between the nodes, making the position
of the symmetric fixed point of the network independent of the
connection topology. In this case, a constant row-sum of
the interconnection adjacency matrix is not a requirement for
the existence of a collective symmetric steady state solution.

We assume instability of the collective fixed point X∗ in the
uncoupled oscillatory regime, and investigate the influence of
the variable-delay coupling and the network topology on the
stability. Considering a small deviation from the fixed point
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δX(t) = X(t) − X∗, we arrive at a variational equation

δẊ(t) = (̂IN ⊗ Ĵ)δX(t) − σ1μ(̂IN ⊗ Ĥ1)δX(t)

+ σ1(Â ⊗ Ĥ1)δX[t − τ1(t)]

+ σ2(̂IN ⊗ Ĥ2){δX[t − τ2(t)] − δX(t)}, (6)

where Ĵ = D[f(x∗)] is the d × d Jacobian matrix of a single
oscillator without coupling, calculated at the fixed point x∗ of
a single node.

To achieve a block diagonalization of the term involving
the adjacency matrix Â, assuming that Â can be diagonalized,
we multiply Eq. (6) with Ŝ ⊗ Îd from left, where Îd is d × d

identity matrix, and Ŝ is an N × N matrix that diagonalizes
Â (Âdiag = ŜÂŜ−1). By using the properties of the Kronecker
product, we obtain

δ ˙̃X(t) = ÎN ⊗ (̂J − σ1μĤ1 − σ2Ĥ2)δX̃(t)

+ σ1(Âdiag ⊗ Ĥ1)δX̃[t − τ1(t)]

+ σ2(̂IN ⊗ Ĥ2)δX̃[t − τ2(t)], (7)

where X̃(t) = (̂S ⊗ Îd )X(t), and

Âdiag = diag(μ,ν2,ν3, . . . ,νN ) (8)

is the diagonalized adjacency matrix, containing its eigen-
values νj (j = 1,2, . . . ,N ) along the diagonal. Here, ν1 = μ

is the row-sum of Â, which is always an eigenvalue of Â
corresponding to the perturbation direction along the N -
dimensional eigenvector (1,1, . . . ,1)T . When investigating the
(transverse) stability of the synchronous periodic solution, the
eigenvalue ν1 = μ is not involved since the master stability
equation for ν1 = μ (longitudinal eigenvalue) corresponds
to the variational equation on the synchronization manifold.
However, for the stability of the collective fixed point X∗
of the network, each perturbation direction from the fixed
point matters for the stability, and all the eigenvalues of
the adjacency matrix are equally involved in determining the
stability.

Since the resulting variational equation (7) has a block
structure with N independent blocks (m = 1, . . . ,N), each
block can be considered separately in the stability analysis:

δ ˙̃xm(t) = (̂J − σ1μĤ1 − σ2Ĥ2)δ̃xm(t)

+ σ1νmĤ1 δ̃xm[t − τ1(t)] + σ2Ĥ2 δ̃xm[t − τ2(t)],

(9)

where δ̃xm(t) is a d-dimensional state vector of the mth node
in the new coordinates. Hence, the master stability equation of
the network system is

δ ˙̃x(t) = (̂J − σ1μĤ1 − σ2Ĥ2)δ̃x(t) + σ1νĤ1 δ̃x[t − τ1(t)]

+ σ2Ĥ2 δ̃x[t − τ2(t)], (10)

where ν ∈ C. The fixed point X∗ is locally asymptotically
stable if and only if the perturbation δ̃x asymptotically tends
toward zero for all eigenvalues νm of the adjacency matrix.
Equivalently, X∗ is locally asymptotically stable if and only if
the maximum real part of the characteristic exponents 
l(νm)
(l = 1, . . . ,d) arising from the master stability equation (10)
is negative for all νm. The function maxRe{
(ν)} is the
master stability function of the network. In general, the master

stability function can be obtained numerically by simulating
the master stability equation (10) for different values of ν ∈ C.
If this gives rise to a region in the (Re[ν],Im[ν]) plane where
maxRe{
(ν)} < 0, and if all the eigenvalues of the adjacency
matrix are located inside this stability region, the fixed point
is locally asymptotically stable. It is unstable if at least one
eigenvalue lies outside this region.

B. High-frequency delay modulation

An analytical investigation of the master stability function
of the collective fixed point X∗ of the network is possible
if the frequencies �1 and �2 of the delay variations are
large compared to the intrinsic eigenfrequencies of the system
dynamics. In this case, the coupled oscillator system is in
the regime of a distributed-delay limit [66,67], and the time-
varying delay can be approximately replaced with a distributed
delay with probability density function ρ1,2, in which case the
master stability equation reads as

δ ˙̃x(t) = (̂J − σ1μĤ1 − σ2Ĥ2)δ̃x(t)

+ σ1νĤ1

∫ ∞

0
ρ1(θ )δ̃x(t − θ ) dθ

+ σ2Ĥ2

∫ ∞

0
ρ2(θ )δ̃x(t − θ ) dθ. (11)

The distributed-delay kernels ρ1(θ ) and ρ2(θ ) are defined such
that ρ1,2(θ )dθ gives the fraction of time for which τ1,2(t)
lies between θ and θ + dθ , satisfying ρ1,2(θ ) � 0 and the
probability normalization conditions∫ ∞

0
ρ1(θ ) dθ = 1,

∫ ∞

0
ρ2(θ ) dθ = 1. (12)

When ρ1,2(θ ) = δ(0), where δ(. . .) is the Dirac delta function,
the interaction becomes instantaneous, without delay, and the
choice ρ1,2(θ ) = δ(τ ′) with τ ′ > 0 results in a discrete delay
interaction τ1,2(t) = τ ′ = const. Various combinations for the
delay kernels are possible, e.g., a constant delay internode
connection and a variable-delay self-feedback, or vice versa.

With the ansatz δ̃x(t) = e
tc, where c is a constant d-
dimensional vector, we obtain a characteristic equation for

 = 
(ν) determining the stability of the collective fixed
point:

det

[

̂Id − Ĵ + σ1

(
μ − ν

∫ ∞

0
ρ1(θ )e−
θ dθ

)
Ĥ1

+ σ2

(
1 −

∫ ∞

0
ρ2(θ )e−
θ dθ

)
Ĥ2

]
= 0. (13)

The stability is clearly determined by the connection topology
via the location of the eigenvalues ν of the interconnection
adjacency matrix Â. Although the eigenspectrum of Â depends
on the concrete network, the boundaries of the spectrum can
be succinctly calculated by applying the Gershgorin’s disk
theorem [75,76] that gives the region in the complex plane
that contains all the eigenvalues of Â. Since ajj = 0 and∑N

n=1 ajn = μ for all j , all the eigenvalues of the adjacency
matrix Â = {ajn} lie within a disk of radius μ centered at
the origin of the complex ν plane. Hence, the eigenvalues νj
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satisfy the condition

|νj | � μ. (14)

If the interconnection adjacency matrix is symmetric, then the
eigenvalues are real and, consequently, located in the interval
[−μ,μ]. In this case, the maximum eigenvalue equals the row-
sum of Â, i.e., νmax = μ.

The stabilization of the network steady state X∗ can not
always be achieved. From Eq. (13) we form a characteristic
function

H (
) = det

[

̂Id − Ĵ + σ1

(
μ − ν

∫ ∞

0
ρ1(θ )e−
θ dθ

)
Ĥ1

+ σ2

(
1 −

∫ ∞

0
ρ2(θ )e−
θ dθ

)
Ĥ2

]
. (15)

Since one of the eigenvalues ν of the interconnection adjacency
matrix Â is equal to the row-sum μ of Â, we focus on the case
ν = μ. Considering the quasipolynomial form of the function
H (
) and restricting the dependence upon 
 to the real axis,
it is easy to show that H (
) > 0 in the limit 
 → ∞. Also,
in the case ν = μ, H (0) = det[−̂J] = ∏d

j=1(−sj ), where sj

are the eigenvalues of the Jacobian matrix Ĵ of the local node
dynamics. Consequently, if Ĵ possesses an odd number of
positive real eigenvalues, then H (0) < 0, and there exists at
least one positive real root of H (
) = 0, meaning that the
collective fixed point X∗ is unstable for any values of the
coupling parameters and any network topology.

Another restriction for the fixed point stabilization occurs
when the interaction is instantaneous and the self-feedback
is absent, i.e., ρ1,2(θ ) = δ(0), in which case the characteristic
Eq. (13) is reduced to det[
̂Id − Ĵ] = 0 for ν = μ. The stabil-
ity in this case is completely determined by the eigenvalues of
the Jacobian Ĵ, meaning that unstable local dynamics induces
instability in the connected network regardless of the con-
nection topology and the coupling parameters. However, this
restriction can be lifted by activating the self-feedback at the
nodes (i.e., Pyragas-type control with a time-varying delay).

In this work, we consider a deterministic variation of the
delay τ1(t) in the interval [τ01 − ε1,τ01 + ε1], and, correspond-
ingly, variation of τ2(t) in the interval [τ02 − ε2,τ02 + ε2]. The
specifications and the properties of the modulation types used
in the analysis are provided in Table I. In these cases, ρ1,2(θ ) are
nonzero only in the interval of variation, and the characteristic
equation for 
(ν) simplifies to

det(
̂Id − Ĵ + σ1[μ − νe−
τ01χ1(
,ε1)]Ĥ1

+ σ2[1 − e−
τ02χ2(
,ε2)]Ĥ2) = 0, (16)

where

χ1(
,ε1) =
∫ ε1

−ε1

ρ1(τ01 + θ )e−
θ dθ,

(17)

χ2(
,ε2) =
∫ ε2

−ε2

ρ2(τ02 + θ )e−
θ dθ

are the Laplace transforms of the associated distributed delay
kernels (see Table I).

III. STUART-LANDAU MODEL

We will analyze the conditions of amplitude death in an
oscillator network whose dynamics on each node is described
by a Stuart-Landau normal form equation. The Stuart-Landau
system describes a generic limit cycle oscillator that shares a
common local dynamics with real oscillator systems where
periodic states arise from a fixed point through a Hopf
bifurcation. We consider a network of delay-coupled Stuart-
Landau oscillators with time-varying delayed coupling and
self-feedback:

żj = h(zj ) + σ1e
iβ1

N∑
n=1

ajn{zn[t − τ1(t)] − zj (t)}

+ σ2e
iβ2{zj [t − τ2(t)] − zj (t)} (18)

with zj ∈ C and j = 1,2, . . . ,N . The local dynamics is given
by the normal form

h(zj ) = [λ + iω ∓ (1 + iγ )|zj |2]zj , (19)

where the minus (plus) sign corresponds to a supercritical
(subcritical) Hopf bifurcation. The parameters σ1,2 are the
coupling strengths and β1,2 are the coupling phases. The state
variable zj of an individual oscillator is given by zj = rj e

iϕj

in polar coordinates, and by zj = xj + iyj in rectangular
coordinates. In the absence of any interaction (σ1,2 = 0), the
dynamics of each individual oscillator in polar representation
is given by ṙj = (λ ∓ r2

j )rj and ϕ̇j = ω ∓ γ r2
j . The uncoupled

system has a fixed point at rj = 0, which is stable if λ < 0
and unstable if λ > 0 in both the supercritical and subcritical
regimes. The Hopf bifurcation occurs at the critical point λ =
0. The system also has a stable periodic orbit rj = √

λ in the
supercritical case for λ > 0 with a period T = 2π/(ω − γ λ),
and an unstable periodic orbit rj = √−λ in the subcritical
case for λ < 0 with the same period T .

In the following, we focus on the stability of the fixed point
rj = 0 of the coupled dynamics, i.e., the regime of amplitude
death. We assume λ > 0, i.e., the origin is unstable in the

TABLE I. Various delay modulation functions �, and corresponding distributed-delay kernels ρ and Laplace transform χ . I0 denotes the
modified Bessel function of the first kind of order zero, J0 is the Bessel function of the first kind of order zero, and δ(. . .) is the Dirac delta
function.

Type �(�t) ρ(θ ) χ (
,ε) χ (i�,ε)

Sawtooth wave 2
(

�t

2π
mod 1

) − 1

{ 1
2ε,

θ ∈ [τ0 − ε,τ0 + ε]
0, elsewhere

sinh(
ε)

ε

sin(�ε)
�ε

Sine wave sin(�t) 1

π
√

ε2−(θ−τ0)2
I0(
ε) J0(�ε)

Square wave sgn[sin(�t)] δ(θ−τ0+ε)+δ(θ−τ0−ε)
2 cosh(
ε) cos(�ε)
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uncoupled system, and investigate the influence of the variable-
delay coupling and the network topology on its stability. We
consider the limiting case of high-frequency modulations of
the delays τ1,2(t), and use the distributed delay limit analysis in
determining the stability of the steady state. The system (18)
in rectangular coordinates takes the form of Eq. (1), where
xj (t) = [xj (t),yj (t)]T is the two-dimensional state vector
(d = 2),

f(x) =
(

x[λ ∓ (x2 + y2)] − y[ω ∓ γ (x2 + y2)]

x[ω ∓ γ (x2 + y2)] + y[λ ∓ (x2 + y2)]

)
(20)

is the vector field of the node dynamics, and

Ĥ1,2 =
(

cos β1,2 − sin β1,2

sin β1,2 cos β1,2

)
(21)

are 2 × 2 rotational matrices related to the phase-dependent
coupling in the interconnection (Ĥ1) and in the self-feedback
(Ĥ2). The collective fixed point of the network is a 2N -
dimensional null vector whose stability is determined by the
characteristic Eq. (16) with the corresponding Jacobian matrix

Ĵ =
(

λ −ω

ω λ

)
. (22)

The resulting equation for 
(ν) is simplified into


 + σ1e
±iβ1 [μ − νe−
τ01χ1(
,ε1)]

+ σ2e
±iβ2 [1 − e−
τ02χ2(
,ε2)] = λ ± iω. (23)

To obtain the parametric representation of the boundaries of
stability of the master stability function in the complex ν

plane, we substitute 
 = i� and ν = p + iq [p = Re(ν),q =
Im(ν)] into Eq. (23) and separate the resulting complex
equation into two real-valued equations

σ1[μ cos β1 − χ1(p cos ψ1 + q sin ψ1)]

+ σ2(cos β2 − χ2 cos ψ2) = λ, (24)

� + σ1[±μ sin β1 + χ1(p sin ψ1 − q cos ψ1)]

+ σ2(± sin β2 + χ2 sin ψ2) = ±ω, (25)

where for compactness we use the abbreviations

χ1 = χ1(i�,ε1), χ2 = χ2(i�,ε2), (26)

ψ1 = �τ01 ∓ β1, ψ2 = �τ02 ∓ β2. (27)

We have taken into account that for the delay variations
used in our simulations, the distributed-delay kernels ρ1,2(θ )
are even functions around the corresponding mean delays,
meaning that the associated functions χ1,2 are real-valued
functions (see Table I). By algebraically manipulating the
system (24), we obtain the parametric dependence of the
stability crossing curves in the complex (p,q) plane on
the intrinsic eigenfrequency �:

p(�)1,2 = 1

σ1χ1
{[σ1μ cos β1 − λ + σ2(cos β2 − χ2 cos ψ2)]

× cos ψ1 + [±ω − � ∓ σ1μ sin β1

+ σ2(∓ sin β2 − χ2 sin ψ2)] sin ψ1}, (28)

q(�)1,2 = 1

σ1χ1
{[σ1μ cos β1 − λ

+ σ2(cos β2 − χ2 cos ψ2)] sin ψ1

− [±ω − � ∓ σ1μ sin β1

+ σ2(∓ sin β2 − χ2 sin ψ2)] cos ψ1}. (29)

A subset of the stability crossing curves given by Eqs. (28) and
(29) describes the stability boundary of the master stability
function in the complex ν plane.

A. Case I: No self-feedback (σ2 = 0)

Throughout the rest of the paper, we take the parameters
of the uncoupled system as λ = 0.1, ω = 1, and γ = 0.1, for
which the steady state at the origin is unstable. We first analyze
the stability of the steady state in the absence of self-feedback
(σ2 = 0). We rewrite the characteristic Eq. (23) as


 + σ1e
±iβ1 [μ − |ν|e−iϕe−
τ01χ1(
,ε1)] = λ ± iω, (30)

where we employed the complex representation ν = |ν|e−iϕ

for the eigenvalues of the interconnection adjacency matrix.
The stability crossing curves are obtained when 
 = i�, and
we have

σ1[μ cos β1 − |ν|χ1 cos(�τ01 ∓ β1 − ϕ)] = λ, (31)

σ1[±μ sin β1 + |ν|χ1 sin(�τ01 ∓ β1 − ϕ)] = ±ω − �, (32)

from which we obtain

|ν|2 = (σ1μ cos β1 − λ)2 + (±ω − � ∓ σ1μ sin β1)2

σ1
2χ1

2
. (33)

Taking into account that |χ1| � 1, we can make a crude
estimate of the minimum radius |ν|min of the circular region
centered at the origin in the complex ν plane that does not
contain any stability crossing curves:

|ν|min =
∣∣∣∣μ cos β1 − λ

σ1

∣∣∣∣. (34)

From Eq. (33) we see that the distance of the stability crossing
curves from the origin increases as soon as ε1 > 0 due to the
fact that |χ1| � 1. Consequently, the disk region |ν| � |ν|min is
generally enlarged by introducing variable delays. Depending
on whether this disk encloses the stability or instability region,
the enlargement could have a positive or negative effect on the
stability of the collective fixed point. To elucidate the result,
we consider the point |ν|=0, i.e., the origin of the complex ν

plane. From Eq. (30) we see that this point is characterized by
a complex-conjugate pair of characteristic exponents, whose
real and imaginary parts are given by

Re(
) = λ − σ1μ cos β1, (35)

Im(
) = ±(ω − σ1μ sin β1). (36)

The shape of the (in)stability region can be deduced by
considering the change of Re(
) at the stability crossing curves

 = i�. From Eq. (30), in the constant delay case χ1 = 1, we
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obtain

sgn Re

(
d


d|ν|
)


=i�

= σ 2
1 τ01|ν|2 + σ1μ cos β1 − λ. (37)

We first consider the case Re(
) < 0, corresponding to the
choice of the system parameter values that fulfill the condition

λ − σ1μ cos β1 < 0. (38)

Since the stability crossing curves in this case are not contained
within the disk (34), each point within this disk possesses
an infinite number of characteristic exponents with negative
real parts, i.e., the disk Eq. (34) encloses a stability region.
In this case, the sgn in Eq. (37) is always positive, which
means that at each stability crossing curve outside this disk,
the characteristic exponents 
 are crossing the imaginary axis
moving from the left to the right in the complex 
 plane.
Consequently, in this case the stability region is a connected
set in the complex ν plane containing the disk [Eq. (34)].
If all the eigenvalues ν of the adjacency matrix are located
within this region, the collective steady state will be stable,
and we have achieved amplitude death. On the other hand, if
λ − σ1μ cos β1 > 0, which is the case Re(
) > 0 in Eq. (35),
each point within the disk [Eq. (34)] possesses an infinite set

10

5

0

5

10

Im
Ν

0.3

0.2

0.1

0

10 5 0 5 10

10

5

0

5

10

Re Ν

Im
Ν

10 5 0 5 10
Re Ν

0.3

0.2

0.1

0

(a) (b)

(c) (d)

FIG. 1. (Color online) Master stability function in the complex
ν plane for a 2k-ring network of Stuart-Landau oscillators without
self-feedback. Each oscillator is bidirectionally coupled to four of
its nearest neighbors with k = 2 connections on each side, i.e.,
the network has a constant node degree μ = 2k = 4. The stability
region is calculated from Eq. (30) for a sawtooth-wave modulation of
the delay in the high-frequency regime (i.e., distributed-delay limit)
around a mean value τ01 = 2π for different modulation amplitudes
ε1: (a) ε1 = 0 (constant delay), (b) ε1 = 2, (c) ε1 = 4, (d) ε1 = 6.
The other parameters are λ = 0.1, ω = 1, γ = 0.1, β1 = 0, σ1 = 0.1.
The stability region is color coded by the maximum negative real
part of the eigenvalues 
. The stability region is bounded by a
subset of the stability crossing curves (28) and (29) (solid lines). The
Gershgorin circle |ν| = μ = 4 is dashed, and the solid black dots are
the maximum and minimum eigenvalues of the network adjacency
matrix for N = 20 oscillators: νmin ≈ −2.236, νmax = 4.

of characteristic exponents with positive real parts, i.e., the
disk encloses a part of an instability region. While the delay
modulation in the previous case enlarges the stability region of
the master stability function, in this case modulation enlarges
the instability region instead.

To confirm the results, we have numerically analyzed the
characteristic Eq. (30). Figure 1 shows the master stability
function of the Stuart-Landau oscillator network without
self-feedback. The topology of the network is a ring with a
constant node degree μ = 4. Each oscillator is bidirectionally
coupled to μ = 2k = 4 nearest neighbors with k = 2 con-
nections (edges) on each side. The delay time τ1(t) in the
interconnection is modulated with a sawtooth wave around a
mean delay value τ01 = 2π . The other coupling parameters
are set to β1 = 0 and σ1 = 0.1. The parameter values at
which the master stability function is negative is denoted
by the color-shaded (gray-shaded) region, and the color code
corresponds to the largest negative real part of the characteristic
exponents 
 calculated from Eq. (30). Different panels
correspond to different values of the modulation amplitude
ε1. The Gershgorin circle |ν| = μ = 4 is denoted by a dashed
line, and the solid black dots are the maximum and minimum
eigenvalues of the adjacency matrix for a 2k-ring network with
N = 20 oscillators calculated from Eq. (A10) in the Appendix.
The adjacency matrix of the ring topology is symmetric (see
Appendix), and thus has a real eigenspectrum contained in
the Gershgorin interval [−4,4]. In the constant delay case in
Fig. 1(a), the maximum eigenvalue νmax = 4 lies outside the
stability domain, rendering the collective fixed point unstable.
As the modulation amplitude increases [Figs. 1(b)–1(d)], the
stability region is monotonically enlarged, and eventually
surpasses the Gershgorin disk, thus stabilizing the fixed
point. The resulting enlargement of the stability region is in
agreement with the analysis in the previous paragraph since
in this case the condition (38) is fulfilled. Consequently, the
criterion (38) is a necessary condition for amplitude death
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FIG. 2. (Color online) Master stability function in the complex
ν plane corresponding to Fig. 1, with σ1 = 0.02 and the other
parameters unchanged.
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FIG. 3. Controlling amplitude death by variable-delay interconnections in a system of N = 20 Stuart-Landau oscillators in a regular ring
network with k = 2 links on each side of a node (μ = 4) without self-feedback. (a), (b) Time series of the variables xj = {x1,x2, . . . ,x20} and
yj = {y1,y2, . . . ,y20} for constant delay, and the associated synchronization diagram x1 vs x2,...,20 [panel (c)] indicating in-phase synchronous
periodic dynamics. (d), (e) Time series of xj and yj for a sawtooth-wave delay modulation with amplitude ε1 = 2π and frequency � = 10,
stabilizing the unstable origin, i.e., giving rise to amplitude death [panel (f)]. Parameters: λ = 0.1, ω = 1, γ = 0.1, β1 = 0, τ01 = 2π , σ1 = 0.1,
and σ2 = 0. The simulations were performed using the MATLAB routine ddesd for integrating delay-differential equations with general delays.

for the considered 2k-ring network topology. The stability
region in the opposite situation, when λ − σ1μ cos β1 > 0, is
depicted in Fig. 2 for σ1 = 0.02 and the rest of the parameters
unchanged. Accordingly, it is seen that delay modulation
enlarges the instability region in this case, and achieving
amplitude death becomes impossible for any modulation
amplitude as confirmed by our previous analysis.

To verify the successful stabilization of the origin by
including variable delays, we have performed computer
simulations of the network dynamics by numerically inte-
grating the system (18) and (19). The resulting diagrams
are shown in Fig. 3. The coupling parameters in each
panel are chosen as β1 = 0, τ01 = 2π , σ1 = 0.1, and σ2 = 0.
At these parameter values, the fixed point stabilization is
unsuccessful in the constant delay case, but amplitude death
can be achieved if the delay is modulated. This result has
already been implied from the analysis of the stability regions
depicted in Fig. 1, and our simulations confirm this analysis.
Figures 3(a) and 3(b) depict the time series of the system
variables xj and yj (j = 1, . . . ,20), respectively, in a constant
delay case. The simulations are performed in a time window of
200 time units for N = 20 Stuart-Landau oscillators in a
regular 2k-ring network with k = 2. It is observed that after
a short transient, the system becomes synchronized without a
phase lag (in-phase synchronization), which is confirmed by

the synchronization diagram depicted in Fig. 3(c). Applying a
modulated delay in the form of a sawtooth wave with ε1 = 2π

and �1 = 10 results in amplitude death, as is seen from
the time series in Figs. 3(d) and 3(e) and the corresponding
synchronization diagram in Fig. 3(f).

Achieving amplitude death by enlarging the stability region
of the master stability function via variable delay interconnec-
tions is also observed for other types of delay modulation as
long as the stability criterion (38) is fulfilled. For comparison
purposes, in Fig. 4 we show the stability regions of the
master stability function in dependence on the modulation
amplitude ε1 for sawtooth-wave [Figs. 4(a) and 4(d)], sine-
wave [Figs. 4(b) and 4(e)], and square-wave modulations of
the delay [Figs. 4(c) and 4(f)]. The system parameters are the
same as in Fig. 1. Figures 4(a)–4(c) are the three-dimensional
plots of the stability region, and Figs. 4(d)–4(f) are vertical
cuts of the corresponding three-dimensional representations at
Im(
) = 0. The latter two-dimensional plots are relevant for
the 2k-ring network topology considered in this paper since
in this case the eigenvalues ν are real. In Figs. 4(d)–4(f) the
Gershgorin interval is bounded by the black dashed lines, and
the blue dotted lines correspond to the maximum and minimum
eigenvalues of the network adjacency matrix for N = 20
oscillators (νmin ≈ −2.236, νmax = 4). Note that applying a
modulated delay results in amplitude death for specific ranges

032915-7
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FIG. 4. (Color online) Master stability function without self-feedback in dependence of the modulation amplitude ε1 for different types
of delay modulations: (a), (d) sawtooth-wave modulation; (b), (e) sine-wave modulation; (c), (f) square-wave modulation. Panels (d)–(f) are
sections of (a)–(c) at Im(
) = 0. The Gershgorin interval |Re(ν)| � μ = 2k is contained between the black dashed lines, and the blue dotted
lines correspond to the maximum and minimum eigenvalues of the adjacency matrix for 2k-ring network with N = 20 oscillators and k = 2
connections on each node side. Other parameters are as in Fig. 1.

of the modulation amplitude ε1, when all the eigenvalues of
the adjacency matrix are located inside the stability region.
The enlargement of the stability region is more pronounced
and almost monotonic for sawtooth-wave and sine-wave
modulations, whereas this behavior is rather nonmonotonic
for a square-wave modulation, in which case the ε1 intervals
at which amplitude death occurs may even be disconnected.

To investigate the dependence of the stability region on the
mean delay τ01, in Fig. 5 we show the master stability function
in the [τ01,Re(ν)] plane for a sawtooth-wave modulation at
different modulation amplitudes. As before, we consider a ring
network with N = 20 and k = 2. The Gershgorin interval is
marked by the black dashed lines, and the eigenspectrum of the
adjacency matrix is contained within the interval bounded by
the blue dotted lines. Figure 5(a) depicts the stability region
for σ1 = 0.1 in the constant delay case (ε1 = 0), for which
the stability criterion in Eq. (38) is fulfilled. It is evident that
the intervals for τ01 that warrant amplitude death are narrow
and disconnected. By including variable delays, the stability
region expands significantly, and the amplitude death now
occurs in wide τ01 interval. The case ε1 = τ01 is shown in
Fig. 5(b). In Figs. 5(c) and 5(d), we depict the corresponding
master stability function for σ1 = 0.02 for which Eq. (38) is
not satisfied. In this case, it can be seen that amplitude death
can not be achieved in the constant delay case for any value of
the delay time [Fig. 5(c)], and by introducing variable delays
and enlarging the modulation amplitude the instability region
becomes even more expanded [Fig. 5(d)].

It is also desirable to investigate the influence of the
variable delays on the stability region in the plane spanned

by the coupling phase β1 and Re(ν). In Fig. 6, we show the
corresponding master stability function for a sawtooth-wave
modulation of the delay τ01 at different modulation amplitudes
ε1. The coupling parameters are τ01 = 2π and σ1 = 0.1, and
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FIG. 5. (Color online) Master stability function in the [τ01,Re(ν)]
plane. (a) σ1 = 0.1, ε1 = 0 (no modulation). (b) σ1 = 0.1, ε1 = τ01

(sawtooth-wave modulation). (c) σ1 = 0.02, ε1 = 0 (no modulation).
(b) σ1 = 0.02, ε1 = τ01 (sawtooth-wave modulation). The rest of
parameters are as in Fig. 1.
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FIG. 6. (Color online) Master stability function in the [β1,Re(ν)]
plane for a sawtooth-wave delay modulation and increasing mod-
ulation amplitude: (a) ε1 = 0, (b) ε1 = 2π/3, (c) ε1 = 4π/3,
(d) ε1 = 2π . Other parameters are as in Fig. 1.

again we consider a 2k-ring network with N = 20 and k = 2.
Figure 6(a) depicts the situation without delay modulation,
i.e., ε1 = 0. In this case, the maximum eigenvalue νmax = 4
lies outside the stability region for any β1, and amplitude death
can not be achieved. As the modulation amplitude increases
[Figs. 6(b)–6(d)], the stability region expands correspondingly,
and amplitude death becomes possible at a fixed connected
interval for β1 depending on the modulation amplitude.

To see that the enlargement of the region of the master
stability function is not restricted only to the case μ = 4
considered above, we have calculated the stability region
depending on the node degree μ in case of a real eigenspectrum
of the interconnection adjacency matrix, e.g., the previously
considered bidirectional ring topology. The results can be seen
in Fig. 7, where the yellow, red, green, and blue (light gray, dark
gray, medium gray, and black) areas correspond to ε1 = 0, 2,
4, and 6, respectively. The interconnection delay is modulated
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FIG. 7. (Color online) Master stability function in the [μ,Re(ν)]
plane for a sawtooth-wave modulation of the delay around the mean
value τ01 = 2π . The yellow, red, green, and blue (light gray, dark
gray, medium gray, and black) domains correspond to ε1 = 0, 2,
4, and 6, respectively. Gain parameter: (a) σ1 = 0.1, (b) σ2 = 0.02.
Other parameters are as in Fig. 1.
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FIG. 8. (Color online) Master stability function in the complex
ν plane for a regular ring network of Stuart-Landau oscillators
with constant delay internode connections and a variable-delay
self-feedback. The stability region is calculated from Eq. (23) for
a constant interconnection delay τ01 = 2π , with σ1 = 0.1, and a
sawtooth-wave modulation of the self-feedback delay in the high-
frequency regime around a mean value τ02 = 2π at a modulation
amplitude ε2 = 2π and different values of the gain parameter σ2:
(a) σ2 = 0.05, (b) σ2 = 0.2, (c) σ2 = 0.5, (d) σ2 = 0.7, and coupling
phase β2 = 0. Other parameters are as in Fig. 1.

with a sawtooth wave around a mean delay value τ01 = 2π

which is kept constant in both panels. The coupling phase
is also fixed at β1 = 0. The Gershgorin interval |Re(ν)| � μ

is bounded by the two solid dashed lines, and the maximum
eigenvalue of the adjacency matrix at given μ is located at the
right edge of this interval (νmax = μ). Figure 7(a) corresponds
to the gain parameter value σ1 = 0.1. One can see that while
the constant delay interconnection (ε1 = 0, yellow/light gray
region) can not stabilize the origin at any μ, amplitude death
becomes possible by applying time-varying delays as soon
as the Gershgorin interval is covered by the stability region.
In Fig. 7(b), we depict the situation σ1 = 0.02. In this case,
a necessary condition for amplitude death is provided by
the stability condition (38), which in this case reads as μ >

λ/(σ1 cos β1) = 5. Consequently, amplitude death is achieved
for μ > 5 and those values of ε1 for which the Gershgorin
interval is contained within the associated stability region.

B. Case II: Self-feedback at each node

We will now investigate the region of amplitude death in the
full system (18) and (19), which includes self-feedback, by nu-
merically analyzing the corresponding characteristic Eq. (23).
In Fig. 8, we show the calculated master stability function
for a constant delay internode connection and a variable-delay
self-feedback with a sawtooth-wave modulation. Throughout
this section, we consider a regular ring network topology
with k = 2 interconnections on each side of a node, and
a self-feedback at each node. The adjacency matrix of the
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FIG. 9. (Color online) Master stability function in the complex ν

plane corresponding to Fig. 8, with σ1 = 0.02 and different values
of the self-feedback gain parameter σ2: (a) σ2 = 0.02, (b) σ2 = 0.1,
(c) σ2 = 0.3, (d) σ2 = 0.5. Other parameters are as in Fig. 8.

interconnection topology has a constant row-sum μ = 4. The
coupling parameters are τ01 = 2π , ε1 = 0, σ1 = 0.1, and β1 =
0. The self-feedback parameters are τ02 = 2π , ε2 = 2π , and
β2 = 0, while the gain parameter σ2 is different in each panel:
Fig. 8(a) σ2 = 0.05, Fig. 8(b) σ2 = 0.2, Fig. 8(c) σ2 = 0.5,
Fig. 8(d) σ2 = 0.7. The Gershgorin circle |ν| = μ = 4 is
denoted by a dashed line, and the solid black dots are the
maximum and minimum eigenvalues of the adjacency matrix
of the interconnection topology for N = 20 oscillators: νmin ≈
−2.236, νmax = 4. For lower values of the self-feedback
gain parameter σ2 [Fig. 8(a)], the largest eigenvalue of the
interconnection adjacency matrix lies outside the stability
region, making the origin unstable. By gradually enlarging σ2

we observe a monotonic enlargement of the stability region,
whose boundaries eventually surpass the Gershgorin circle
[Figs. 8(b)–8(d)], giving rise to amplitude death above some
threshold value of the parameter σ2. The enlargement of
the stability region with increasing the self-feedback gain
parameter is even more pronounced for lower values of
the interconnection gain parameter σ1. In Fig. 9, we give
the corresponding master stability function for σ1 = 0.02 at
various σ2. The other parameters are unchanged with respect
to Fig. 8. We note that the choice σ1 = 0.02 in the analogous
case without self-feedback does not satisfy the stability
criterion (38), thus making amplitude death impossible for
any modulation amplitude ε1 in the internode connection delay
(see Fig. 2). However, it is seen from Fig. 9 that by including
self-feedback this restriction is lifted, and amplitude death is
achievable at certain parameter values of the self-feedback
coupling.

Previously we have shown that amplitude death can not be
achieved for an instantaneous interaction between oscillators
for any regular network topology and any coupling parameters
if the self-feedback is absent. In Fig. 10(a), we give the master
stability function in such case (τ01 = 0, σ2 = 0) for σ1 = 0.1.
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FIG. 10. (Color online) Master stability function in the
[Re(ν),Im(ν)] plane for an instantaneous interaction between
oscillators: σ1 = 0.1, τ01 = 0. (a) Case without self-feedback, σ2 = 0.
(b) Constant delay in the self-feedback: σ2 = 0.5, τ02 = 2π , ε2 = 0.
(c) Sawtooth-wave delay modulation in the self-feedback: σ2 = 0.5,
τ02 = 2π , ε2 = π . (d) Sawtooth-wave delay modulation in the
self-feedback: σ2 = 0.5, τ02 = 2π , ε2 = 2π . Other parameters are as
in Fig. 8.

In this case, the maximum eigenvalue of the interconnection
adjacency matrix lies outside the stability region, rendering
the origin unstable. By including a self-feedback, this severe
limitation of achieving amplitude death can be overcome. In
Figs. 10(b)–10(d) we show the corresponding stability regions
for σ2 = 0.5 for a sawtooth-wave modulation of the self-
feedback delay around τ02 = 2π for increasing modulation
amplitude ε2. It can be observed that above a certain value
of ε2 [e.g., Figs. 10(c) and 10(d)], the Gershgorin disk is
contained in the stability region, enabling amplitude death
at these parameter values.

The enhancement of the stability region by including
variable-delay self-feedback is also observed when the delay
interaction between the oscillators is time varying. In Fig. 11,
we depict the master stability function in the parametric
plane of the modulation amplitude ε1 of the internode
connection delay and the real part of the eigenvalue ν of
the interconnection adjacency matrix. In each panel, the
modulation of the interconnection delay is with a sawtooth
wave around a mean value τ01 = 2π , and the fixed system
parameters are the self-feedback mean delay τ02 = 2π , the
gain values σ1 = 0.1 and σ2 = 0.5, and the coupling phases
β1 = β2 = 0. Figure 11(a) shows the stability region for a
constant delay in the self-feedback (ε2 = 0). Comparing to
the case without self-feedback in Fig. 4(d), it is observed
that although the stability region is expanded considerably
towards the negative values of Re(ν), the range of ε1 at
which amplitude death is achieved stays almost unchanged.
Namely, at low values of ε1, in the approximate interval
ε1 ∈ [0,1.2], the maximum eigenvalue of the interconnection
adjacency matrix for the considered ring topology is outside
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FIG. 11. (Color online) Master stability function in dependence
of the modulation amplitude ε1 for a sawtooth-wave modulation of
the interconnection delay τ1 and different types of modulations of the
self-feedback delay τ2: (a) ε2 = 0 (constant self-feedback delay); (b)
ε2 = 2π with a sawtooth-wave modulation; (c) ε2 = 2π with a sine-
wave modulation; (d) ε2 = 2π with a square-wave modulation. The
coupling parameters: τ01 = τ02 = 2π , σ1 = 0.1, σ2 = 0.5, β1 = β2 =
0. The Gershgorin interval [−4,4] is contained between the black
dashed lines, and the blue dotted lines correspond to the maximum
and minimum eigenvalues of the interconnection adjacency matrix.
Other parameters are as in Fig. 8.

the stability region if the self-feedback is absent or with a
constant delay. As the delay in the self-feedback is modulated,
the stability region is changing depending on the type of the
delay modulation. If the self-feedback delay τ2 is modulated
with a sawtooth wave [Fig. 11(b)] or a sine wave [Fig. 11(c)],
the stability domain expands monotonically, until it completely
covers the Gershgorin’s interval [−4,4], making the amplitude
death possible for every value of ε1. The value of the delay
modulation amplitude in the self-feedback in Figs. 11(b) and
11(c) is ε2 = 2π . In the case of a square-wave modulation of τ2,
the expansion is nonmonotonic, and for the same modulation
amplitude ε2 = 2π [Fig. 11(d)], the instability interval for
ε1 is unchanged with respect to the case in Fig. 11(a) for
a constant self-feedback delay. The positive influence of the
self-feedback on increasing the stability region is also observed
for other types of modulations of the interconnection delay,
and in Fig. 12 we show the master stability function for
a square-wave modulation corresponding to Fig. 11. From
the resulting stability diagrams, it can be concluded that
the parameter intervals for amplitude death are expanded
considerably by including a variable-delay self-feedback, and
the positive effects of such an inclusion depend on the type of
the delay modulation.

Application of a delayed self-feedback in the ring oscillator
network can also expand the interval of the interconnection
mean delay τ01 leading to amplitude death. In Fig. 13, we
have numerically calculated the master stability function in
the [τ01,Re(ν)] plane for a sawtooth-wave modulation of the

0

2

4

6

1

0.75

0.50

0.25

0

20 10 0 10
0

2

4

6

Re Ν

1

20 10 0 10
Re Ν

0.75

0.50

0.25

0

(a) (b)

(c) (d)

FIG. 12. (Color online) Master stability function corresponding
to Fig. 11 for a square-wave modulation of the interconnection delay
τ1. Other parameters are as in Fig. 11.

delay in the self-feedback around a mean value τ02 = 2π with
modulation amplitude ε2 = 2π . The Gershgorin interval is
marked by the black dashed lines, and the eigenspectrum
of the interconnection adjacency matrix is contained within
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FIG. 13. (Color online) Master stability function in the
[τ01,Re(ν)] plane. The delay modulation in the self-feedback is
in a form of a sawtooth wave around a mean value τ02 = 2π

with amplitude ε2 = 2π . (a) Constant internode connection
delay, parameters: σ1 = 0.1, σ2 = 0.5; ε1 = 0; (b) sawtooth-wave
modulation of the interconnection delay, parameters: σ1 = 0.1,
σ2 = 0.5, ε1 = τ01; (c) constant interconnection delay, parameters:
σ1 = 0.02, σ2 = 0.2, ε1 = 0; (d) sawtooth-wave modulation of the
interconnection delay, parameters: σ1 = 0.02, σ2 = 0.2, ε1 = τ01.
Other parameters are as in Fig. 8.
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FIG. 14. (Color online) Master stability function in the
[β2,Re(ν)] plane for a constant delay interconnection τ1 = 2π and
sawtooth-wave modulation of the self-feedback delay around a mean
value τ02 = 2π and different modulation amplitudes: (a) ε2 = 0,
(b) ε2 = 2π/3, (c) ε2 = 4π/3, (d) ε2 = 2π . The values of the gain
parameters are σ1 = 0.1 and σ2 = 0.5. Other parameters are as in
Fig. 8.

the interval bounded by the blue dotted lines. In Fig. 13(a),
we show the stability region for σ1 = 0.1 and σ2 = 0.5 for
a constant interconnection delay (ε1 = 0). Comparing to the
case without self-feedback [Fig. 5(a)], it is seen that the
Gershgorin interval is completely contained in the stability
region if the self-feedback is included, and amplitude death
now occurs at each value of τ01 within the interval depicted
in the panel. The stability region becomes even larger if the
interconnection delay is also modulated, and in Fig. 13(b)
we show the case of a sawtooth-wave modulated internode
connection delay τ1 at a maximum possible amplitude ε1 =
τ01. In Figs. 13(c) and 13(d), we depict the master stability
function corresponding to Figs. 13(a) and 13(b), respectively,
for σ1 = 0.02 and σ2 = 0.2 and other parameters unchanged.
If the self-feedback were not present, the stability region
would be given by the corresponding Figs. 5(c) and 5(d), in
which case the system parameters are such that the stability
condition (38) is not satisfied, and amplitude death becomes
impossible at any delay value. By introducing variable-delay
self-feedback, the stability region expands for both constant
delay internode connection [Fig. 13(c)] and a variable-delay
internode connection [Fig. 13(d)], enabling amplitude death
for the whole depicted range of τ01.

The influence of the coupling phase β2 on amplitude
death can be seen by calculating the master stability function
from the characteristic Eq. (23) in the plane spanned by
β2 and Re(ν). The resulting stability region is depicted in
Fig. 14. Different panels correspond to different modulation
amplitudes of the self-feedback delay τ2: Fig. 14(a) ε2 = 0
(constant delay), Fig. 14(b) ε2 = 2π/3, Fig. 14(c) ε2 = 4π/3,
Fig. 14(d) ε2 = 2π . The interconnection delay τ1 is taken
constant and equal to its mean value τ1 = τ01 = 2π , and the

self-feedback delay τ2 is modulated with a sawtooth wave
around τ02 = 2π . The gain parameters are set to σ1 = 0.1
and σ2 = 0.5, and the coupling phase in the interconnection
is set to zero (β1 = 0). For a constant self-feedback delay
[Fig. 14(a)], the rightmost value of the Gershgorin interval,
i.e., the maximum eigenvalue of the interconnection adjacency
matrix, is outside the stability region for any β2, making
amplitude death impossible in this nonmodulated case. For
increasing modulation amplitude in the self-feedback delay
[Figs. 14(b)–14(d)], the stability region expands, eventually
covering the whole Gershgorin interval in a certain finite range
of β2, in which amplitude death is achieved.

C. Case III: Self-feedback at a single node

We now investigate the possibility of inducing amplitude
death in a regular ring network topology of Stuart-Landau
oscillators by applying a variable-delay self-feedback at a
single node only. The system dynamics is now governed by

żj = h(zj ) + σ1e
iβ1

N∑
n=1

ajn{zn[t − τ1(t)] − zj (t)}

+ δ1j σ2e
iβ2{zj [t − τ2(t)] − zj (t)} (39)

with j = 1,2, . . . ,N , where the local dynamics is given by
Eq. (19). This system differs essentially from the system (18),
in which the self-feedback was applied at each node, by the
presence of the Kronecker delta δ1j in the rightmost term,
indicating a self-feedback at the first node only. Since the
resulting system can not be treated via the master stability
formalism, we will investigate the network dynamics directly,
and determine the parameters leading to amplitude death by
numerically analyzing the system (39). For that purpose, we
integrate the system and follow the time evolution of the
dynamical variables xj and yj .

In Figs. 15(a)–15(f), we summarize the results of the
numerical simulations by depicting the dependence of the
maximum amplitude of the system variables xj and yj on
the gain parameter σ1 representing the strength of the internode
connection. The maximum amplitude is calculated from a
sample of all 2N variables xj and yj taken after a long transient
from randomly chosen initial conditions in the interval [0,1].
We choose a constant internode connection delay τ01 = 2π ,
and a sawtooth-wave modulation of the self-feedback delay
τ2 around a mean value τ02 = 2π with amplitude ε2 = 2π

and a frequency �2 = 10. The coupling phases are fixed
at β1 = β2 = 0. The parameters of the local dynamics are
λ = 0.1, ω = 1, and γ = 0.1, as before. Different panels
correspond to different values of the self-feedback gain:
Fig. 15(a) σ2 = 0.1, Fig. 15(b) σ2 = 0.5, Fig. 15(c) σ3 = 1,
Fig. 15(d) σ2 = 1.5, Fig. 15(e) σ2 = 2, Fig. 15(f) σ2 = 4.
Each panel contains four different resulting curves denoted
by solid black, dashed red, dotted blue, and dashed-dotted
green lines corresponding to different number of nodes in
the oscillator network (N = 5,10,15, and 20, respectively).
In each case, the network topology is a ring with k = 2
interconnections at each side of a node. The intervals of σ1

that lead to amplitude death are indicated by the diminishing
maximum amplitude visualized by the horizontal plateau at
zero amplitude. Although for low values of the self-feedback
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FIG. 15. (Color online) Maximum amplitude of the oscillations of a regular ring network of coupled Stuart-Landau oscillators as a function
of the strength σ1 of the internode connection. The internode coupling parameters are τ01 = 2π , ε1 = 0, and β1 = 0. The self-feedback acts at
a single node in the form of a sawtooth wave with τ02 = 2π , ε2 = 2π , �2 = 10, and β2 = 0. Self-feedback gain: (a) σ2 = 0.1, (b) σ2 = 0.5,
(c) σ3 = 1, (d) σ2 = 1.5, (e) σ2 = 2, (f) σ2 = 4. The solid black, dashed red, dotted blue, and dashed-dotted green lines correspond to increasing
number of nodes in the oscillator network: N = 5,10,15, and 20, respectively. Other parameters are as in Fig. 1.

strength σ2 [Figs. 15(a) and 15(b)] amplitude death can not be
achieved, the stabilization of the origin becomes possible as σ2

is increased above a certain threshold value [Figs. 15(c)–15(f)].
In the latter cases, it is observed that the σ1 interval for
amplitude death strongly depends on the number of nodes
in the network, becoming wider as the number of nodes N is
decreased. As the number of nodes is increased, the amplitude
death interval becomes narrower, eventually disappearing at
higher values of N .

Figure 16 depicts the dependence of the amplitude death
interval on the node degree in the interconnection topology.
Figure 16(a) corresponds to σ2 = 2 and Fig. 16(b) to σ2 = 4.
The number of nodes at each panel is N = 10, and solid
black, dashed red, dotted blue, and dashed-dotted green curves
correspond to increasing number of interconnections at each
side of a node (k = 1,2,3, and 4, respectively). The other
parameters are unchanged with respect to Fig. 15. It is observed
that as the number of connections between the nodes is
increased, the amplitude death interval becomes narrower,
being shifted towards smaller values of σ1.

It is interesting to note that for small enough values of
the internode connection strength σ1, large value of the self-
feedback gain σ2, and a large number of nodes N , the oscillator
at which self-feedback is applied performs a small-amplitude
oscillation around the origin, while the dynamics of the rest
of the oscillators is almost unaffected by the self-feedback,
and they continue to oscillate at large amplitude exhibiting
phase synchronization. This regime of partial amplitude death
is depicted in Fig. 17 for σ1 = 0.05, σ2 = 2.5, and N = 20.
Figure 17(a) depicts the time series after a long transient
for a regular ring network with one interconnection at each
side of a node (k = 1). The dynamics of the oscillator with

self-feedback is given by the solid red (gray) curve, and
the time series of the other oscillators are depicted by solid
black curves. As the coupling range k is increased, the
amplitude of the oscillations of the node with the self-feedback
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FIG. 16. (Color online) Maximum amplitude of the oscillations
as a function of σ1 for a regular ring network of N = 10 coupled
Stuart-Landau oscillators with varying number of interconnections
k on each side of a node: k = 1 (solid black), k = 2 (dashed red),
k = 3 (dotted blue), k = 4 (dashed-dotted green). Self-feedback gain
parameter: (a) σ2 = 2, (b) σ2 = 4. Other parameters are as in Fig. 15.
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FIG. 17. (Color online) Partial amplitude death: time series x1(t)
(red) and x2,...,N (t) (black) for σ1 = 0.05, σ2 = 2.5, and N = 20.
Number of interconnections at each side of a node: (a) k = 1, (b)
k = 9. Other parameters are as in Fig. 15.

increases, and in Fig. 17(b) we show the associated dynamics
for k = 9 interconnections at each side. Accordingly, the
phase synchronization of the rest of the nodes in Fig. 17(a)
turns into complete (amplitude and phase) synchronization in
Fig. 17(b).

IV. CONCLUSIONS

We have shown that amplitude death can be induced by
applying coupling with a time-varying delay in a network of
oscillators even if it does not exist in the case of constant
delay, and its regime in the parameter space can be enhanced
significantly. In the case of a regular network topology with
delayed coupling, which may include a Pyragas-type self-
feedback at each node, a master stability function formalism
has been employed to analyze the linear stability of the un-
stable homogeneous steady state, and predict analytically the
boundaries of stability. At high-frequency delay modulation,
analytical results for the occurrence of amplitude death can
be obtained by approximating the variable-delay coupling
terms by distributed delay with delay-distribution kernels
matching the probability density function. The success of the
proposed method has been demonstrated both numerically
and analytically for a regular ring network consisting of
Stuart-Landau limit cycle oscillators in the regime near a Hopf
bifurcation. We have shown that controllability of the network
fixed point is strongly limited by the local node dynamics,
which could be removed in certain cases by including a
variable-delay self-feedback. In addition, we have shown that
amplitude death can even be induced if the self-feedback is
applied at a single node only, for certain control parameter
intervals and not too large networks.

With respect to the practical realization of amplitude death
in real systems using the proposed variable-delay coupling
methods, it must be emphasized that for the considered high-

frequency regime of the delay modulations, the distributed-
delay approximation of the network dynamics does not depend
on the frequency of the modulations. This allows for consider-
able flexibility in the choice of the delay modulation, i.e., since
any modulation which corresponds to the same probability
density function of the delay distribution will lead to the same
stabilization regimes of the steady state. Specifically, choosing
τi(t) in all internode connections with different frequencies
and initial phases, keeping the same mean delay τ01 and
modulation amplitude ε1 will still result in stabilization. It
has been demonstrated that the high-frequency condition is
not very severe in real applications, and the distributed-delay
limit is still valid for fairly low frequencies, making the
distributed-delay approximation of the variable-delay systems
a versatile method of analysis for such systems [65].

The variability of the coupling delay in real networks is
often due to random fluctuations induced by the environment,
or due to imperfections of the system. In these cases, the delay
varies stochastically in time, being distributed over an interval
of values and characterized by a distribution function. This
situation is also covered by our analysis since fast random
fluctuations of the delay are equivalent to a deterministic
modulation with a delay distribution ρ equal to that of the
random case. Consequently, random delay fluctuations with
a constant probability distribution in a certain interval are
equivalent to a deterministic variation of the delay with a
sawtooth-wave modulation, independently of the skewness of
the sawtooth wave, and fast random fluctuations between two
discrete delays is equivalent to a square-wave modulation, etc.
Hence, by invoking noise in the delay lines artificially, one may
enhance the regions of amplitude death. In addition, by using
digital variable-delay lines with deterministic or stochastic
delay variations, one may in principle achieve any desired
form of the delay distribution.
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APPENDIX: EIGENSPECTRUM OF THE ADJACENCY
MATRIX FOR RING NETWORK TOPOLOGIES

The stability of the collective fixed point X∗ at the origin
is determined by the position of the eigenvalues νm of the
adjacency matrix Â. The fixed point of the network dynamics
is stable if all the eigenvalues νm are located inside the
stability region determined by the master stability function.
We consider a regular network with a ring topology, consisting
of N nodes, where each node is bidirectionally coupled to
2k nearest neighbors with k links (edges) on each side of
the node (see Fig. 18). The degree of each node is thus
constant and equal to 2k. The adjacency matrix Âk for this
network topology is an N × N symmetric circulant matrix
with constant row-sum μ = 2k. For example, the adjacency
matrix for a bidirectional ring network with a single link
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FIG. 18. Regular 2k-ring network consisting of 15 nodes. Each
node is connected to 2k nearest neighbors, with k links on each side
of the node: (left) k = 1, bidirectional ring; (center) k = 5; (right)
k = 7 complete (all-to-all) coupling.

between each two adjacent nodes (k = 1) is

Âk=1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)

The adjacency matrix of this 2k-ring topology can be conve-
niently represented as a sum of terms involving powers of the
elementary N × N circulant matrix Ê [76]:

Ê =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

The eigenvalues Em of Ê are easily obtained since

Ê

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3
...

xN−1

xN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

xN

x1

x2
...

xN−2

xN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

From the eigenvalue equation Êx = Ex, we obtain the
system Ex1 = xN , Ex2 = x1, ...,ExN = xN−1, which after
subsequent multiplication leads to

∏N
n=1 xn = EN

∏N
n=1 xn,

from which EN = 1, and thus the eigenvalue spectrum of Ê

Em = e2πi(m−1)/N , (A4)

where m = 1,2, . . . ,N . Incidentally, this is the eigenvalue
spectrum of a unidirectional ring network since the elementary
circulant matrix Ê coincides with the adjacency matrix of
such a network. k-fold application of Ê has the effect of k

downshifts of the elements of each column vector, and leads
to the resulting matrix Êk . The inverse matrix Ê−1 is

Ê−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A5)

The adjacency matrix Âk of a 2k-ring network topology can
be written in terms of the powers of Ê as

Âk =
k∑

j=1

(Êj + Ê−j ). (A6)

The eigenvalues νm of the adjacency matrix Âk can be found
from rewriting Âkx = νx as

k∑
j=1

(Êj + Ê−j )x = νx (A7)

from which we obtain
k∑

j=1

(
Em

j + Em
−j

)
x = νmx. (A8)

By taking into account Eq. (A4), we obtain

νm =
k∑

j=1

[(
e

2πi
N

(m−1)
)j + (

e− 2πi
N

(m−1)
)j ]

, (A9)

which can be further simplified to

νm = sin
[ (2k+1)π(m−1)

N

]
sin

(
π(m−1)

N

) − 1, (A10)

where m = 1,2, . . . ,N . The eigenvalues νm are real since
Âk is symmetric, and the corresponding eigenvectors um

form an orthogonal basis. Also, the largest eigenvalue of the
adjacency matrix in a regular network equals the node degree,
which in this case follows from Eq. (A10) for m = 1, that is,
ν1 = 2k. The corresponding eigenvector u1 = (1,1, . . . ,1)T

is an N -dimensional column vector with all entries one.
From Eq. (A10) one can explicitly derive the formulas for

the eigenvalue spectrum for some special cases of regular ring-
network topologies, such as bidirectional ring network (k = 1)

νm = 2 cos

[
2π (m − 1)

N

]
, (A11)

and all-to-all coupling (2k + 1 = N ), i.e., a complete graph,

νm =
{
N − 1, m = 1
−1, m = 2,3, . . . ,N.

(A12)
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