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In the present work we approach the hydrodynamic problem of discriminating the state of the turbulent fluid
region as a function of the distance from the axis of a turbulent jet axis. More specifically, we analyzed temperature
fluctuations in vertical turbulent heated jets where temperature time series were recorded along a horizontal line
through the jet axis. We employed data from different sets of experiments with various initial conditions out of
circular and elliptical shaped nozzles in order to identify time series taken at the jet axis, and discriminate them
from those taken near the boundary with ambient fluid using nonconventional hydrodynamics methods. For each
temperature time series measured at a different distance from jet axis, we estimated mainly nonlinear measures
such as mutual information combined with descriptive statistics measures, as well as some linear and nonlinear
dynamic detectors such as Hurst exponent, detrended fluctuation analysis, and Hjorth parameters. The results
obtained in all cases have shown that the proposed methodology allows us to distinguish the flow regime around
the jet axis and identify the time series corresponding to the jet axis in agreement with the conventional statistical
hydrodynamic method. Furthermore, in order to reject the null hypothesis that the time series originate from a
stochastic process, we applied the surrogate data method.
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I. INTRODUCTION

Turbulent jet flows constitute a class of complex phenomena
in physics and are encountered in a variety of engineering
applications in atmospheric, oceanic, and other cases of
environmental fluid dynamics. Due to noteworthy implications
the study of turbulent jets has been the subject of investigation
by several researchers in the past. The basic flow configuration
for a turbulent jet flow is shown in Fig. 1, where in the case
of fully developed turbulence one can observe a three region
behavior. The first region corresponds to large distances from
the jet axis, actually at the boundary with ambient water named
boundary region (BR), the second one, the inner region (IR),
concerns the region between the boundary region and the core
of the jet, and the third region, the jet axis region (JR), is
the region near the core of the jet. The dynamics of these
regions is characterized by the presence of small and large
scale structures (vortices). Large scale structures occupy the
full width of the jet and appear with a certain low frequency that
is a function of the distance from the nozzle due to continuous
pairing. They contain a major part of jet energy. Small scale
eddies constitute the large, energy carrying structures, appear
at higher frequencies, and receive energy from the immediately
bigger ones mainly at the central part of the flow.

Determining the location of the axis in a turbulent jet is
a classical hydrodynamics problem in the literature with the
majority of the previous approaches requiring hydrodynamics
knowledge and methods [1,2]. These studies were devoted
to vertical and horizontal turbulent jet flows by investigating
the changes over time in velocity, density, temperature, or
tracer concentration in the jet flow field, based on experimental
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research and numerical simulation methods [3–6]. More
recently, a few works attempt to study the turbulent flow from
the complex network perspective. Particularly, Gao and Jin [7]
have employed the complex network theory to investigate the
dynamic characteristics of gas-liquid two-phase flow patterns
and characterize and distinguish patterns from inclined water-
oil flow. Also, Gao et al. [8] proposed a method to distinguish
patterns from inclined water-oil flow experiments based on the
concept of network motifs. Liu et al. [9] studied the statistical
properties of complex networks constructed from time series of
energy dissipation rates in three-dimensional fully developed
turbulence and Small et al. [10] have employed nonlinear
methods to characterize chaotic dynamics from simulations
of large strain behavior of a granular material under biaxial
compression.

During the preceding decades a different way to obtain
insight in the properties of a dynamical system (in our
case the jet) was to analyze the time series of measurable
quantities, which depend on the underlying and usually
unknown dynamics of the physical system, in order to identify
its characteristics. Time series analysis may include the use of
simple descriptive statistics, linear, and nonlinear methods.
Linear analysis incorporates simple measures, such as the
autocorrelation function and power spectrum, while nonlinear
methods based on the reconstruction of phase spaces include
the mutual information and correlation dimension. A concise
review of these methods can be found in Refs. [11–13].
Moreover, calculation of some nonlinear dynamic detectors,
such as Hurst exponent, detrended fluctuation analysis (DFA),
and Hjorth parameters, has shown significant power in the
analysis of time series [14–18].

The aim of the present work is to propose a method of iden-
tifying and discriminating different regions of the jet through
the analysis of time series measured at various positions within
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FIG. 1. (Color online) Schematic diagram of turbulent jet flow.

the jet, using mainly nonlinear time series analysis techniques
and nonconventional hydrodynamics methods based mainly on
statistics. More specifically, we analyzed the temperature fluc-
tuations from vertical turbulent heated jets where temperature
time series were recorded along a horizontal line through the jet
axis. We employed data from five different sets of experiments
with different initial conditions. In two cases the nozzle shape
was circular and in the remaining three elliptical with 1:2 axis
ratio. We concentrated our study in the investigation of the
question if one can distinguish the time series corresponding
to regions near the jet axis where conditions of fully developed
turbulence are expected, from time series corresponding to
regions that are more distant and from those near the boundary
with the ambient water where intermittent flow of jet fluid
occurs. In addition, the null hypothesis was tested for dynamic
characteristics of the temperature time series performing a
surrogate data test [19–22].

From the results of the proposed methodology we cannot
only locate the jet axis region, but also differentiate from the
time series analysis the dynamical behavior of various other
regions.

The structure of the paper is as follows. In Sec. II we discuss
briefly the theoretical background and the experimental setup
for temperature measurements. In Sec. III we present the
methodology employed for data analysis along with the
linear and nonlinear measures. The results and discussion are
presented in Sec. IV. Finally, the conclusions are presented in
Sec. V.

II. THEORY AND EXPERIMENTAL SETUP

A. Theory

A heated round jet of diameter D and density ρo flows out
of a nozzle with uniform velocity U parallel to jet axis in a

calm ambient fluid of density ρα . The initial jet parameters are
the volume and the specific (per unit mass) momentum and
buoyancy fluxes are defined as

Q = πD2

4
U,

M = QU, (1)

B =
(

ρα − ρo

ρα

g

)
Q = g′

oQ,

respectively, where g is the gravitational acceleration and g′
o

the effective gravity that will subsequently produce vertical
momentum flux. Two characteristic length scales are defined
as [23]

lQ = Q

M1/2
and lM = M3/4

B1/2
. (2)

lM is a momentum length scale formed from the momentum
and buoyancy fluxes and lQ is the source length scale formed
from the volume and momentum fluxes. Their ratio lQ/ lM is
the initial buoyant jet Richardson number Ro

Ro = lQ

lM
=

(
p

4

)1/4 √
g′

oD

U
=

(
p

4

)1/4 1

Fo

and

(3)

Fo = U√
g′

oD
,

where Fo is the initial densimetric Froude number.
The temperature difference between the jet and ambient

fluid produces the density deficiency that is responsible for
the initial jet specific buoyancy flux. The mean dilution S at a
point of the jet flow field is defined to be the ratio

S = To − Ta

T − Ta

, (4)

where To is the initial jet temperature, Tα the ambient
temperature, and T the local time-averaged temperature.
Jirka [24] has defined the jet axis to be the point of minimum
dilution Sc

Sc = To − Ta

Tc − Ta

, (5)

where Tc is the maximum time-averaged (center line) temper-
ature. We define x as the horizontal distance from jet axis and
z the vertical distances from the nozzle.

B. Description of the experiments

Experiments have been carried out in a transparent orthog-
onal tank with dimensions 1.00 m × 0.80 m and 0.70 m deep,
equipped with a peripheral overflow to remove excess water at
the Applied Hydraulics Laboratory of the National Technical
University of Athens. A perspective view of the experimental
setup is shown in Fig. 2.

The tank was equipped with a peripheral overflow to remove
excess water. The hot water jet supply consists of a water heater
made of stainless steel, which is well insulated and pressurized
by air, to provide adequate constant head pressure to drive
to jet. During the water heating, a recirculating pump was
used to ensure that the hot water is well mixed and there are
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FIG. 2. Perspective view of the experimental setup.

no temperature gradients. An insulated pipe drives the water
from the heater into the jet plenum, through a calibrated flow
meter. The jet plenum was a cylinder of 4.5 cm i.d. equipped
with 5 mm honeycomb and sponge to destroy the large scale
turbulence structures. At the downstream end of it different
types of nozzles could be mounted. Two different nozzles have
been used—a circular of 1.5 cm diameter and an elliptical
nozzle with 2:1 axis ratio 2 cm × 1 cm. They have been
shaped in a way to provide smooth transition from the plenum
diameter to the nozzle exit to avoid flow separation. The jet
water temperature ranged between 58.60 °C and 61.44 °C,
while the ambient water temperature ranged between 18.40 °C
and 24.6 °C. Temperature measurements were obtained by
an array of fast response thermistors positioned at constant
elevation from the nozzle, on the plane of symmetry of the
buoyant jet. The jet flow field was determined using a slide
projector and a semitransparent paper sheet (shadowgraph)
in order to place the rake of thermistors properly. In this
paper, we use the data recorded at an elevation of 20 cm
above the nozzle axis. The basic initial conditions of the
flow are tabulated in Table I. The first, second, and fifth case
studies correspond to buoyancy driven, plumelike type of flow
(z/lM ≈ 10), where the momentum that has been produced
by buoyancy is much greater than the initial jet momentum.
The other two case studies (third and fourth) correspond to the
buoyant jet (1 < z/lM < 10), where initial jet momentum and
buoyancy flux are in balance and both important for the jet
movement.

III. TIME SERIES ANALYSIS

A. Methodology

To distinguish the time series that correspond to regions
near the jet axis from those corresponding to regions near
the boundary we used mainly nonlinear measures. More
specifically, we focused on a set of measures such as the
mutual information and the cumulative mutual information.
We have also estimated simple descriptive statistics measures,
calculated some linear and nonlinear dynamic detectors such as
the Hurst exponent, detrended fluctuation analysis (DFA), and
Hjorth parameters, and we have evaluated their discriminating
power using clustering approach. In the proposed method,
the separation of boundary regime from the inner region
is obtained without the use of fluid mechanics properties.
As indicated earlier, five experiments of turbulent jets with
different initial conditions and nozzle shapes were used to
illustrate the method. Below we give a brief description of the
various measures employed in the present time-series analysis.

B. Linear and nonlinear measures

1. Descriptive statistics

We calculated some simple descriptive statistics and we
try to summarize and describe our data set. More specifically,
we estimated the mean, median, variance, standard deviation,
interquartile range, skewness and kurtosis of each time series.

2. Mutual information and cumulative mutual information

Mutual information I(t) is the most popular nonlinear
measure used in time series analysis in order to select the
appropriate delay time τ for state space reconstruction [25]
and is defined as

I (τ ) =
∑

x(ti ),x(ti+τ )

P (x(ti),x(ti + τ ))log

[
P (x(ti),x(ti + τ ))
P (x(ti)x(ti + τ ))

]
,

(6)

where x(ti) is the ith data point of time series t = kDt(K =
1,2, . . . ,kmax); P (x(ti)) is the probability density at x(ti) and
P (x(ti),x(ti + τ )) is the joint probability density at x(ti),
x(ti + τ ); τ is the delay time. The delay τ of the first minimum
is chosen as a delay time for the reconstruction of phase space.

We also used a nonlinear measure, the cumulative mutual
information M(τmax), defined as the sum of mutual information
I(τ ) [26] for a time delay τ as

M(τmax) =
τmax∑
τ=1

I (τ ). (7)

TABLE I. Experimental conditions. (*) f = temperature data sampling frequency.

Case Shape of
study nozzle D (cm) U (cm/s) To (°C) Ta (°C) Re lm (cm) z/lm Ro f (Hz)*

1st Round 1.5 6.74 58.60 24.60 2040 2.167 9.231 0.614 80
2nd Round 1.5 6.74 58.60 24.60 2040 2.167 9.231 0.614 80
3rd Elliptical 2:1 18.25 60.60 18.40 4888 5.236 3.820 0.239 80
4th Elliptical 2:1 11.85 61.44 19.10 3203 3.365 5.944 0.372 100
5th Elliptical 2:1 7.58 61.40 19.20 2048 2.156 9.278 0.581 100
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3. Estimation of Hurst exponent

The Hurst exponent (H ) has been used first as a measure
of long-range correlation in the analysis of time series, and
second to classify them. Estimation of the Hurst exponent
was initially introduced by Hurst [14] while investigating the
discharge time series of the Nile River. The oldest method
to calculate the Hurst exponent called rescaled range or R/S
analysis was proposed by Mandelbrot and Wallis [15] and
estimates H are based on the R/S statistics.

Suppose we have a time series of N measurements. We
divide the time series into Ns shorter subseries of length n =
N,N/2,N/4. For each subseries we define the range Rn

Rn = max
1�k�s

[
k∑
i

(xns+i − xn

]
− min

1�k�s

[
k∑
i

(xns+i − xn)

]
,

(8)
where

n = 0,1, . . . ,Ns − 1, Ns = N/S,

and

xn = 1

s

s∑
i=1

xns+i . (9)

The sample standard deviation is defined as

Sn =
√√√√1

s

s∑
i=1

(xns+i − xn)2. (10)

Then the rescaled range is Rn/Sn.
The Hurst exponent is estimated by calculating the average

rescaled range for all subseries of length n. It can be shown
that the R/S statistics follows the relation

(R/S)n = c · nH as n → ∞, (11)

where c is a constant. In plotting (R/S)n statistics against n

on a log-log scale, we expect to get a line the slope of which
determines the Hurst exponent. With this definition the Hurst
exponent of 0.5 indicates a random series, when a value of
H lies within the interval 0.5 < H < 1 indicates persistent
behavior, while a Hurst exponent value between 0 and 0.5
exists for time series with antipersistent behavior.

4. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) method was proposed
by Peng et al. [18] and it is useful for analyzing time series that
originate from long-memory processes. The advantage of DFA
over R/S analysis is that it permits the detection of long-range
correlations embedded in nonstationary time series.

Suppose we have a time series length N . We divide the
time series into Ns shorter subseries of length n. For each
time subseries m = 1, . . . ,Ns first we create a cumulative time
series

Yi,m =
i∑

j=1

Xj,m, i = 1,2, . . . ,n. (12)

Next we fit the series with a least squares line,

Ỹm(x) = amx + bm, (13)

and then we calculate the root mean square fluctuation of the
integrated and detrended time series,

F (m) =
√√√√1

n

n∑
i=1

(Yi,m − ami − bm)2. (14)

The root mean square fluctuation is calculated by

F̄ (n) = 1

Ns

Ns∑
m=1

F (m). (15)

As in the case of R/S analysis a linear relationship on a log-
log plot indicates the presence of power-law scaling F (n) ≈
c · nα where c is a constant [18]. The DFA function can be
characterized by a scaling exponent α as the slope of a line on
a plot logF(n) to log(n). If the process is persistent the slope
is greater than 0.5, while if it is antipersistent then the slope is
less than 0.5. In the case of white noise time series the slope
is roughly 0.5.

5. Hjorth parameters

The Hjorth descriptors, namely activity, mobility, and
complexity, were mainly developed for quantification of an
electroencephalogram (EEG) by Hjorth [16,17]. The Hjorth
parameters, activity (HA), mobility (HM ), and complexity
(HC) are called normalized slope descriptors because they can
be defined as first and second derivatives and are respectively
defined as follows:

HA = m0, (16)

HM =
√

m2

m0
, (17)

HC =
√

m4/m2

m2/m0
, (18)

where m0 is the variance (square of the standard deviation) of
the variable, m2 is the variance of the first derivative of the
variable, and m4 is the variance of the second derivative of the
variable.

In fact, activity represents the width of the signal. Mobility
is defined as the squared root of the ratio between the variances
of the first derivative and the amplitude, and represents the
mean frequency of the time series. Complexity is the ratio
between the mobility of the first derivative and the mobility of
the nonlinear time series. Complexity indicates the deviation of
the slope and can be seen as a measure of change in frequency
of the signal. Although these measures have been used in
the EEG analysis and constitute useful clinical tools for the
quantitative description of an EEG [27–29] relevant studies
where these parameters have been employed in the analysis of
time series from hydrodynamics do not appear in the literature.

C. Clustering analysis

Apart from the performance of the above measures as
individual indicators, the process of cluster analysis has been
used for classification of the time series. Clustering is a division
of data into groups of similar objects. Each group consists of
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FIG. 3. Time series at various positions.

objects that are similar between themselves and dissimilar
to objects of other groups. There have been several studies
that employed different measures of similarity for clustering
such as methods based on mutual information or correlation
dimension [30–32]. In our study we have used a combination
of all measures described in the previous sections as a measure
of similarity. More specifically, we have employed all the
simple statistical measures described above, the mutual and
cumulative mutual information, Hurst exponent, detrended
fluctuation analysis (DFA), and the Hjorth parameters.

We used the single linkage hierarchical clustering algo-
rithm [33] in order to classify our data. One of the main
advantages of hierarchical clustering is that a dendrogram
can be drawn to find the appropriate number of clusters in
a data set. The height at which two clusters are merged in the
dendrogram reflects the distance of the two clusters.

Briefly using the single linkage hierarchical clustering
algorithm we first calculate the distance from each object
(point) to all other points, using Euclidean distance measure,
and place the numbers in a distance matrix. Then we identify
the two clusters with the shortest distance in the matrix, and

FIG. 4. (Color online) Shadowgraph view of the experimental
setup. The green areas refer to the boundary region, while the blue and
red areas refer to the jet axis region and inner regions, respectively.
The red arrows indicate the limits of the measurement zone.

FIG. 5. (Color online) Mean, median (left vertical axis), and
variance (right vertical axis) of the time series as a function of
measurement positions for the various cases of jets.

merge them together. Subsequently, the distance matrix is
recomputed, as those two clusters are now in a single cluster
(and no longer exist by themselves). Finally, we compute the
distances from each object (point) to all other points until we
group all the data sets into clusters. The most dependent data
are grouped together.

IV. RESULTS AND DISCUSSIONS

A. Case 1

We analyzed 21 recordings of temperature time series, one
for each radial location of measurement, where the sampling
time at each location was 40 s at a frequency of 80 Hz. The first
time series recorded in a position x = 32.40 cm at horizontal
axis and the last position in x = 46.50 cm. In Fig. 3 the time
series is displayed. The horizontal axis refers to time (t) and
the vertical axis refers to each time series located as we move
from the left boundary (x = 32.4 cm) of the tank to the right
(x = 46.5 cm).

FIG. 6. (Color online) Hurst exponent of the time series as a
function of measurement positions with R/S method and exponent
with the detrended fluctuation analysis (DFA).
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FIG. 7. (Color online) Hjorth parameters mobility and complex-
ity of the time series as a function of measurement positions.

As we have mentioned before for each time series we first
calculated the simple statistical measures such as the mean,
median, variance, standard deviation, kurtosis, skewness, and
interquartile range. Then we evaluated the nonlinear measures
(mutual information and the cumulative mutual information).
Finally, we estimated the linear and nonlinear dynamic detec-
tors, i.e., the Hurst exponent, detrended fluctuation analysis
(DFA), and Hjorth parameters. Subsequently, we constructed
the normalized matrix of all the above measures, and evaluated
the discrimination power of the measures using clustering
analysis. The algorithm described in Sec. III C was used for
clustering.

A representative shadowgraph view of the time series
is presented in Fig. 4. Moreover, in this figure we present
approximately the jet axis region and the rest regions and also
the location of the centerline of the jet using different colors.

1. Estimation of the descriptive statistics measures

The statistical analysis of the time series is focused on
evaluation of simple statistical measures such as the mean,

median, variance, standard deviation, kurtosis, skewness, and
interquartile range for each time series. The objective of this
part of our work is to study the performance of simple statistics
estimators and whether it is possible to discriminate one time
series from another. The results of mean, median, and variance
are shown in Fig. 5 as a function of the horizontal distance from
the nozzle.

As we can clearly observe the mean and median values
of the excess (above ambient) temperature profile is quite
symmetrical. There is also a region consisting of the time
series at x = 37.25, 37.40, 38.25, and 38.40 cm, where the
maximum values correspond to the regime around the jet axis.
Additionally, from this figure it is evident that the lowest values
of the variance occurred in the same region.

It is of interest that the behavior of the above measures,
which are based on the measurement of the time series at
various locations, permits one to discriminate in a clear way the
spatial behavior of turbulence across the line of measurement.

2. Evaluation of Hurst exponent

So far the parameters we have investigated are capable of
extracting information from the time series. However, for a
clear discrimination between the time series we needed extra
information. The obtained results for the Hurst exponent for
each time series with the R/S method and with detrended
fluctuation analysis (DFA) are displayed in Fig. 6.

The Hurst exponents take the lowest values in the region
36.25–38.40 cm which corresponds to the jet axis region
allowing one to thus distinguish these time series (and the
corresponding measurement regions) from the others. The
values of the Hurst exponent are in general greater than 0.5
(except for the location x = 46.5 which lies outside the jet
region and in fact corresponds to the ambient water region)
indicating a persistent behavior. We have to mention that the
R/S method and DFA method show almost the same behavior.
It is of interest to discuss the physical interpretation of this
behavior. In fact, close to jet boundaries the presence of
long-life large vortices creates a strongly persistent behavior
in time, while as we move towards the jet axis region the

(a) (b)

FIG. 8. (Color online) (a),(b) Mutual information and cumulative mutual information of the time series as a function of measurement
positions.
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FIG. 9. (Color online) Dendrogram based on the measures obtained from the time series. The sketch above is a schematic representation
of the location of the various regions in the measurement setup (FJA: far from jet axis region; CJA: close to jet axis region; JA: jet axis region).

presence of short-lived and small size vortices reduces the
persistent behavior.

3. Hjorth parameters

The results for Hjorth parameters of the time series mobility
and complexity are presented in Fig. 7. It is interesting to note
that the mobility of the groups with the highest values appears

FIG. 10. (Color online) Normalized excess (above ambient) and
rms temperature by the maximum center line time-averaged tem-
perature is plotted versus r/z, along with exponential fit to the
time-averaged normalized temperature.

in the time series from the core of the jet, where the lowest
values of the complexity occurred.

4. Mutual and cumulative mutual information

Further, we have calculated the mutual information function
and the cumulative mutual information for each time series and
the results are presented in Figs. 8(a) and 8(b). In Fig. 8(a) one
can observe that there are time series presenting the smallest
local minimum but not the lowest values of average mutual
information which correspond in fact to regions in or close
to the ambient water, while time series close to the jet axis
(near x = 37.40 cm) present the lowest values of average
mutual information (the two far distant measurement positions
x = 46.50 and 43.50 cm are exempt). As we get far from
the jet axis, but always in the turbulent jet region, average
mutual information increases and time lags of the minimum
are shifted toward larger times. Such behavior is consistent
with what is expected since near the jet center line turbulence is
fully developed and there appear many short-lived small scale
turbulent structures, while near the jet boundary the large scale
flow structures live longer. At the jet axis region the memory
of the flow structures is lost fast, while at locations close to the
boundaries memory lasts longer.

A close look in Fig. 8(b), where the cumulative mutual
information for each time series is presented, indicates that
some time series are closer to some other forming groups
corresponding to different measurement areas.
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TABLE II. Surrogate.

Discriminating Time series from Time series located
statistics jet axis in the inner region

First minimum of
mutual information D = 10.04 > 1.96 D = 20.76 > 1.96

Hjorth mobility D = 97.92 > 1.96 D = 107.77 > 1.96
Hjorth complexity D = 154.99 > 1.96 D = 363.57 > 1.96
Hurst exponent (R/S) D = 4.53 > 1.96 D = 7.85 > 1.96
Hurst exponent (DFA) D = 5.36 > 1.96 D = 8.75 > 1.96

5. Clustering

From the results already presented above it is evident that
we can separate various regions in the jet from the analysis of
the corresponding time series. However, since each measure
captures different characteristics and with different sensitivity,
we combined all the above measures in an effort to better
discriminate the various regions of the jet as well as locate the
jet axis. As a measure of similarity we used a combination of

TABLE III. Parameters of case studies.

Location of the first and
Case Shape of Number of time last time series along
study nozzle series recorded the horizontal axis

2nd Round 21 31.7–46.2
3rd Elliptical 19 33.5–43.5
4th Elliptical 18 33.0–43.0
5th Elliptical 14 33.0–42.5

all the simple statistical measures described above, the mutual
and cumulative mutual information, and the Hurst exponent
and the Hjorth parameters.

The hierarchy built by the clustering algorithm from each
time series is represented by the dendrograms given in Fig. 9.
The horizontal axis refers to each time series and the vertical
axis refers to the distance. On top of the dendrogram the
location of each time series measurement along the horizontal
axis is plotted in a schematic way.

FIG. 11. (Color online) Mean, median (left vertical axis), and variance (right vertical axis) of the time series as a function of measurement
positions for the various cases of jets (see Table III). (a) Second case, (b) third case, (c) fourth case, and (d) fifth case.

032913-8



NONLINEAR TIME SERIES ANALYSIS AND CLUSTERING . . . PHYSICAL REVIEW E 89, 032913 (2014)

FIG. 12. (Color online) Hurst exponent of the time series as a function of measurement positions with R/S method and with the detrended
fluctuation analysis (DFA) for the various cases of jets (see Table III). (a) Second case, (b) third case, (c) fourth case, and (d) fifth case.

According to the clustering method applied, separation be-
tween the jet inner and boundary region is based on the distance
between the clusters formed based on the properties of each
measurement position. In order to avoid any misunderstanding
with the measurement distance from the nozzle we refer to this
distance as cluster distance. We decided to make successive
“cuts” at the dendrogram at different levels of cluster distance
(vertical axis). The first “cut” is made at distance �0.6,
where one can clearly see two main partitions. One main
group consist of the time series at distances x = 32.40 cm,
x = 33.40 cm, x = 42.50 cm, x = 43.50 cm, x = 44.50 cm,
x = 45.50 cm, and x = 46.50. These time series correspond
to long measurement distances from the axis and we denote
the corresponding region as the boundary region (BR). The
second main cluster includes the time series that are members
of the same group at smaller distances from the jet axis
and correspond to the inner region of the jet. This first
step is important because we can exclude the time series
corresponding to the edges of the measuring area.

In the inner region a more refined structure exists with
several groups appearing for smaller cluster distance cuts.
More specifically, we observed four groups of time series.

The first consists of the time series at x = 34.40 cm, x =
41.25 cm, and x = 41.50 cm and the second of the time
series at x = 35.25 cm, x = 35.40 cm, x = 40.25 cm, and
x = 40.50 cm. The first and second groups include the time
series from locations far from jet axis and we denote it as far
from jet axis (FJA) region. The third group consists of the time
series at x = 36.25 cm, x = 36.40 cm, and x = 39.25 cm.
The third group includes the time series closer to the jet
region than the first and the second cluster and denotes the
corresponding regions as close to jet axis (CJA) region. Next
we can distinguish one cluster which includes the time series at
x = 37.25 cm, x = 37.40 cm, x = 38.25 cm, and x = 38.40
cm. This group of time series is at the smallest cluster distance
(vertical axis of the graph). For this cluster we can notice
that first the time series at x = 37.25 cm joined to x = 37.40
cm, then joined to x = 38.40 cm, and finally all these time
series joined with the time series at x = 38.25 cm. This result
suggests that the jet axis location is near to the time series at
x = 38.25, which is the first subgroup as the cluster distance
reduces. During the experiment the jet axis was located by
optical measurements close to the midpoint x = 37.70 cm.
This was also supported by the behavior of the average
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(a) (b)

(d)
(c)

FIG. 13. (Color online) Hjorth parameters of the time series mobility and complexity as a function of measurement positions for the various
cases of jets (see Table III). (a) Second case, (b) third case, (c) fourth case, and (d) fifth case.

temperatures observed in these time series. In Fig. 10 the
normalized excess (above ambient) and rms temperature by
the maximum center line time-averaged temperature is plotted
versus r/z, along with an exponential fit to the time-averaged
normalized temperature.

It is of interest to note here that the position of the axis
from the hydrodynamics aspect can be considered where the
maximum normalized temperature or the minimum intensity
of turbulence between the two peak values occurred, i.e., at
x = 37.75 cm. We observe that following our analysis the
jet axis is located close to x = 38.25 cm, but we can notice
that the analysis of the time series allowed us to discriminate
with great detail the time series corresponding to different
turbulence states along the horizontal line of measurement
where the thermistors are located. Also we could detect the
time series corresponding to locations near jet axis.

Summarizing the above discussion, from the dendrogram
in Fig. 9 one can distinguish the flow region in the boundary
region from that in inner region, based on cluster distance.

We consider as BR the time series corresponding to longer
distances. The inner region contains all the time series that
are members of the same group for smaller distances (usually
around 0.6). In this inner region a more refined structure exists
with several groups appearing for smaller distance cuts. It is of
interest that the jet axis region corresponds to a group whose
members stay together up to very small distances.

6. Surrogate data method

In order to reject the hypothesis that the time series originate
from a random process, we applied the surrogate data test.
We generated two sets of 30 surrogate data, one from time
series recorded in the inner region and another from time
series measured at the jet axis, using one of the most common
techniques, the Fourier transformed surrogates. This method
generates time series with the same power spectrum as the
original data set. We assume that the time series originates from
a stochastic process (null hypothesis) and then we attempt to
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(a) (b)

(d)(c)

FIG. 14. (Color online) Mutual information of the time series as a function of measurement positions for the various cases of jets (see
Table III). (a) Second case, (b) third case, (c) fourth case, and (d) fifth case.

reject this hypothesis. According to this method, if the estimate
so of a quantity resulting from analysis of the original data
does not lie within the empirical distribution of s under Ho

formed by the estimates s1,s2, . . . ,sN on the N surrogates,
then Ho is rejected. The quantity D = |so−s̄|

ds
, where s̄ and

ds are the average and standard deviation of s1,s2, . . . ,sN ,
allows us to reject Ho at a confidence level higher than 95%,
if D > 1.96.

In order to validate our estimation of rejection of the
presence of a linear process, we used as discriminating
statistics the first minimum of mutual information, the Hjorth
mobility, the Hjorth complexity, and the Hurst exponent
calculated by R/S analysis and DFA analysis. The resulting
values are summarized in Table II. As we can see, the values
obtained from the original time series (one from the inner
region and one from the jet axis) are distinctly different from
the ones resulting from the surrogates. This is confirmed from

the value of the parameter D > 1.96, which allows us to reject
the null hypothesis with a confidence level higher than 95%.

B. Other cases

In order to establish the methodology described previously
in detail, we have also employed data from different sets
of experiments with different initial conditions as shown in
Table I. However, some major parameters for each case study
can be found in Table III.

We briefly report the main part of the methodology as
follows.

(i) Estimation of simple statistical measures.
(ii) Evaluation of mutual information and cumulative

mutual information function.
(iii) Calculation of Hurst exponent, detrended fluctuation

analysis (DFA), and Hjorth parameters.
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(a) (b)

(c) (d)

FIG. 15. (Color online) Cumulative mutual information of the time series as a function of measurement positions for the various cases of
jets (see Table III). (a) Second case, (b) third case, (c) fourth case, and (d) fifth case.

(iv) Combination of above measures using the clustering
techniques.

In Figs. 11(a)–11(d) the mean, median, and variance of
the time series as a function of measurement positions for the
various cases of jets, (a) second case, (b) third case, (c) fourth
case, and (d) fifth case, are presented. The profiles of the
measures in all cases are very similar. The mean and median
increase while moving from the boundary to the center of
the jet where they take a peak value, while moving to the
other boundary of the jet they decrease. This is expected
since near jet axis the maximum mean temperature occurs.
Regarding the variance we have a central region where the
fluctuations are smaller than that of the surrounding regions.
This is constant with the physical state of the fluid, while
close to the jet axis the variations of the temperature are
smaller.

Figures 12(a)–12(d) show the Hurst exponent of the time
series with R/S method and the detrended fluctuation analysis
(DFA) of the second, third, fourth, and fifth case studies. One
may observe that all these experimental sets have almost the
same behavior.

The profile of the Hjorth parameters of the time series
mobility and complexity for the second, third, fourth, and
fifth case studies is plotted in Figs. 13(a)–13(d). Close to
the boundary the complexity is greater from that in the inner
region. On the contrary, mobility takes the highest value in the
near the center region of the jet.

Figures 14 and 15(a)–15(d) display the mutual information
function and the cumulative information function for each
set of the second, third, fourth, and fifth case studies. As a
common characteristic in all cases we can observe that the time
series take the lowest values of average mutual information
near jet axis (the two far distant measurement positions at
x > 40.00 cm are exempt).

The results for the cumulative mutual information show the
existence of groups of point measurements presenting similar
behavior and which could form specific groups and subgroups.

The dendrograms obtained from a clustering procedure for
the second, third, fourth, and fifth case studies are presented
in Figs. 16(a)–16(d), respectively. Again, as we have already
discussed in the first case study (Fig. 9) described in detail in
Sec. IV A, it turns out that we can separate the flow region in
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(a) (b)

(c) (d)

FIG. 16. (Color online) Dendrogram based on the measures obtained from the time series of (a) the second case, (b) third case, (c) fourth
case, and (d) fifth case studies. The sketch above is a schematic representation of the location of the various regions in the measurement setup
(FJA: far from jet axis region; CJA: close to jet axis region; JA: jet axis region).

a boundary and an inner region based on the cluster distance
(vertical axes of dendrograms). We consider as BR the time
series corresponding to greater distances. The inner region
contains all the time series that are members of the same group
for smaller distances (usually around 0.6). In this inner region
a more refined structure exists with several groups appearing
for smaller distance cuts. It is of interest noting that the jet axis
region corresponds to a group whose members stay together
up to very small distance “cuts.” Also, it is worth mentioning
that the jet axis is related to separations at small dendrogram
distances in the jet axis region (JA), where one can distinguish
the jet axis time series as the time series corresponding at
the highest distance within this group of time series. Thus we
could attribute the jet axis at the measurement position 37.7
cm in Fig. 15(a), which is close to the value 38.0 cm estimated
through a Gaussian fit to the temperatures.

In Table IV we summarize the results of all cases; to
identify the position of the axis jet along the horizontal line,
we attributed the measurement station corresponding to a jet
axis behavior. For comparison we present the estimated axis
location obtained through a Gaussian fit on the measured
average temperature profile. We can see in all cases that our
estimation lays within the estimated values. Summarizing in
all cases the clustering procedure results suggests that it is
capable to discriminate the existence of several fluid regions
which refer to different physical states. Comparing Figs. 8
and 15(a)–15(d) we observe that the results present a similar
behavior. Furthermore, in every case we can distinguish the
measurement station close to the jet axis in agreement with
the conventional hydrodynamics methods.

The interest of the proposed methodology is that positioning
of jet axis is mainly based on the analysis of the time series
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TABLE IV. Results of jet axis location using the clustering
procedure and comparison with estimations from hydromechanics
methods.

Measurement station
attributed to the
jet axis using the Estimated location

Case Shape of clustering procedure of jet axis using
study nozzle (present study) a Gaussian fit

1st Round 38.25 37.75
2nd Round 37.70 38.00
3rd Elliptical 38.00 38.00
4th Elliptical 37.75 38.00
5th Elliptical 39.00 38.20

of a scalar measured, without the need to make a hypothesis
regarding the statistical distribution of the scalar, such as a
Gaussian fit to the temperature profile. The various indicators
(measures) can also be employed separately in order to locate
characteristic regions, but the clustering procedure seems to
provide a broader approach. However, since each indicator
may represent different aspects of the underlying system
dynamics at each location, the combined approach through
the clustering procedure seems to be more effective.

V. CONCLUSIONS

In the present study we have proposed a methodology in
the study turbulent jet flows, to distinguish the region near jet
axis from those near the boundary (ambient water) and the
one in between, based on temperature time series analysis
through nonlinear analysis and nonconventional statistical
methods. Five data sets of temperature time series measured
in experiments with different initial conditions were used to
illustrate the method. In contrast to several previous studies
the main advantage of the method presented is that it does not
require prior specialist hydrodynamic knowledge.

For each time series, first we have performed conventional
descriptive statistical measures and then we have calculated
nonlinear measures such as mutual information and cumulative
mutual information. Also, we have estimated some linear
and nonlinear dynamic detectors such as the Hurst exponent,

detrended fluctuation analysis (DFA), and Hjorth parameters.
We have evaluated their discriminating power using clustering
analysis. Furthermore, we applied the surrogate data method
in the temperature time series. The results allowed us to reject
the null hypothesis that the time series originate from a linear
process, with a confidence level higher than 95%.

The methodology presented here provides results that are
in agreement with those of applied hydrodynamics methods.
It turns out that the various measures can provide information
about various regions of the jet, as well as about the location
of jet axis. The combined use of all the measures along with
a clustering procedure can discriminate far better various
regions of the flow based on a different behavior, and lead
to a methodology for obtaining the location of jet axis. In
fact the results suggest that the above analysis is capable of
extracting information and can be useful for a more clear
discrimination of the time series measured near the jet axis
from those that correspond to regions near the boundaries
with ambient fluid. More specifically, the time series near the
jet axis have considerably different range of values from the
time series near the boundary with ambient fluid. It seems
that the jet axis is related to separations at small distances
in the jet axis region, and generally it only corresponds
to the first one member group that appears first in the JA
region.

We conclude that, using a combination of simple descriptive
statistics measure along with a linear and a nonlinear indicator,
one could discriminate time series that correspond to the region
near the jet axis with a high confidence level. This methodology
seems quite promising for application in complex flows, as
well as in applications where several different state zones
exist in a physical system where one can have access to
spatiotemporal data. Since the various indicators reflect an
aspect of the underlying system dynamics at various regions,
the combined use of them through the clustering procedure
can provide the means to better discriminate these regions,
and to identify specific localized regions such as the jet axis
in the present study. Generally speaking, such methodologies
could also be employed in the case of other spatiotemporal
phenomena in order to localize different regions based on their
dynamical behavior. A characteristic example is the rainfall
structure, the dynamics of which is one of the most interesting
environmental phenomena.
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