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Scattering experiments with microwave billiards at an exceptional point under broken
time-reversal invariance
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Scattering experiments with microwave cavities were performed and the effects of broken time-reversal
invariance (TRI), induced by means of a magnetized ferrite placed inside the cavity, on an isolated doublet of
nearly degenerate resonances were investigated. All elements of the effective Hamiltonian of this two-level system
were extracted. As a function of two experimental parameters, the doublet and the associated eigenvectors could
be tuned to coalesce at a so-called exceptional point (EP). The behavior of the eigenvalues and eigenvectors when
encircling the EP in parameter space was studied, including the geometric amplitude that builds up in the case
of broken TRI. A one-dimensional subspace of parameters was found where the differences of the eigenvalues
are either real or purely imaginary. There, the Hamiltonians were found to be PT invariant under the combined
operation of parity (P) and time reversal (T ) in a generalized sense. The EP is the point of transition between
both regions. There a spontaneous breaking of PT occurs.
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I. INTRODUCTION

The present article provides a detailed review of our
experimental studies of two nearly degenerate eigenmodes in
a dissipative microwave cavity with induced violation of time-
reversal invariance (TRI). Since the underlying Hamiltonian is
not Hermitian [1–9], it may possess exceptional points (EPs),
where two or more of its complex eigenvalues and also the as-
sociated eigenvectors coalesce. An EP has to be distinguished
from a diabolical point (DP), i.e., a degeneracy of a Hermitian
Hamiltonian, where the eigenvectors are linearly independent
[10,11]. The occurrence of EPs [3–5,12] in the spectrum of a
dissipative system has been studied in classical [13–19] and
quantum systems [20–26]. The first experimental evidence for
the existence of EPs was achieved with flat microwave cavities
[27–32] that are analogs of quantum billiards [33,34]. Later
they were observed in coupled electronic circuits [35] and in
chaotic microcavities and atom-cavity quantum composites
[36,37]. The present investigation focuses on TRI and its
violation in scattering systems, a subject which had been
largely investigated in nuclear and particle physics (see, e.g.,
Ref. [38,39]).

The experiments were performed with flat cylindrical
cavities, so-called microwave billiards [33,34,40–42]. “Flat”
means that for the considered range of excitation frequencies
f the height of the resonator is so small that the electric
field strength is perpendicular to the resonator’s plane. Such
resonators are very good test beds for the properties of the
eigenvalues and wave functions of quantum billiards with
corresponding shape and generally for scattering phenomena.
We speak of scattering experiments because resonant states
were excited inside the resonator through an antenna reaching
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into its interior and the response was detected via another
(or the same) antenna. The scattering matrix element [43]
describes the transfer of electromagnetic waves [44–48] from
one antenna through the cavity to the other one. Violation of
TRI was induced by inserting a ferrite into the cavity and
magnetizing it with an external magnetic field [49–53]. Note
that TRI violation caused by a magnetic field is commonly
distinguished from dissipation [54]. In open systems it is
equivalent to violation of the principle of reciprocity of a
scattering process, i.e., the symmetry of the scattering matrix
under the interchange of entrance and exit channels. Such
systems are dissipative systems. This property alone, however,
does not imply violation of TRI because it is compatible with
reciprocity [55–58].

The measurements of the resonance spectra allowed us to
completely specify the effective Hamiltonian of the scattering
system together with the eigenvalues and eigenvectors and
to approach or encircle an EP in its eigenvalue spectrum. In
order to achieve the coalescence of a doublet of eigenmodes
two parameters were varied in the experiments. Only doublets
that were well separated from neighboring resonances were
taken into consideration. Therefore, the effective Hamiltonian
was two-dimensional. The experiments were complete in the
sense that they allowed us to extract all four complex matrix
elements of the effective Hamiltonian as a function of the
excitation frequency and of the two parameters needed to tune
the system to an EP. This allowed us to quantify the size of
TRI violation and to measure to a high precision the geometric
phase [10,11] and the geometric amplitude [1,2,59–61] that the
eigenvectors gather when encircling an EP.

Furthermore, we observed configurations withPT symme-
try, including a PT phase transition. It was demonstrated in
Ref. [62] that a non-Hermitian Hamiltonian H has real eigen-
values provided it respects PT symmetry, i.e., [PT ,H] = 0,
and has eigenvectors that are also PT symmetric. The PT
symmetry of the eigenvectors may be spontaneously broken

1539-3755/2014/89(3)/032909(17) 032909-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.032909


S. BITTNER et al. PHYSICAL REVIEW E 89, 032909 (2014)

by varying an external parameter. Then they are no longer
eigenvectors of PT , although H still commutes with PT
[62,63]. As a result, the eigenvalues of H are no longer
real but rather become complex conjugate pairs. This phase
transition occurs at an EP. It was studied experimentally
and theoretically in superconducting wires [64,65], optical
waveguides [66–73], NMR [74], lasers [75–78], electronic
circuits [79], photonic lattices [80–82], and atomic beams
[83,84]. Further theoretical studies of PT symmetry based
effects concern spectral singularities [85] as well as Bloch
oscillations in PT -symmetric lattice structures [86]. The
scattering matrix formalism for PT -symmetric systems was
analyzed recently [87,88].

In the present article we report on our experimental work
on EPs in the context of TRI that has been the basis of three
Letters [53,89,90]. We give more details on the experimental
setups as well as on the procedure used to extract the effective
Hamiltonian from the experimental resonance spectra. In order
to straighten out these and other shortcomings we provide
a detailed description of the unified analysis, that is, the
scattering formalism and the derivation of the features of the
associated effective Hamiltonian at and in the vicinity of an EP.
Furthermore we include still unpublished experimental results
that corroborate these analytical ones. Experiments with two
different setups were performed. The first one, discussed in
Secs. II to IV, deals with general properties (experimental and
formal) of scattering systems with broken TRI. The scattering
formalism is then applied to the second setup that features an
EP. It is used in Secs. V through IX.

Section II details the first experimental setup. The scattering
formalism used throughout this article is introduced in Sec. III.
It is formally identical to the one developed for nuclear
reactions. The scattering matrix essentially is the resolvent
of the effective Hamiltonian of the system of states within the
cavity. This Hamiltonian is non-Hermitian since it comprises
not only the interactions between the bound states but also
those with the exterior, i.e., the open decay channels. The
scattering process is reciprocal if the Hamiltonian is symmetric
under transposition. This is the case for a vanishing external
magnetic field. We extracted the full effective Hamiltonian by
exploring all elements of the scattering matrix in a subspace
of antenna channels. In the present cases the dimension
of the effective Hamiltonian equaled one or two, because
we investigated an isolated state or an isolated doublet of
nearly degenerate states. A theoretical description of the
measurements of Sec. II is given in Sec. IV. It provides a
direct link between the extracted effective Hamiltonians and
the ferromagnetic resonance akin to the ferrite.

Section V describes the measurements with the second
setup. Two experimental parameters were introduced that
could be tuned to an EP. They were restricted in our exper-
iments to the neighborhood of an EP. The properties of EPs
[11,91–93] were well established by experiment in systems
with TRI [27–30,35–37,94]. We review our experimental
results on their properties in systems with TRI violation
[89,90].

Section VI is concerned with the properties of the eigen-
values and eigenvectors of the effective Hamiltonian at and
around the EP [30,89]. Section VII focuses on the line shape
of the resonance emerging from the coalescence of the doublet

of resonances at the EP. In Sec. VIII we treat the transport of
the Hamiltonian along a path encircling the EP [1,2,31,89].
In both cases the results differed from those obtained in the
framework of reciprocal scattering.

If there is an EP then there is a one-dimensional subspace
of experimental parameters where both eigenvalues—after
a common shift—are either real or purely imaginary. The
transition takes place exactly at the EP. As outlined in Sec. VIII
we identified a region in the parameter plane where the
eigenvalues exhibit this property and found the corresponding
set of Hamiltonians PT invariant in a generalized sense.

II. EXPERIMENTAL SETUP I

The experiments were performed with flat cylindrical
microwave resonators made of copper. They were constructed
from three 5-mm-thick copper plates that were squeezed on
top of each other with screws. The middle plate had a hole
with the shape of the resonator. Violation of TRI was induced
by a magnetized ferrite placed inside the resonators. In a
first experiment—discussed in Sec. IV—the properties of the
ferrite were studied using a resonator with the shape of a
circle of 250 mm in diameter. It is depicted in Figs. 1 and 2.
The circular copper disk shown in both figures was inserted
into the resonator, thus transforming the circular billiard into
an annular one, to realize isolated resonances, i.e., singlets.
A vector network anlyzer (VNA) of the type HP 8510C
coupled microwave power into and out of the system via
two antennas, 1 and 2, that were attached to the top plate.
These are metal pins of 0.5 mm in diameter reaching about
2.5 mm into the resonator. The maximal excitation frequency
of the microwaves was chosen such that the electric field
strength was perpendicular to the top and the bottom plate of
the resonator. Then the vectorial Helmholtz equation reduces
to a scalar one which is mathematically equivalent to the
two-dimensional Schrödinger equation of the corresponding
quantum billiard [33,34]. The VNA determined the relative
phase and amplitude of the input and output signals. This yields
the complex elements Sba , where a and b take the values 1 or 2,
of the scattering matrix describing the scattering process from
antenna a to antenna b. One of the antennas 1,2 was used as
entrance, the other one as exit channel [44–48] in transmission
measurements, and one of them as entrance and exit channel

1 2

FIG. 1. Scheme of the experimental setup (not to scale) to study
the properties of the ferrite. The antennas 1 and 2 are connected to the
vector network analyzer. The inner circle is a copper disk introduced
into the resonator to realize singlet resonances.
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FIG. 2. (Color online) Photograph of the microwave billiard. The
top plate has been removed. In the measurements it was screwed
tightly to the middle plate, which had a hole with the shape of the
resonator, and the bottom plate through the displayed holes. The
ferrite is marked by an arrow. Rings of solder are visible along the
boundary of the resonator and the inner disk. They ensured good
electrical contact between the top and bottom plates of the resonator.

in reflection measurements. Effects introduced by the coaxial
connectors were largely eliminated by calibrating the VNA
via standards with well-known transmission and reflection
properties.

A scattering process a → b for a �= b is called reciprocal
if Sba = Sab. In the experiments presented in this paper
reciprocity was broken by a magnetized ferrite inside the cavity
[49–53]. The ferrite is a calcium vanadium garnet with the
shape of a cylinder, 5 mm high and 4 mm in diameter [95].
The material had a resonance line of width �H = 17.5 Oe;
the saturation magnetization was 4πMS = 1859 Oe, where
1 Oe = 1000/(4π ) A/m. Two NdFeB magnets were placed
above and below the billiard, perpendicular to its plane at the
position of the ferrite; see Fig. 3. They had cylindrical shapes,
20 mm in diameter and 10 mm in height, and produced a
magnetic field B parallel to the ferrite’s axis. For the variation
of B the distance between the magnets was adjusted by a screw
thread mechanism. Field strengths of up to 120 mT (with an
uncertainty below 0.5 mT) were used.

Due to the external magnetic field the ferrite acquires a
macroscopic magnetization M that precesses with the Larmor
frequency around B. Furthermore, the rf magnetic field inside
the cavity (at the place of the ferrite) is elliptically polarized
and therefore can be decomposed into two components of
opposite circular polarization. The component having the same
rotational direction as the electron spins is partly absorbed by
the ferrite, whereas the other one remains unaffected. Thus
the magnetized ferrite breaks reciprocity because the electron
spins in the ferrite couple differently to the two polarizations.
The absorption is strongest at the ferromagnetic resonance
where the frequency of the Larmor precession matches the
rf frequency of the resonator. Reciprocity is experimentally
tested by interchanging input and output at the antennas. This

FIG. 3. Sectional drawing of the setup used to magnetize the
ferrite. The ferrite was placed inside the resonator and above and
below it were NdFeB magnets outside the cavity. Each one was held
in place by a screw thread mechanism allowing us to vary the distance
between the magnets and thus the field strength at the ferrite.

is equivalent to the change of the direction of time (and differs
from the method of Ref. [96]). Thus reciprocity is equivalent
to TRI and lack of reciprocity to violation of TRI. The latter
case has been studied in numerous works [49–53,97–100].

To test the precision of the experiments we first looked at
isolated resonances. They were obtained by inserting a copper
disk with a diameter of 187.5 mm and a height of 5 mm
into the circular resonator—as is illustrated in Figs. 1 and
2. The classical dynamics of the resulting annular billiard is
fully chaotic [101,102]. Therefore a close encounter of two
states was improbable and the measured spectrum consisted
of well-isolated resonances. Their widths were ≈14 MHz and
their spacings ≈300 MHz. We have studied eight singlets. For
the one at f = 2.84 GHz we show in Fig. 4 both S12 and
S21. They have been taken with the ferrite magnetized by a
static magnetic field of B = 119.3 mT. The complex functions
S12(f ) and S21(f ) agree to 0.5% in amplitude and phase for a
variety of field strengths B between 28.5 and 119.3 mT. Thus
an isolated resonance exhibits reciprocal scattering even for a
nonvanishing magnetization of the ferrite; see Sec. IV A.

12
12

1 2

FIG. 4. The singlet at 2.84 GHz in the annular billiard. The
complex functions S12(f ) (open circles) and S21(f ) (solid circles)
have been measured at B = 119.3 mT. For clarity only every 14th
data point is shown. The two complex functions coincide up to a
deviation due to errors of 5 × 10−3 for the real and imaginary parts.
Thus reciprocity holds within this error.
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22
11

21
12

1 22.696 GHz

FIG. 5. The doublet at 2.696 GHz in the circular billard with the
magnetic field B = 36.0 mT. The upper panel shows |S11| (solid line)
and |S22| (dashed line), the lower panel |S12| (solid line) and |S21|
(dashed line). Violation of reciprocity is clearly visible.

Due to its rotational symmetry the circular billiard of Fig. 1
without the inner copper disk has numerous degeneracies. The
ferrite lifts the symmetry and thus the resonances are split into
doublets of close-lying ones. We chose four doublets that are
sufficiently isolated from neighboring ones at 2.43,2.67,2.89,

and 3.2 GHz. For the second one, the violation of reciprocity
is illustrated in Fig. 5. Similar results were obtained at the first
and third doublets but not at the fourth one, where reciprocity
holds as in the case of a singlet. In that case, a simulation of
the field patterns performed with CST STUDIO SUITE [103]
in the resonator revealed that for one of the two states the
magnetic field vanished at the position of the ferrite; see the

FIG. 6. Field patterns of the fourth doublet. The small triangles
symbolize strength and direction of the magnetic fields. The gray
shades represent the electric field strength. The darker the color the
stronger is the electric field. The upper modes are found at 3.18 GHz,
the lower ones at 3.20 GHz. The arrows point at the ferrite. In part
A of the figure violation of reciprocity is not observed because in the
upper mode the magnetic field vanishes at its position. In part B the
ferrite has been shifted 20 mm towards the center of the circle, i.e.,
to a position where the field is nonzero in both modes.

upper mode in part A of Fig. 6. Moving the ferrite to a place
where it interacted with both states (see the lower and upper
modes in part B of Fig. 6) resulted in a violation of reciprocity.
The reasons for these observations are given in Sec. IV B.

III. ASPECTS OF SCATTERING THEORY

In this section, aspects of scattering theory and the connec-
tion between reciprocity and TRI are discussed in more detail.
For the analysis of the experimental data we used a formalism
of scattering theory which had originally been developed for
nuclear reactions [43,104] and later had been successfully
applied to the situation at hand [44–48,87,88]. As in Refs.
[53,89,90,99,100,105,106], we used the ansatz

Sba(f ) = δba − 2πi

2∑
μ,ν=1

W ∗
μb

(
[f 1 − H]−1

)
μν

Wνa (1)

from Sec. 4.2 of Ref. [43] together with Ref. [104] for the
description of the resonance spectra |Sba(f )|. The quantity
f is the excitation frequency of the ingoing wave, δba is
the Kronecker symbol, 1 is the unit matrix, and H is the
effective Hamiltonian of the resonator, and the matrix W with
the elements Wμa,Wμb couples the resonator states μ to the
open channels.

The dimension of the scattering matrix element Sba is given
by the number of open channels. Explicitly, the resonators
used in the experiments had two open channels, the antennas
1 and 2. Implicitly, they had a number of unspecified [100]
open channels where only decay took place due to ohmic
absorption in the walls of the ferrite and the cavity. Generally,
any absorption, often called dissipation, is ascribed to open
channels [99,100,107]. We measured Sba for the two explicit
channels, i.e., for a as well as b equal to 1 or 2. Due to
the presence of the implicit channels, this two-dimensional S

matrix is subunitary.
The effective Hamiltonian

H = H + F (2)

takes care of both the Hermitian Hamiltonian H of the closed
resonator (i.e., the microwave billiard) and its coupling F to
the open channels. Since we were interested in isolated and
pairs of closely lying resonances that were well apart from
neighboring ones, it was either one- or two-dimensional. The
elements of F are given by the integral

Fμν(f ) =
∑

j=1,2,i

∫ ∞

0
df ′ Wμj (f ′)W ∗

νj (f ′)

f + − f ′ , (3)

where f + = f + iε is the frequency f shifted infinitesimally
into the upper complex plane. The sum on the right-hand side
of this equation runs over the antenna channels 1 and 2 as well
as the implicit open channels i.

Every matrix with complex elements can uniquely be
written as the sum of two Hermitian matrices H int and
H ext—one of them being multiplied by the imaginary unit
i such that

H = H int + iH ext . (4)
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Here

H int
μν = Hμν +

∑
j=1,2,i

P
∫ ∞

0
df ′ Wμj (f ′)W ∗

νj (f ′)

f − f ′ ,

(5)
H ext

μν = −π
∑

j=1,2,i

Wμj (f )W ∗
νj (f ) ,

where P
∫

df ′ is a principle value integral which shifts and
mixes the states of the closed resonator. The matrix H int

represents the dynamics of the internal states μ of the resonator.
The term iH ext in Eq. (4) describes the decay of the states μ

into the open channels. Due to its presence the resonances
acquire a linewidth and the effective Hamiltonian H is a
non-Hermitian operator. This allows for the existence of an
EP, as discussed below.

In the experiments on TRI violation the reciprocity, i.e., the
symmetry

Sba = Sab (6)

of the S matrix was tested. This was possible since both
amplitude and phase of the S-matrix elements were accessible.
In nuclear physics [108–112] only the weaker principle of
detailed balance, which is |Sba|2 = |Sab|2, could be tested.
Reciprocity occurs if and only if both Hermitian matrices,
H int and H ext, are symmetric and, hence, real. Thus it is
equivalent to the invariance under time reversal [55–58,113]
of both the interactions of the states μ with each other and
their coupling W to the open channels. As outlined in Sec. II,
TRI breaking was induced by a ferrite that was magnetized
by an external magnetic field B. This is to be distinguished
from dissipation [54]. The reason is that for B = 0 dissipative
systems are described by a complex symmetric matrix H =
HT so reciprocity holds, i.e., S = ST .

Within the present experiments the coupling of the antennas
to the resonator modes was time-reversal invariant. Therefore
the matrix elements Wμj were real for j = 1,2. The implicit
channels j = i, however, are essentially those of absorption
within the ferrite. Thus when the ferrite is magnetized the
corresponding elements Wμi cannot be chosen to be real in a
basis where the coupling to the antennas is real, and then the
matrix F is not symmetric under transposition.

We focused on the properties of the eigenvalues and eigen-
vectors of the effective Hamiltonian H. Its matrix elements as
well as Wμj were determined by fitting the scattering matrix
elements of Eq. (1) to the measured ones. We considered
pairs of closely lying resonances that are well isolated from
neighboring ones. Then there are four real matrix elements Wμj

coupling the states μ to the antennas j = 1,2 and the 2 × 2
matrix H has four complex elements. Because the scattering
matrix of Eq. (1) is invariant under orthogonal transformations
of the basis of H the latter has to be fixed. This reduces the
number of real parameters of H to seven. They are determined
together with the four elements Wμj by measuring a large set of
the four complex scattering matrix elements in small steps of
f around the resonance frequencies and fitting the expression
Eq. (1) to this set. Here we use the property that the parameters
do not depend on f in the considered frequency range.

OnceH has been extracted it is most conveniently discussed
in terms of an expansion with respect to the Pauli matrices

σ1 =
(

0 1

1 0

)
; σ2 =

(
0 −i

i 0

)
; σ3 =

(
1 0

0 −1

)
.

(7)

We write the effective Hamiltonian in the form

H =
(

e1 HS
12 − iHA

12

HS
12 + iHA

12 e2

)
. (8)

Here the notation of Refs. [89,90] is used. The symbols HS
12

and HA
12 denote the symmetric and antisymmetric parts of H,

respectively. They are complex, as are the diagonal elements
e1,e2. A nonvanishing matrix element HA

12 �= 0 is equivalent
to TRI violation [114], hence, in our case, to the occurrence
of complex Wμi. One can write

H = e1 + e2

2
1 + �h · �σ (9)

with the vector �h defined as

�h =

⎛
⎜⎝

HS
12

HA
12

(e1 − e2)/2

⎞
⎟⎠ . (10)

The effective Hamiltonian H is Hermitian if the entries of �h
as well as e1 + e2 are real.

The entries of �h are given by

2HS
12 = Tr (σ1H),

2HA
12 = Tr (σ2H), (11)

e1 − e2 = Tr (σ3H).

They allow us to write down the invariants of H: The value
of HA

12 is invariant under orthogonal transformations of H.
This follows from the fact that σ2 generates the orthogonal
transformations

O(φ) =
(

cos φ − sin φ

sin φ cos φ

)
= exp(−iφσ2). (12)

Therefore O(φ) commutes with σ2 and thus Tr (σ2H) =
Tr (σ2O

THO). The quantity �h2 = (HS
12)2 + (HA

12)2 + ( e1−e2
2 )2

is invariant under all unitary transformations of H as are the
eigenvalues

E1,2 =
(

e1 + e2

2
±

√
�h2

)
. (13)

IV. EFFECT OF THE FERRITE

To investigate the effect of the magnetized ferrite we
measured the four matrix elements Sab(f ) at about 500 values
of f for 15 settings of the magnetic field B. From these data
the complex elements of the matrix H and the matrix elements
Wμ1,Wμ2 were determined as functions of B as described in
the last section. We consider two cases, singlets and doublets
of closely lying resonances.
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A. Test of TRI at singlets

For a singlet the effective Hamiltonian is one-dimensional.
Let its only element be H11. With Eq. (1) we obtain the off-
diagonal element of the S matrix,

S12 = −2πiW ∗
11(f − H11)−1W12 . (14)

As mentioned above the couplings of the antennas to the singlet
state, W11 and W12, were real. Consequently, S12 = S21, i.e.,
reciprocity, holds—independently of the value of H11 and
whether or not the ferrite is magnetized. This was confirmed
experimentally using the microwave billiard shown in Figs. 1
and 2. In Fig. 4 the matrix elements S12 and S21 are compared to
each other. Although B �= 0 they agree up to the experimental
error of 5 × 10−3. Thus singlets measured in the microwave
experiments presented in this paper may not be used for tests
on TRI. Note, however, that in Refs. [112,115] isolated nuclear
resonance states were shown to provide this possibility.

B. TRI violation at doublets

Figure 5 demonstrates that doublets of states show violation
of TRI when the ferrite is magnetized. Furthermore, we have
seen that there are 11 real fit parameters in the scattering matrix
for doublets. The coupling to the antennas, Wμ1 and Wμ2, was
expected to be independent of B. In practice, we found a
marginal dependence on B due to a slight displacement of
the electric field pattern with its value. The other parameters
depend on B but not on f and were obtained by fitting Eq. (1)
simultaneously to the four complex elements of S = S(f ) at
500 values of f . Figure 7 demonstrates that the agreement
between the data and the fits is very good. The elements of
H vary significantly with B. As an example, modulus and
argument of HA

12 are plotted in Fig. 8 for the doublet at
2.914 GHz as functions of B. The maximum in |HA

12(B)|
and the monotonic decrease of Arg(HA

12) by the amount of π

are the manifestation of the ferromagnetic resonance within
the ferrite. According to Sec. II the rf magnetic field lines
exhibit an elliptical polarization which can be split into two
components of opposite circular polarization. Furthermore,
the ferrite couples to only one of them. This has been worked

2.696 GHz

12
21

FIG. 7. Comparison of the fitted matrix elements |S12| (solid line)
and |S21| (dashed line) to the experimental data points (circles) also
shown in the lower panel of Fig. 5. Fitting of expression (1) to the
data reproduces the data points within errors of ≈5 × 10−4 for both
real and imaginary parts. For clarity only every 10th experimental
point is shown.

2.914 GHz

rd

f

FIG. 8. The antisymmetric part HA
12 of H. The data have been

taken at the third doublet of Table I at a mean frequency of f̄ =
2.914 GHz in the circular billiard. The maximum in |HA

12| and the
decrease of Arg(HA

12) by the amount of π display the ferromagnetic
resonance. The error bars indicate the variance of the results obtained
in five independent experiments [116].

out formally in Ref. [53] and led to the analytic expression
[116–118]

HA
12(B) = 1

4
λBTrelax

f 2
M

f0(B) − f − i/Trelax
(15)

for the T -breaking matrix element. The factor λB stands for
the coupling between the electron spins in the ferrite and the
rf magnetic field, which, according to Fig. 6, depends on
the position of the ferrite within the field. We assumed that
the matrix element HA

12(B), and generally the matrix H, are
analytic functions of their parameters, hence, to leading order,
it should be linear in B because HA

12(B) vanishes with B → 0.
Equation (15) depends on two parameters, f and λ, that

must be determined by a fit to the experimental function
HA

12(B). The parameter f gives the center position of the
doublet. For the case displayed in Fig. 8 the parameters are
f = 2.914 ± 0.003 GHz and λ = 37.3 ± 1.6 Hz/mT.

At the ferromagnetic resonance, i.e., at the value of B where
the real part of the denominator in Eq. (15) vanishes, HA

12 is
purely imaginary; see Fig. 8. According to Eqs. (4) and (8) it
is given as the sum of the antisymmetric parts of the Hermitian
matrices H int and H ext,

2HA
12 = i(H12 − H21) = i

(
H int

12 − H int
21

) − H ext
12 + H ext

21 .

They are purely imaginary at the ferromagnetic resonance.
Thus, there HA

12 is given by 2HA
12 = −H ext

12 + H ext
21 , i.e., H int

does not contribute. Far outside the ferromagnetic resonance
the reverse was found, HA

12 is real, and thus TRI violation
is determined by H int. Our results show that the absorptive
properties of the ferrite may become visible in both the internal
and the external parts of H, in agreement with Eq. (5). This
proves that the principle value integral indeed is important for
the description of a scattering experiment.

Summarizing this section, the technique of inducing TRI
violation via a magnetized ferrite has been reviewed and
the scattering formalism developed and confirmed by the
experiments. We found that an isolated resonance does not
reveal TRI violation, whereas a doublet of resonances does.

032909-6



SCATTERING EXPERIMENTS WITH MICROWAVE . . . PHYSICAL REVIEW E 89, 032909 (2014)

V. THE EXPERIMENTAL SETUP II

In the sequel we consider the occurrence of an EP. At
such a point the eigenvalues of H agree and the eigenvectors
become linearly dependent [1–5,12]. For these experiments
a new resonator was constructed. It again was circular and
250 mm in diameter and with a height of 5 mm as in Sec. II. A
10-mm-thick copper bar, shifted by 1.8 mm to the left of the
diameter paralleling it, divided it into approximate semicircles
connected through an 80-mm-long opening [90]; see Fig. 9.
This avoids degeneracies of the doublets of states. An EP
was approached or accessed by varying two experimental
parameters, s and δ. One parameter was related to the coupling
between the electric field modes in each part. It was controlled
by a copper gate with a tilted bottom, which was inserted
through a slit in the top of the resonator and moved up and
down. The bottom plate had a groove allowing us to close the
gate completely. The vertical position s of the gate was one of
the experimental parameters. The value of s = 0 corresponded
to the closed gate. The gate was completely open, i.e., the
coupling was maximal for s = 9 mm. The second parameter
has been the position δ of the center of a semicircular piece of
Teflon in the left part of the cavity with respect to the center of
the resonator. Its radius was 30 mm and it was 5 mm high. The
positions of the gate and the Teflon semicircle were controlled
by microstepper motors that allowed us to scan the parameter
plane in steps of �s = �δ = 0.01 mm.

A VNA of the type Agilent PNA 5230A coupled mi-
crowaves into and out of the resonator. As mentioned in
Sec. II, the VNA was calibrated by means of standards. This

1 2

s 15
m

m

top plate

bottom plate

gate

80 mm

12
5 mm

FIG. 9. The upper part sketches the resonator used in
Secs. VI–IX. Two parameters can be set from outside, the opening
s between the two approximate semicircles and the position δ of the
Teflon piece with respect to the center of the cavity. As in Sec. II
there are two antennas 1 and 2 reaching into the cavity. The ferrite is
denoted by F. The parameter s actually denotes the vertical position
of the gate as shown in the lower part of the figure. The broken line
indicates the groove in the bottom plate.

procedure left us with small systematic errors albeit larger
than the VNA noise. These were eliminated with correction
factors Kba(f ) determined together with the parameters of the
scattering matrix of Sec. III via fits to the measured resonance
spectra.

Let Sraw
ba (f ) be the scattering matrix elements obtained with

the calibrated VNA and Sba(f ) the “true” ones described by
the theory presented in Sec. III. Then the factors Kba(f ) are
defined by the relation

Sraw
ba (f ) = Kba(f ) Sba(f ). (16)

It is possible to obtain the parameters of both S(f ) and K(f )
from a fit to Sraw since S(f ) depends on f in a way that
characteristically differs from that of K(f ). Indeed, K(f )
accounts for the slow oscillations superimposed with the
comparatively rapidly varying resonance structure described
by S(f ). For the correction factors the ansatz

Kaa = |Kaa| exp(2πikaaf + i
aa), a = 1,2 ;
(17)

K12 = K21 =
√

|K11| |K22| exp(2πik12f + i
12)

was used. The K factors contain frequency-dependent and
frequency-independent phases. There are 8 real parameters
(|K11|,|K22|,k11,k22,k12,
11,
22,
12) in addition to the 11
real parameters of S listed in Sec. III. Each of the four functions
Sraw

ba (f ) (where a as well as b may be equal to 1 or 2) has
been measured with a resolution of �f = 10 kHz over a range
of 10 MHz. Hence, there were about 4000 complex data to
determine the above 19 real parameters.

As discussed in Sec. III the scattering matrix is invariant
under orthogonal transformations of the states μ. However, the
eigenvectors of the effective Hamiltonian H, to be discussed in
the sequel, depend on the basis. Thus we needed a convention
for the choice of the basis. If H is not triangular then there is
an orthogonal transformation O(φ), see Eq. (12), such that the
ratio of the off-diagonal elements of

H′ = O(φ)HOT (φ) (18)

equals the phase factor

exp(2iτ ) = H ′S
12 + iH ′A

12

H ′S
12 − iH ′A

12

, (19)

where τ is real. Here the notation of Eq. (8) is used [119]. For
systems with TRI H ′A

12 = 0 and τ = 0. Let us consider the case
of TRI violation, i.e., H ′A

12 �= 0. For real τ the transformation
must lead to H ′S

12/H
′A
12 ∈ R. The transformation Eq. (18) yields

the symmetric part of H′ as

H ′S
12 = e2 − e1

2
sin(2φ) + HS

12 cos(2φ) . (20)

For the antisymmetric part of H′ we obtain H ′A
12 = HA

12 as
expected from Eq. (12). The imaginary part of the ratio
H ′S

12/H
A
12 vanishes when

Im
e2 − e1

2HA
12

sin(2φ) + Im
HS

12

HA
12

cos(2φ) = 0. (21)
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Hence, the orthogonal transformation Eq. (12) with the rotation
angle

φ = 1

2
arctan

[
Im

(
HS

12/H
A
12

)
Im

(
(e1 − e2)

/(
2HA

12

))
]

(22)

leads to a real τ [90,120]. Henceforth, we omit the prime in
the Hamiltonian H′ obtained with the transformation Eq. (18)
from the experimentally determined effective Hamiltonian H.

A triangular H did not occur in the present experiments.
Thus we express the lack of reciprocity via the phase τ

in analogy to Hermitian Hamiltonians although H is not
Hermitian. Characterization of TRI breaking by a phase is
a common practice in physics, e.g., in nuclear reactions, as in
Sec. 4 of Ref. [112], and in weak as well as electromagnetic
decay [38].

VI. THE EIGENVALUES AND EIGENVECTORS OF H
AT AN EP

According to Eq. (13) the effective Hamiltonian of Eq. (8)
has the eigenvalues

E1,2 =
(

e1 + e2

2
±

√
�h2

)
.

where �h is defined in Eq. (10). Using the fact that the
quantities HS

12 ± iHA
12 do not vanish in the relevant space of

the parameters the associated left- and right-hand eigenvectors
can be written as

�l1,2 =
⎛
⎝ (e1−e2)/2±

√
�h2

HS
12−iHA

12

1

⎞
⎠ ; �r1,2 =

⎛
⎝ (e1−e2)/2±

√
�h2

HS
12+iHA

12

1

⎞
⎠ . (23)

The eigenvectors form a biorthogonal system, i.e.,

�l1 · �r2 = 0 = �l2 · �r1; (24)

however, they are not normalized. An EP occurs when

�h2 = (
HS

12

)2 + (
HA

12

)2 +
(

e1 − e2

2

)2

= 0. (25)

Since the quantity (HS
12)2 + (HA

12)2 differs from zero we have
(e1 − e2) �= 0 at the EP.

In order to identify an EP the effective Hamiltonian H was
varied by changing the two parameters s and δ introduced in
Sec. V. In this way it was possible to reach �h2 = 0 at a point
(sEP,δEP) in the parameter space. Generally, at this point (in
the space of experimental parameters) two different physical
situations are possible: (i) If all three components of �h vanish,
one speaks of a diabolical point (DP), following Berry [10].
This is not the case here. (ii) If at least two of the components
of �h differ from zero at �h2 = 0, one speaks of an EP, following
Kato [12]. Accordingly, an EP can arise only in dissipative
systems [3–8,20–31,35–37,91–94,121] since at least one of
the components of �h must be complex.

At the EP the system of eigenvectors cannot be normalized
because the inner products

�l1 · �r1 ∝
(

�h2 + e1 − e2

2

√
�h2

)
,

(26)

�l2 · �r2 ∝
(

�h2 − e1 − e2

2

√
�h2

)
,

vanish there and the two right as well as the two left
eigenvectors given in Eq. (23) coincide. One also says that
at an EP two or more eigenvalues and also the associated
eigenvectors “coalesce,”

�lEP ∝
(

1
2

e1−e2

HS
12−iHA

12

1

)
; �rEP ∝

(
1
2

e1−e2

HS
12+iHA

12

1

)
. (27)

Using Eq. (25), the first component of �rEP can be brought to
the form

1

2

e1 − e2

HS
12 + iHA

12

= i

√(
HS

12

)2 + (
HA

12

)2

HS
12 + iHA

12

= i

[
HS

12 − iHA
12

HS
12 + iHA

12

]1/2

= ie−iτ , (28)

and the first component of �lEP equals ieiτ . So at the EP we
obtain the eigenvectors

�lEP ∝
(

ieiτ

1

)
, �rEP ∝

(
ie−iτ

1

)
. (29)

The ratio of the components of the left, respectively, the
right eigenvector is a phase factor at the EP. For the
right eigenvector the phase equals �EP = π/2 − τ (compare
Refs. [6–8,119]), and for the left one it is φEP = π/2 + τ .
When reciprocity holds, i.e., HA

12 = 0, the phase �EP is π/2;
see Refs. [30,121].

These analytical results were borne out by our experiments.
The EP was located by determining for each setting of
(s,δ) the effective Hamiltonian from the measured scattering
matrix. The real and imaginary parts of the eigenvalues
Ej = fj − ij/2 of H are shown in Fig. 10 as functions
of δ for s = sEP = 1.66 mm and B = 53 mT. The crossing
occurs at δEP = 41.25 mm. The eigenvalue at this EP is
EEP = (2.728 − i0.00104) GHz.

We also determined the eigenvectors of H in a neighbor-
hood of (sEP,δEP) and checked whether they coalesce there.
In Fig. 11 modulus and argument of the ratio νj of the
components of the j -th left eigenvector are plotted for j = 1,2.
At the point (sEP,δEP) the moduli equal |ν1| = |ν2| = 1 and
the arguments equal �1 = �2 = π/2 + τ as expected from
Eq. (29) for �lEP. Note that by drawing the lines connecting
the data points as shown in Figs. 10 and 11 we have
anticipated the evidence provided below that the eigenvalues
and eigenvectors indeed cross, i.e., that there is no avoided
crossing at (sEP,δEP). In Sec. VIII we show the differences of
the real and the imaginary parts of the eigenvalues in the full
parameter plane around the crossing point and results for the
geometric phases gathered by the eigenvectors on encircling
it. These clearly demonstrate that there is an EP in the region
(sEP ± 0.01mm,δEP ± 0.01mm).
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1

2 1

2

FIG. 10. The eigenvalues fj − ij /2 of H plotted as functions
of δ at s = sEP = 1.66 mm and B = 53 mT. The eigenvalues cross
at δEP = 41.25 mm. There fEP = 2.728 GHz and EP = 2.08 MHz.

Once the EP has been located, the phase �EP = τ + π/2 in
�lEP, and thus τ in Eq. (29), can be obtained. Figure 12 shows
the experimental points with error bars as a function of B.
The error bars result from the experimental accuracy in the
determination of the position of the EP in the parameter plane.
At B = 0 we found �EP = π/2, as predicted by Eq. (28) for
HA

12 = 0. With increasing B the phase �, hence, also τ , goes
through an extreme value. We ascribe this to the ferromagnetic
resonance. In Eq. (15) the TRI-violating matrix element HA

12
has been expressed in terms of the ferromagnetic resonance.
Provided that τ is dominated by that resonance one expects
to observe it in the phase factor �EP. This is confirmed by
the solid line in Fig. 12 which shows the result obtained from
Eq. (15). Due to the interference HS

12 + iHA
12 between HS

12
and HA

12 implied by Eq. (28) the maximum of �EP = �EP(B)
is shifted with respect to the center of the ferromagnetic
resonance given by Eq. (15).

FIG. 11. Modulus and phase of the ratio νj = |νj | exp(i�j ) of
the components of the left eigenvectors �lj , where j = 1,2, at s =
sEP = 1.66 mm and B = 53 mT. The eigenvectors coalesce at δEP =
41.25 mm. There the TRI-breaking phase τ can be read off as the
deviation of �1,2 from π/2. The present figure relies on the same data
as Fig. 10.
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 0.7

 0  20  40  60  80

Φ
EP

/π

Magnetic field B (mT)

FIG. 12. The relative phase (dots with error bars) of the com-
ponents of the left eigenvector at the EP given as a function of the
magnetic field B that activates the ferrite. For B = 0 the phase equals
π/2. Thus an earlier result [30] is recovered. The model (15) for
the TRI-breaking coefficient HA

12 yields the solid line, see text. The
shaded vertical bar indicates the range of B where the center of the
ferromagnetic resonance is expected.

VII. THE LINE SHAPE AT AN EP

In this section we demonstrate that the scattering matrix
does not exhibit a simple pole at the EP although there is only
a single eigenstate at this point. Using Eq. (25) the eigenvalue
of H, given in Eq. (8), equals

EEP = e1 + e2

2
. (30)

With the notation

R =
√(

HS
12

)2 + (
HA

12

)2
(31)

we obtain for the resolvent

(f 1 − H)−1

= 1

(f − EEP)2

(
f − EEP + iR HS

12 − iHA
12

HS
12 + iHA

12 f − EEP − iR

)
. (32)

According to Eq. (1) the nondiagonal element Sba of the S

matrix is given by

Sba = −2πi(W1b,W2b)(f 1 − H)−1

(
W1a

W2a

)
. (33)

Here we use the fact that the couplings Wja,Wjb of the
antennas to the resonator modes do not break TRI and therefore
are real. Thus we obtain

Sba(f ) = − 2πi

(f − EEP)2

[
(f − EEP)(W1bW1a + W2bW2a)

+HS
12(W1bW2a + W2bW1a)

+ iR(W1bW1a − W2bW2a)

+ iHA
12(W2bW1a − W1bW2a)

]
. (34)

Consequently, Sba(f ) corresponds to a combination of first-
and second-order poles at the EP. The presence of the second-
order pole is a result of the fact that H cannot be diagonalized
at the EP and can only be brought to Jordanian form. The
effect of the double pole is illustrated in Fig. 13 where the
data of Ref. [32] are compared to the modulus square of
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Data
Theory of EP

FIG. 13. Modulus square of the Fourier transform of Sba(f ). Data
taken from Ref. [32] (solid line) are compared to the Fourier transform
of Eq. (34) (dashed line). The sharp peak at t = 30 ± 5 ns indicates
the time needed for the signal to travel through the coaxial cables
connecting the VNA with the antennas. At about t = 1.8 μs the noise
level is reached. Between these instants of time the temporal behavior
is well described by the function t2 exp(2 Im EEPt)—in agreement
with the second-order pole entering Eq. (34). Compare with Fig. 3 of
Ref. [32], where only a fraction of the available data points had been
plotted.

the Fourier transform F(t) of the S-matrix element Sba(f )
given in Eq. (34). The temporal decay |F(t)|2 is proportional
to t2 multiplied by an exponential function. Hence, the function
F(t) is dominated by the Fourier transform of the second-order
pole in Sba(f ). Note that the first three terms on the right-hand
side of Eq. (34) are invariant under the interchange of a with
b, whereas the fourth term is not, i.e., it breaks TRI.

In Refs. [29–31] the real and the imaginary parts of the
eigenvalues of the effective Hamiltonian were determined by
fitting a two-level Breit-Wigner function to the experimental
S(f ). Equation (34) demonstrates that this procedure fails at
the EP, because there the shape of the resonance is not given
by a first-order pole of the scattering matrix [9,10,32].

VIII. TRANSPORTING EIGENVECTORS AROUND THE EP

This section addresses the behavior of the eigenvectors
under a transport around the EP. In Ref. [122] and Refs. [29,31]
the geometric phase gathered around a DP, respectively, an EP,
was obtained for just a few parameter settings, because the
procedure—the measurement of the electric field intensity
distribution—is very time-consuming. We now have the
possibility to determine the left and right eigenvectors on a
much narrower grid of the parameter plane. In the first part we
describe how the eigenvectors transform into each other upon
transporting H along a path in the parameter plane around
the EP; in the second we treat the geometric amplitude that
an eigenvector picks up while encircling the EP under TRI
violation.

A. A fourfold path around the EP

By a closed path or loop around the EP we understand a path
in the plane of the experimental parameters s,δ that returns

1.5 1.7 1.9
41.1

41.2

41.3

41.4

s (mm)

δ 
(m

m
)

EP
|f  - f |1 2

|Γ  - Γ |1 2

FIG. 14. (Color online) Differences of the real and the imaginary
parts of the complex eigenvalues in the notation of Eq. (35). The data
have been taken at B = 53 mT. The darker the color the smaller the
respective difference. It is vanishingly small at the darkest colors.
The differences of the real parts, shown in blue, are small to the left
of the EP, those of the imaginary parts, shown in red, to the right. In
the regions of white colors both differences are large and beyond the
scale of the color code. The dotted curve is the double loop around
the EP discussed in the text.

to its initial point and encloses the EP. Figure 14 displays
the double loop around the EP considered in the following.
Each dot corresponds to a pair of parameters (s,δ) where
the scattering matrix was measured and thus the effective
Hamiltonian Hamiltonian H was determined. The path is
parameterized by the “time” t . It starts at the intersection
of the inner and outer loops. Then the path is followed
counterclockwise. At t = t1 the inner loop was completed
and at t2 the outer one was completed. The difference of the
complex eigenvalues

E1,2 = f1,2 − i1,2/2 (35)

is plotted in a color code [89,123]. The darker the color the
smaller the respective difference. The difference |f1 − f2|,
shown in blue, is small only to the left of the EP. Similarly,
the difference |1 − 2|, shown in red, is small only to the
right of the EP. In the white region both differences are large
beyond the range of the color code. Along the darkest blue and
red lines, the differences |f1 − f2|, respectively, |1 − 2|,
are vanishingly small. Thus, Fig. 14 demonstrates that the
frequency crossing is interchanged with the width crossing
[27,28,124] upon passing the EP [29] from the left to the right.
This proves that the point where the change takes place is
indeed an EP. At s = 1.59 mm a group of outliers is visible
in Fig. 14. These were due to experimental imperfections that,
e.g., occurred due to friction when the Teflon disk was moved
along the resonator surface.

We assumed and experimentally confirmed that the ele-
ments of H exhibit no singularity, neither on the path nor in
the domain delimited by the path. Then every Hμν as well as
�h2 defined in Eq. (10) returns to its original value when it is
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taken along the closed path. However, the square-root function√�h2 appearing in the eigenvalues and eigenvectors of H, see
Eqs. (13) and (23), changes sign along the path around the EP

because
√�h2 has a branch point at the zero of its argument.

To discuss the loops around an EP we shift, without loss of
generality, the matrix H such that its trace vanishes,

H → H − 1
2 (TrH) 1 . (36)

Then the eigenvalues are

E1,2 = ±
√

�h2 , (37)

whereas the eigenvectors do not change. In the sequel we
always refer to the shifted H when talking about the effective
Hamiltonian. The difference of the eigenvalues is E1 − E2 =
2E1 = 2

√�h2 . Along the line of darkest color in Fig. 14 to the
left of the EP, the eigenvalues are purely imaginary, whereas
to the right they are real. Thus the dark line is the locus of real
squared eigenvalues.

1. Encircling an EP under TRI

In the following two subsections the transformation of an
eigenvector transported around an EP is worked out first for
TRI systems and then for the case of TRI violation. For HA

12 =
0 Eqs. (8) and (36) yield

H =
(

e1−e2
2 HS

12

HS
12 − e1−e2

2

)
(38)

and �h2 = (HS
12)2 + ( e1−e2

2 )2. Note that the squares of the
quantities

e1 − e2

2
√�h2

and
HS

12√�h2

add up to unity. Therefore a complex “angle” 2θ exists such
that

H =
(

cos(2θ ) sin(2θ )

sin(2θ ) − cos(2θ )

) √
�h2 . (39)

The right eigenvectors of H are given by

�r1 =
(

cos θ

sin θ

)
, �r2 =

(− sin θ

cos θ

)
. (40)

Because of the symmetry of H they are equal to the left
eigenvectors �l1,2. This system is biorthonormal. Analogously
to Eq. (23) the eigenvectors can be written as

�r1 ∝
(

cot θ

1

)
, �r2 ∝

(− tan θ

1

)
. (41)

The comparison between the first component of �r2 and the
corresponding one in Eq. (23) yields

tan θ =
− e1−e2

2 +
√(

e1−e2
2

)2 + (
HS

12

)2

HS
12

. (42)

As in Ref. [31] we define

B = e1 − e2

2HS
12

(43)

and obtain

tan θ = −B +
√
B2 + 1 = −B + √

B + i
√
B − i. (44)

An EP occurs for �h2 = 0 and HS
12 �= 0, i.e., when

B = BEP = ±i . (45)

On a path around an isolated EP the quantity B is taken around
BEP, i.e., one of the square-root functions in the second line of
Eq. (44) changes sign. Hence, the eigenvalues in Eq. (37) are
interchanged and

tan θ → tan θ1 ≡ −B −
√
B2 + 1 = − cot θ, (46)

so one loop around an EP implies

θ → θ ± π

2
. (47)

Thus the transport of the eigenvectors (40) around the EP
in the direction of θ → θ + π/2 yields

�r1 → �r2, �r2 → −�r1. (48)

This implies that an eigenvector must be transported 4 times
around the EP to recover the original situation. Starting with
�r1 the sequence is

�r1 → �r2 → −�r1 → −�r2 → �r1. (49)

When the eigenvectors are transported around the EP in
the opposite direction so θ → θ − π/2, they transform
according to

�r1 → −�r2
(50)

�r2 → �r1.

Again the transport must be repeated 4 times to restore
the original situation. The rules (48) and (50) have been
experimentally confirmed in Ref. [29].

2. Encircling an EP under violation of TRI

Let us now discuss the case of violated TRI where HA
12 �= 0.

Using the definition of eiτ and Eqs. (8) and (36) we obtain with
the notation Eq. (31)

H =
( e1−e2

2 e−iτR
eiτR − e1−e2

2

) √
�h2. (51)

In analogy to the case discussed in the preceding subsection
the quantities

e1 − e2

2
√�h2

and
R√�h2

are expressed as cos(2θ ) and sin(2θ ), respectively. Thus
Eqs. (42) and (43) are generalized to

tan θ = − e1−e2
2 +

√�h2

R (52)

and

B = e1 − e2

2R . (53)
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FIG. 15. The TRI-violating phase τ (t) for B = 53 mT with t

varied along the dotted double loop shown in Fig. 14. At the end
of either loop τ returned to its initial value. Counting the points of
measured Hamiltonians along the path yields the “time” scale t with
t1 = 25,t2 = 150.

This yields

H =
(

cos(2θ ) e−iτ sin(2θ )

eiτ sin(2θ ) − cos(2θ )

) √
�h2. (54)

The biorthogonal normalized system of eigenvectors becomes

�l1 =
(

eiτ/2 cos θ

e−iτ/2 sin θ

)
; �r1 =

(
e−iτ/2 cos θ

eiτ/2 sin θ

)
;

(55)

�l2 =
(−eiτ/2 sin θ

e−iτ/2 cos θ

)
; �r2 =

(−e−iτ/2 sin θ

eiτ/2 cos θ

)
.

Here the �lk are the left eigenvectors and the �rk the right ones
[89,119]. When the EP is encircled the function

eiτ =
(

HS
12 + iHA

12

HS
12 − iHA

12

)1/2

(56)

returns to its original value because the right-hand side has
no singularity. By consequence τ returns to its original value
when it is transported along the dotted path in Fig. 14. This
is illustrated in Fig. 15 where τ is given as a function of the
“time” t that parameterizes the dotted path. The value of τ was
not constant along the path although the magnetic field was
fixed at B = 53 mT. Indeed, τ depended on s and δ because
both parameters shift the rf magnetic field at the ferrite.

Since (HS
12)2 + (HA

12)2 does not vanish, Eqs. (44), (45), and
(47) remain valid. Furthermore, since τ returns to its original
value the rules (48) and (50) apply whether or not TRI holds.

B. The geometric amplitude along closed paths

In this section we focus on the dynamics of the motion
around an EP. The paths (s(t),δ(t)) around the EP are
parameterized by a time variable t . In the last two subsections
we have considered the local eigenvectors �rk(t) along such a
path. However, Berry [10] realized that this is a dynamical
procedure to be described by a time-dependent Hamiltonian
H(t) in the Schrödinger equation. We ask the following: What
happens to a wave function �ψ(t) which at t = 0 equals the
eigenvector �r1(0) of H(0)? Let the first turn around the EP be
completed at t = t1 and let the turn be performed in the sense
leading to the rule (48). Does �ψ(t1) equal the eigenvector �r2(0)?

If TRI is violated, the answer in general is no. If the motion
is sufficiently slow, then for every t the wave vector �ψ(t)
solving the time-dependent Schrödinger equation will be a
local eigenstate multiplied with the “dynamical phase” factor
e−iE1t1 . In addition, it will pick up a “geometric amplitude”
eiγ (t) along the path [1,2]. Hence, it can be written as

�ψ(t) = exp [−iE1t + iγ (t)] �r1(t). (57)

We show that, other than the dynamical phase, γ may depend
on the geometry of the path and it may be a complex function
and thus modify the normalization of �ψ along the path. The
ansatz (57) is called “parallel transport” [1,2,10,125] because
�ψ remains parallel to the local eigenvector during the transport
around the EP.

Inserting Eq. (57) into the Schrödinger equation

i �̇ψ(t) = H(t) �ψ(t), (58)

we find

iγ̇ + �l1 · �̇r1 = 0, (59)

where the dot denotes the derivative with respect to t . This
yields with Eq. (55)

�l1 · �̇r1 = −i
τ̇

2
cos(2θ ) (60)

and [89]

γ̇ = τ̇

2
cos(2θ ). (61)

Thus, when TRI holds, i.e., τ ≡ 0, γ̇ vanishes and γ (t) ≡
γ (0) = 0. Examples of the geometric phase γ (t) for a
nonvanishing τ are presented in Fig. 16. In Fig. 16(a) γ (t)
was determined along the dotted double loop shown in Fig. 14
where the EP was encircled counterclockwise. The initial point
is marked by a green triangle (upward). The completion of the
inner loop at t1 = 25 is marked by a red diamond and the end
point at t2 = 150 by a blue triangle (downward). The resulting
curve of the imaginary versus the real part of γ (t) switches
direction at the extreme values of τ . According to Fig. 15
these occur at t = 12,33,80,135. We found the initial value
γ (0) to differ from the final one γ (t2 = 150). In panel (b)
the outer loop of Fig. 14 is followed twice. At the end of the
second turn γ returned to its initial value, i.e., the green and
blue (upward and downward) triangles coincide. This can be
understood from Eq. (61) together with the rule of Eq. (47),
according to which cos(2θ ) changes sign after each loop. Since
the second loop covered the same values of θ as the first one,
the integral over the right-hand side of Eq. (61) along the
second loop canceled the integral along the first loop. This
result and that shown in panel (a), γ (0) �= γ (t2), show that γ

generally depends on the geometry of the path.
Encircling the EP 4 times, i.e., twice along the double loop

of Fig. 14, leads to Fig. 17. According to Eq. (47) at the end of
each double loop the angle θ is shifted by π . Thus integrating
Eq. (61) over t yields

γ (t4) = 2γ (t2) , (62)

where t2 denotes the time needed to traverse the first double
loop and t4 = 2t2. Thus the difference γ (t2) − γ (0) is doubled
at the end of the second double loop. This procedure can be
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(a)

(b)

FIG. 16. (Color online) Geometric phases γ (t) gathered when
the EP was experimentally encircled twice. Panel (a) displays γ (t)
along the dotted double loop marked in Fig. 14. The green triangle
(upward) marks the initial point at t = 0. Moving counterclockwise
along the dotted line, the red diamond was reached at the end t1 = 25
of the inner loop. The blue triangle (downward) completes the outer
loop at t2 = 150. Compare Fig. 15. The points, where the direction
of γ (t) switches, occurred at the extreme values of τ (t). At the end
of the path we found γ (t2) �= γ (0). Panel (b) shows γ (t) when the
EP is encircled twice along the outer loop of Fig. 14. Then we found
γ (t2) = γ (0), i.e., the end point coincided with the initial point.

repeated arbitrarily; it has been termed “geometric instability”
[126]. The drift γ (0) → γ (t2) → γ (t4) . . . can be reversed by
simply retracing the path.

IX. THE OCCURRENCE OF PT INVARIANCE

The experimental setup can also be used to study dissipative
quantum systems which have a parity-time (PT ) symmetry,

FIG. 17. (Color online) Geometric phase γ (t) gathered when the
EP is encircled 4 times by following twice the double loop shown
in Fig. 14. The green triangle (upward) marks γ (0). With increasing
t the geometric phase follows the black dots counterclockwise. At
the end of the first double loop (blue triangle downward) it continues
along the red ones. It ends at the blue diamond.
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FIG. 18. (Color online) Differences of the complex eigenvalues
of the effective Hamiltonians in a neighborhood of the EP, compare
Fig. 14. The three panels show results for the magnetization of the
ferrite with B = 0,38,61 mT.

that is, are invariant under the simultaneous action of a parity
(P) and a time reversal (T ) after a suitable width offset. We
demonstrate in the following that the parameter space contains
parts, where the effective Hamiltonian H of the investigated
doublet exhibits a generalized form of PT symmetry.

Figure 18 compares the differences of the complex eigen-
values of H for three different magnetizations of the ferrite in
the neighborhood of an EP in the (s,δ) plane. The EP is marked
by a green dot. Blue colors represent differences |f1 − f2|
of the real part of the eigenvalues, red colors differences
|1 − 2| of the imaginary part of the eigenvalues. The darker
the color the smaller the difference. For B = 0 a jitter to the
right of the EP is visible which, as explained in connection with
Fig. 14, is due to experimental imperfections. As in Fig. 14,
small values of |f1 − f2| occur only to the left of the EP,
small values of |1 − 2| only to the right. In each one of the
examples shown in Figs. 14 and 18 we found a line in the (s,δ)
plane—the line of darkest color—where the eigenvalues of H
are either purely imaginary or purely real. Since

f1 − f2 = 2 Re
√

�h2, 1 − 2 = 2 Im
√

�h2, (63)

the line of darkest color is the locus of real �h2. Although the
position of the EP weakly depends on the magnetic field B

and some distortion of the dark line appears depending on B,
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the locus of real �h2 is always present. It is defined by

Im �h2 = 0 (64)

which is equivalent to

Re �h · Im �h = 0. (65)

Note that the vector Re �h is related to the matrix H̃ int obtained
from Eq. (4) by subtracting 1

2 (TrH int) from H int. Actually,
the entries of Re �h are the expansion coefficients of H̃ int

with respect to the Pauli matrices, i.e., H̃ int = (Re �h) · �σ .
Similarly, the vector Im �h is related to the matrix H̃ ext via
H̃ ext = (Im �h) · �σ .

The Pauli matrices σk ,k = 1,2,3, have the properties
Tr σ 2

k = 2 and Tr (σkσk′) = 0 for k �= k′. From this follows
that the left-hand side of Eq. (65) can be expressed as

Re�h · Im�h = Tr (H̃ intH̃ ext)/2. (66)

Thus the set of Hamiltonians on the locus of real �h2 can be
defined by the property

Tr (H̃ int H̃ ext) = 0. (67)

This formulates a relation between the internal and external
parts of the effective Hamiltonian, which is necessary and
sufficient for the set under discussion. The trace is invariant
under unitary transformations. Therefore the criterion (67) is
independent of the choice of the basis for H.

One can verify that the commutator [H̃ int,H̃ ext] equals
(Re �h × Im �h) · �σ . Therefore [H̃ int,H̃ ext] �= 0 along the locus
of real �h2. There the eigenvalues of H are either purely
real or purely imaginary. The eigenvalues of PT -invariant
Hamiltonians have exactly this property [62,63]. Here the
parity operator is given by the Pauli matrix σ1 in Eq. (7), i.e.,

P =
(

0 1

1 0

)
, (68)

and T is the operation of complex conjugation. Then the ques-
tion arises whether the effective Hamiltonian is PT invariant
along the locus of real �h2. We have shown in Ref. [90] that
every single Hamiltonian H on the locus can be transformed
into a PT -invariant one by a unitary transformation U of
the basis, i.e., the matrix H′ = U †HU is PT invariant or the
operator UPT U † commutes with H. Thus we can speak of a
generalized PT invariance [90,127]. As predicted, the change
from real eigenvalues for s > sEP to complex conjugate ones
for s < sEP is accompanied by a sponteneous breaking of PT
symmetry of the eigenvectors of U †HU at the EP, that is, they
cease to be eigenvectors of PT [62,127].

X. SUMMARY AND CONCLUSIONS

The present article deals with a series of scattering exper-
iments performed with microwave resonators under violation
of TRI induced via a magnetized ferrite placed inside the
resonators.

A. The first set of experiments

The first set of experiments described in Secs. II and IV
explored the notion of TRI and the properties of the ferrite.
In scattering experiments, reciprocity is equivalent to TRI.

To reveal violation of TRI the effective Hamiltonian system
must be at least two-dimensional. To check this we looked
at isolated resonances. They were obtained in measurements
with a resonator having the shape of a classically chaotic
annular billiard. Indeed, isolated resonances showed reciprocal
scattering, i.e., S12 = S21, in Fig. 4 although the ferrite
was magnetized. Doublets of resonances were obtained with
a circular resonator with slightly broken symmetry. They
exhibited lack of reciprocity, i.e., S12 �= S21 in Fig. 5 when TRI
was violated. Varying the magnetization of the ferrite revealed
its ferromagnetic resonance. A model for the TRI-breaking
matrix element of H was derived in Sec. IV B.

From the four S-matrix elements S11,S12,S21,S22 measured
as functions of the excitation frequency, the four elements
of the effective Hamiltonian H of the two-state system were
obtained. This allowed, in Sec. IV, a subtle test of scattering
theory: The effect of the ferrite, i.e., HA

12 �= 0, was found in
both the internal and the external parts of H in Eqs. (4) and
(5). This is expected, because the ferrite acts via its dissipative
properties and scattering theory says that dissipation appears
not only in H ext but also—via the principle value integral in
Eq. (5)—in H int.

B. The second series of experiments

The second series of experiments in Secs. V–IX dealt
with an EP that we could locate. The resonator used in these
experiments was circular and possessed an approximate mirror
symmetry with respect to a diameter, i.e., an approximate
parity symmetry. Furthermore, a ferrite was placed in one
of its parts. By help of two experimental parameters the EP
could be accessed. The experiments yielded overwhelming
evidence that we indeed found an EP. (i) The eigenvectors
coalesced to a single one. Its components differed by a phase
factor (see Fig. 11), which provides information on the strength
of TRI violation. (ii) The line shape at the EP displayed a
pole of second order in the scattering matrix; see Fig. 13.
(iii) Transporting the eigenvectors on closed paths around the
EP yielded the expected transformation from one eigenvector
to the other one; see Sec. VIII A. (iv) Garrison and Wright
predicted [1,2] that geometric amplitudes should be picked up
along the closed paths provided that TRI is violated. The imag-
inary part of the complex phase γ (t) established the existence
of the geometric amplitude; see Figs. 16. This was extended
in Fig. 17 to verify the existence of Bliokh’s geometric
instability [126].

In the two-dimensional parameter space a one-dimensional
subspace was found in Figs. 14 and 18, in which the
eigenvalues of the effective Hamiltonian were either real or
purely imaginary. This was characteristic for—in our case a
generalized—PT invariance. The change from purely real to
purely imaginary eigenvalues takes place at the EP, i.e., there
a spontaneous breaking of PT invariance occurs.
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F. Schäfer, and H. A. Weidenmüller, Phys. Rev. Lett. 98,
074103 (2007).

[54] F. Haake, Quantum Signatures of Chaos (Springer, New York,
2001).

[55] F. Coester, Phys. Rev. 84, 1259 (1951).
[56] F. Coester, Phys. Rev. 89, 619 (1953).
[57] E. M. Henley and B. A. Jacobsohn, Phys. Rev. 113, 225

(1959).
[58] H. Frauenfelder and E. M. Henley, Nuclear and Particle

Physics (W. A. Benjamin, Reading, MA, 1975).
[59] A. A. Mailybaev, O. N. Kirillov, and A. P. Seyranian, Phys.

Rev. A 72, 014104 (2005).
[60] H. Mehri-Dehnavi and A. Mostafazadeh, J. Math. Phys. 49,

082105 (2008).
[61] Soo-Young Lee, Phys. Rev. A 82, 064101 (2010).
[62] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[63] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[64] J. Rubinstein, P. Sternberg, and Q. Ma, Phys. Rev. Lett. 99,

167003 (2007).
[65] N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and

V. M. Vinokur, Phys. Rev. Lett. 109, 150405 (2012).

032909-15

http://dx.doi.org/10.1016/0375-9601(88)90905-X
http://dx.doi.org/10.1016/0375-9601(88)90905-X
http://dx.doi.org/10.1016/0375-9601(88)90905-X
http://dx.doi.org/10.1016/0375-9601(88)90905-X
http://dx.doi.org/10.1098/rspa.1990.0096
http://dx.doi.org/10.1098/rspa.1990.0096
http://dx.doi.org/10.1098/rspa.1990.0096
http://dx.doi.org/10.1098/rspa.1990.0096
http://dx.doi.org/10.1103/PhysRevA.22.618
http://dx.doi.org/10.1103/PhysRevA.22.618
http://dx.doi.org/10.1103/PhysRevA.22.618
http://dx.doi.org/10.1103/PhysRevA.22.618
http://dx.doi.org/10.1088/0305-4470/23/7/022
http://dx.doi.org/10.1088/0305-4470/23/7/022
http://dx.doi.org/10.1088/0305-4470/23/7/022
http://dx.doi.org/10.1088/0305-4470/23/7/022
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1140/epjd/e2004-00049-7
http://dx.doi.org/10.1140/epjd/e2004-00049-7
http://dx.doi.org/10.1140/epjd/e2004-00049-7
http://dx.doi.org/10.1140/epjd/e2004-00049-7
http://dx.doi.org/10.1088/0305-4470/39/32/S09
http://dx.doi.org/10.1088/0305-4470/39/32/S09
http://dx.doi.org/10.1088/0305-4470/39/32/S09
http://dx.doi.org/10.1088/0305-4470/39/32/S09
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1121/1.381677
http://dx.doi.org/10.1103/PhysRevA.78.053809
http://dx.doi.org/10.1103/PhysRevA.78.053809
http://dx.doi.org/10.1103/PhysRevA.78.053809
http://dx.doi.org/10.1103/PhysRevA.78.053809
http://dx.doi.org/10.1103/PhysRevA.79.053858
http://dx.doi.org/10.1103/PhysRevA.79.053858
http://dx.doi.org/10.1103/PhysRevA.79.053858
http://dx.doi.org/10.1103/PhysRevA.79.053858
http://dx.doi.org/10.1093/qjmam/44.4.559
http://dx.doi.org/10.1093/qjmam/44.4.559
http://dx.doi.org/10.1093/qjmam/44.4.559
http://dx.doi.org/10.1093/qjmam/44.4.559
http://dx.doi.org/10.1063/1.2909618
http://dx.doi.org/10.1063/1.2909618
http://dx.doi.org/10.1063/1.2909618
http://dx.doi.org/10.1063/1.2909618
http://dx.doi.org/10.1098/rspa.2008.0021
http://dx.doi.org/10.1098/rspa.2008.0021
http://dx.doi.org/10.1098/rspa.2008.0021
http://dx.doi.org/10.1098/rspa.2008.0021
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevB.68.125326
http://dx.doi.org/10.1103/PhysRevB.68.125326
http://dx.doi.org/10.1103/PhysRevB.68.125326
http://dx.doi.org/10.1103/PhysRevB.68.125326
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1140/epjd/e2009-00315-2
http://dx.doi.org/10.1140/epjd/e2009-00315-2
http://dx.doi.org/10.1140/epjd/e2009-00315-2
http://dx.doi.org/10.1140/epjd/e2009-00315-2
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1103/PhysRevE.69.056216
http://dx.doi.org/10.1103/PhysRevE.69.056216
http://dx.doi.org/10.1103/PhysRevE.69.056216
http://dx.doi.org/10.1103/PhysRevE.69.056216
http://dx.doi.org/10.1103/PhysRevE.75.027201
http://dx.doi.org/10.1103/PhysRevE.75.027201
http://dx.doi.org/10.1103/PhysRevE.75.027201
http://dx.doi.org/10.1103/PhysRevE.75.027201
http://dx.doi.org/10.1103/PhysRevLett.64.2215
http://dx.doi.org/10.1103/PhysRevLett.64.2215
http://dx.doi.org/10.1103/PhysRevLett.64.2215
http://dx.doi.org/10.1103/PhysRevLett.64.2215
http://dx.doi.org/10.1103/PhysRevLett.69.1296
http://dx.doi.org/10.1103/PhysRevLett.69.1296
http://dx.doi.org/10.1103/PhysRevLett.69.1296
http://dx.doi.org/10.1103/PhysRevLett.69.1296
http://dx.doi.org/10.1088/0305-4470/37/31/012
http://dx.doi.org/10.1088/0305-4470/37/31/012
http://dx.doi.org/10.1088/0305-4470/37/31/012
http://dx.doi.org/10.1088/0305-4470/37/31/012
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1063/1.531668
http://dx.doi.org/10.1063/1.531668
http://dx.doi.org/10.1063/1.531668
http://dx.doi.org/10.1063/1.531668
http://dx.doi.org/10.1088/0305-4470/29/18/009
http://dx.doi.org/10.1088/0305-4470/29/18/009
http://dx.doi.org/10.1088/0305-4470/29/18/009
http://dx.doi.org/10.1088/0305-4470/29/18/009
http://dx.doi.org/10.1088/0305-4470/31/15/009
http://dx.doi.org/10.1088/0305-4470/31/15/009
http://dx.doi.org/10.1088/0305-4470/31/15/009
http://dx.doi.org/10.1088/0305-4470/31/15/009
http://dx.doi.org/10.1080/02726340500214894
http://dx.doi.org/10.1080/02726340500214894
http://dx.doi.org/10.1080/02726340500214894
http://dx.doi.org/10.1080/02726340500214894
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1103/PhysRevLett.74.2662
http://dx.doi.org/10.1103/PhysRevLett.74.2662
http://dx.doi.org/10.1103/PhysRevLett.74.2662
http://dx.doi.org/10.1103/PhysRevLett.74.2662
http://dx.doi.org/10.1103/PhysRevLett.74.2666
http://dx.doi.org/10.1103/PhysRevLett.74.2666
http://dx.doi.org/10.1103/PhysRevLett.74.2666
http://dx.doi.org/10.1103/PhysRevLett.74.2666
http://dx.doi.org/10.1103/PhysRevLett.81.2890
http://dx.doi.org/10.1103/PhysRevLett.81.2890
http://dx.doi.org/10.1103/PhysRevLett.81.2890
http://dx.doi.org/10.1103/PhysRevLett.81.2890
http://dx.doi.org/10.1103/PhysRevE.71.016223
http://dx.doi.org/10.1103/PhysRevE.71.016223
http://dx.doi.org/10.1103/PhysRevE.71.016223
http://dx.doi.org/10.1103/PhysRevE.71.016223
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.113.225
http://dx.doi.org/10.1103/PhysRev.113.225
http://dx.doi.org/10.1103/PhysRev.113.225
http://dx.doi.org/10.1103/PhysRev.113.225
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1063/1.2968344
http://dx.doi.org/10.1063/1.2968344
http://dx.doi.org/10.1063/1.2968344
http://dx.doi.org/10.1063/1.2968344
http://dx.doi.org/10.1103/PhysRevA.82.064101
http://dx.doi.org/10.1103/PhysRevA.82.064101
http://dx.doi.org/10.1103/PhysRevA.82.064101
http://dx.doi.org/10.1103/PhysRevA.82.064101
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1103/PhysRevLett.109.150405
http://dx.doi.org/10.1103/PhysRevLett.109.150405
http://dx.doi.org/10.1103/PhysRevLett.109.150405
http://dx.doi.org/10.1103/PhysRevLett.109.150405


S. BITTNER et al. PHYSICAL REVIEW E 89, 032909 (2014)

[66] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).
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