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Many studies have shown that we can gain additional information on time series by investigating their
accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties
of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the
constructed recurrence networks have exponential degree distributions; the average degree exponent 〈λ〉 increases
first and then decreases with the increase of Hurst index H of the associated FBMs; the relationship between
H and 〈λ〉 can be represented by a cubic polynomial function. We next focus on the motif rank distribution of
recurrence networks, so that we can better understand networks at the local structure level. We find the interesting
superfamily phenomenon, i.e., the recurrence networks with the same motif rank pattern being grouped into two
superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We
find that the average fractal dimension 〈dB〉 of recurrence networks decreases with the Hurst index H of the
associated FBMs, and their dependence approximately satisfies the linear formula 〈dB〉 ≈ 2 − H , which means
that the fractal dimension of the associated recurrence network is close to that of the graph of the FBM. Moreover,
our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks,
and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of
the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst
index H = 0.5 possesses the strongest multifractality. In addition, the dependence relationships of the average
information dimension 〈D(1)〉 and the average correlation dimension 〈D(2)〉 on the Hurst index H can also
be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic
characteristic and the fractal nature of the associated FBM series.
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I. INTRODUCTION

Methods of nonlinear time series analysis have been widely
applied in physics, physiology, finance, and biology. Complex
network theory has become one of the most important devel-
opments in statistical physics [1]. Recent studies have shown
that complex network theory may be an effective method to
extract the information embedded in time series [2,3]. Many
complicated dynamics systems in nature and society can be
described by complex networks. In a complex system, its
elements are represented by nodes, and their interactions are
represented by directed or undirected edges.

Based on the small-world and scale-free properties of
complex networks [4,5], Newman et al. [6] investigated
extensively the structure and function of real-world complex
networks in different areas. The advancement of network
theory provides us with another perspective to perform time
series analysis [2,3]. Therefore, we can further understand
the structural features and dynamics mechanism of complex
systems by studying the basic topological properties of
networks. Many algorithms have been proposed to construct
different complex networks from time series [7], such as
visibility graphs [8,9], space state networks [10], recurrence
networks [2,3,11], and nearest-neighbor networks [12,13].

Recurrence is a basic characteristic of many complex
dynamical systems, which can be used to describe the
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dynamics behavior of systems. Eckmann et al. [14] de-
veloped the method of recurrence plots (RPs) to visualize
the recurrence property of complex dynamical systems. A
remarkable advantage of this method is that it is very suitable
for short and even nonstationary time series. Applications of
the method of RPs can be found in various fields of research
such as physiology, neuroscience, earth sciences, engineering,
biology, and finances. In order to quantify the structures
of the recurrence plots, Zbilut and Webber developed the
recurrence quantification analysis (RQA) based on linear and
diagonal line structures of recurrence plots [15,16]. Most of
these measures of complexity are available on the TOCSY
software platform [17]. Cross recurrence plot [18,19] and joint
recurrence plot [20] are bivariate and multivariate extensions
of the RPs, respectively.

Recently, Donner et al. [2,3] and Marwan et al. [11]
proposed the recurrence network based on the method of
RPs. This idea can be considered as a complementary view
on the RQA, allowing us to gain additional information from
corresponding network-theoretic measures which cannot be
obtained by RQA. They considered the phase-space state vec-
tors X(i) (defined in Sec. II) as nodes of a complex network and
identify the recurrence matrix of the original time series with
the adjacency matrix of an associated complex network. In this
way, an undirected and unweighted network is represented by a
binary adjacency matrix ANN (defined in Sec. II). Recurrence
networks have been used to investigate many model systems
such as logistic map, Hénon map, Lorenz system, Rössler
system, and Bernoulli map [3,11,21], and real economic
series [22].
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It is well known that fractional Brownian motion (FBM)
described by the Hurst index H (0 < H < 1) is a self-similar
process with stationary increments [23]. The FBM with H =
1/2 is in fact the classical Brownian motion. The correlation
between increments of the FBM is negative if 0 < H < 1/2
and positive if 1/2 < H < 1. The sample paths of FBM series
are relatively more rough and variable for small Hurst index
H , while the sample paths of FBM series are more smooth for
large Hurst index H .

In this work, we try to reveal the relationship between
FBM and its related recurrence network from the perspective
of network structure. This prompted us to further study the
fundamental topological and fractal properties of recurrence
networks constructed from FBMs. We think that applying
recurrence network analysis (RNA) to FBM can yield results
which are theoretically meaningful. The reasons are as
follows. (a) Visibility graphs and recurrence networks are
two main classes of methods to map time series to networks.
Recently, some works have been done to study the relationship
between the exponents of newly developed methods (including
visibility graphs) and the Hurst index of the associated
FBMs [24–26]. (b) Donges et al. [21] have proposed an
analytical framework for RNA of time series of chaotic maps
and stochastic processes (such as uniformly distributed noise
and Gaussian noise). FBMs are generalizations of Gaussian
noise. (c) Donner et al. [22] applied RNA to study the real
economic time series. And it is well known that FBM has
been used as a theoretical framework to study economic
time series [23]. In 1999, Riley et al. [27] applied the RQA
technique for analyzing center of pressure (COP) signals and
the nonstationarity of the COP is expected from a consideration
of COP trajectories as FBM.

The remainder of this paper is organized as follows. In
Sec. II, we adopt the recurrence plot method to construct recur-
rence networks. In Sec. III, we investigate the basic topological
characteristics of the recurrence networks constructed from
FBMs. We next introduce the random sequential box-covering
method [28] to calculate the fractal dimension of the recurrence
networks in Sec. IV. In Sec. V, we introduce an improved
algorithm developed by our group [29], which is based on the
modified fixed-size box-counting algorithm [30], to probe the
multifractal behavior of recurrence networks. We finally draw
some conclusions in Sec. VI.

II. RECURRENCE NETWORK

The method of recurrence plots is based on the theory of
phase-space reconstruction introduced by Packard et al. [31].
In order to easily construct a more suitable space and then
to reveal more meaningful information from original time
series, Packard et al. [31] proposed the derivative recon-
struction method and time delay method to reconstruct a
finite-dimensional phase space. However, in practice, we do
not know any prior information of time series; therefore, the
latter method is widely used to reconstruct phase space of time
series. For a given scalar time series {xi,i = 1,2, . . . ,L}, we
construct the delay vectors

X(i) = (xi,xi+τ , . . . ,xi+(m−1)τ ), X(i) ∈ Rm, (1)

for i = 1,2, . . . ,N , where N = L − (m − 1)τ , m is the em-
bedding dimension, and τ is the time delay. Takens’ embedding
theorem ensures that we can recreate a topologically equivalent
m-dimensional phase space from an infinite noise-free time
series data by means of the time delay method [32]. The most
significant advantage of phase-space reconstruction is that it
can preserve the geometrical invariants of the original system,
such as the fractal dimension and the Lyapunov exponents [32].
So we can investigate much about the dynamics characteristics
of time series in phase space more easily. The basic embedding
theorem of phase-space reconstruction assumes that we can
choose the delay time τ without any limitation and the
embedding dimension m under the condition of m � 2d + 1,
where d is the fractal dimension of the underlying attractor.
However, since the observed time series data sets are finite and
noisy in the most common case, the selection of the time delay
τ and the embedding dimension m is rather important for the
quality of the phase-space reconstruction.

The binary recurrence matrix RNN = (Ri,j )NN is defined
as

Ri,j = �(ε − ‖X(i) − X(j )‖), i,j = 1,2, . . . ,N, (2)

where ε is a threshold distance, ‖·‖ is a suitable norm (e.g.,
the L1 norm, the Euclidean norm, and the L∞ norm) in
the considered phase space and �(x) is the Heaviside step
function [i.e., �(x) = 0 if x < 0, and �(x) = 1 otherwise].
The resulting matrix RNN is a symmetric matrix where the
elements Ri,j = 0 or 1. Moreover, the matrix RNN exhibits
the line of identity (the main diagonal) Ri,i = 1. In a two-
dimensional space, the recurrence plot is described by using
different colors for different values of the recurrence matrix,
e.g., plotting a black dot at the coordinates (i,j ) if Ri,j = 1,
and a white dot if Ri,j = 0. Thus the recurrence plot always
has a black main diagonal line.

Now we obtain the adjacency matrix ANN = (Ai,j )NN of
the recurrence network from the recurrence matrix RNN as

Ai,j = Ri,j − δi,j , (3)

where δi,j is the Kronecker δ function introduced here in order
to avoid self-loops [3]. In a complex network, each state vector
X(i) of the reconstructed phase space represents a single
node. The topological structure of the recurrence network
can be described with the adjacency matrix ANN , and the
elements Ai,j = 1 and Ai,j = 0 correspond to connection and
disconnection, respectively. And the size of the network is N .

As mentioned above, the choice of the time delay τ and the
embedding dimension m plays an important role in the recur-
rence plot method. If the time delay τ selected is too small,
each coordinate of the vector X(i) will be so close to each
other that the trajectories of the reconstructed phase space are
compressed along the identity line, and this phenomenon is re-
ferred to as redundance. If the time delay τ selected is too large,
the coordinates of the vector X(i) are completely independent
of each other and then the reconstructed attractor dynamics be-
come causally disconnected, and this phenomenon is referred
to as irrelevance [33]. At present, autocorrelation function [34]
and mutual information method [35] are the most common
approaches for the estimation of the time delay τ . Fraser
et al. [35] proposed a recursive method of calculating mutual
information and pointed out that the first local minimum of
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mutual information is the best criterion for choosing time delay
τ in phase-space reconstruction from time series data.

Takens’ embedding theorem gives us a way to estimate
the embedding dimension m. This is to say that all self-
intersections of the orbit (which is the reconstructed attractor)
in the reconstructed phase space will be eliminated for any
embedding dimension m � 2d + 1. The attractor will be
completely unfolded in this embedding dimension m. But, in
practice, since the dimension d is unknown in many cases,
we cannot directly calculate the embedding dimension m

from the Takens’ embedding theorem. Many algorithms based
on computing some invariants on the attractor have been
proposed to calculate the minimum embedding dimension
m. The most popular method for calculating the minimum
embedding dimension is the False nearest-neighbors (FNN)
algorithm [36,37]. According to the Takens’ embedding
theorem, we assume that m is qualified as an embedding
dimension. If any two points are close to each other in
the m-dimensional phase space, then they are still close to
each other in the (m + 1)-dimensional phase space. We call
these two points true neighbors; otherwise, they are false
neighboring points. The main idea of the FNN algorithm
is to measure the percentage of false nearest neighbors
along a signal trajectory change with increasing embedding
dimension. The optimal embedding dimension means that
there are no false neighbors and self-intersections in the phase
space. This indicates that the minimum embedding dimension
is that for which the percentage of false nearest neighbors drops
to zero or nearly zero for a given tolerance level for the first
time [36].

The threshold distance ε is another key parameter of an
RP. The selection of the threshold ε depends strongly on the
system considered. If ε is too small, there may be almost
no recurrence points and we cannot learn anything about the
recurrence structure of the underlying system. On the other
hand, if ε is too large, almost every point is a neighbor
of every other point, which leads to a lot of artifacts and
redundant information [38]. Therefore, special attention has
been required of its choice. In practice, the most common
method is to set ε for a certain proportion of the standard
deviation σ of the original time series. However, Riley and
Van Orden suggested choosing ε such that the recurrence point
density remains low (often smaller than 5%) [39]. This method
is often used in RQA. The advantage of choosing an adaptive
recurrence threshold by using a fixed recurrence rate in RQA
is that it can preserve the recurrence point density and then
allows us to compare the results of recurrence quantification
analysis of different systems. It is easy to imagine that there is
no direct relationship between recurrence rate or link density
and network connectivity. And it is so difficult for us to find a
fixed recurrence rate which all recurrence networks obtained
at recurrence threshold ε calculated from the fixed recurrence
rate are connected. However, we restrict our attention to the
consideration of a connected network in this article. Therefore,
we do not adopt the fixed recurrence rate for obtaining such
an appropriate recurrence threshold. If we do so, then we will
not be able to study the topological and fractal properties of
the entire network. In other words, we can only focus on the
disconnected components or the largest connected component
of each recurrence network.
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FIG. 1. Relationship between the recurrence threshold ε and the
connection rate of the recurrence network constructed from fractional
Brownian motion series of length L = 212 with Hurst index H = 0.6.

The critical phenomenon is one of the most interesting
findings of complex networks. In 1959, Erdős et al. [40]
introduced the classical random-graph model and studied the
structural phase transition of the birth of the giant connected
component in the network architectures. Every pair of nodes of
random graph is connected with probability p. They found that
there exists a critical probability pc where a giant connected
component was formed and it can be spread across the entire
network. If the probability p is less than this critical probability
pc, the network is composed of disconnected components.
Similar to the critical behavior of random-graph theory, we
study the critical connectivity of the recurrence networks by
examining the size of the largest connected component and
then determine the critical recurrence threshold εc. Here we
first employ the connection rate of the network to quantify the
connectivity of the recurrence network, which is defined as the
number of nodes of the largest connected component divided
by the size of the network. Secondly, we observe the change
of connection rate of the network with the increase of the
parameter ε. It can be easily imagined that the connection rate
of the network increases when the parameter ε becomes larger,
as illustrated in Fig. 1. In Fig. 1, we set the recurrence threshold
ε ranging from 0.01σ to 0.3σ with a step of σs = 0.01σ , where
σ is the standard deviation of the original FBM series. Finally,
we choose an appropriate recurrence threshold εc which is the
minimal value of ε such that the connection rate of the network
reaching to 1. As can be seen in Fig. 1, we set the critical
recurrence threshold εc = 0.12σ . The recurrence network
obtained at recurrence threshold εc will be connected. The
threshold ε beyond this critical value εc will result in redundant
connections among nodes, and threshold ε below this critical
value εc will lead to a number of disconnected components
where each component only contains a connected subnetwork.
Consequently, we select this suitable recurrence threshold εc to
construct the recurrence network and then investigate its topo-
logical and fractal properties. In addition, we also notice that
the critical recurrence threshold εc decreases with the increase
of the Hurst index H from 0.4 to 0.95. We know that the FBM
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series is relatively more smooth and regular for large Hurst
index H . The consequence is that there are many data points
in the original FBM series mapped to state vectors which are
close to each other in a dense region of the phase space so that
the largest connected component of the recurrence network
contains more nodes than the one of the network with the small
Hurst index H . The specific explanation for this phenomenon
can be found in the second subsection of the Sec. III.

In this work, we consider FBM of length L = 212 with
different Hurst indices H ranging from 0.05 to 0.95 (the step
difference is 0.05). Recurrence networks can be constructed
by the following steps.

(i) For a given FBM time series, we use the mutual
information method [35,41] and the FNN algorithm [36] to
calculate the time delay τ and the embedding dimension
m, respectively. These two procedures are available on the
TOCSY software platform [17]. The values of embedding
dimensions m we obtained vary from 5 to 7, and those of
the time delay τ vary from 10 to 20.

(ii) We use the connection rate of the recurrence network
to determine the suitable threshold distance εc [42]. We
observe the connection rate of the network reaching 1 when
the parameter ε ranges from 0.01σ to 0.8σ with a step of
σs = 0.01σ , where σ is the standard deviation of the original
FBM series. The connection rate of the network can be
calculated by Matlab-BGL toolbox [43] in Matlab.

(iii) Based on the above steps, we can calculate the
recurrence matrix RNN by Eq. (2). Then we obtain the binary
adjacency matrix ANN of an unweighted and undirected
recurrence network by Eq. (3). As a result, the recurrence
network is also connected.

For clarity of visualization, we here only draw the recur-
rence network for the FBM series of length L = 28 with Hurst
index H = 0.6. After obtaining the adjacency matrix ANN

of recurrence network according to the above three steps, we
convert the adjacency matrix ANN into “Pajek” [44] format and
then we adopt the Pajek, which is a freely available software
platform for visualizing and analyzing complex networks to
visualize the recurrence network. As can be clearly seen in

FIG. 2. (Color online) Recurrence network constructed from
fractional Brownian motion series of length L = 28 with Hurst index
H = 0.6.

Fig. 2, the recurrence network constructed from the associated
FBM series is connected.

In addition, we find that the connection rates of recurrence
networks constructed from FBMs with Hurst indices H =
0.05,0.1, . . . ,0.3, and 0.35 are far less than 1. In these cases,
the recurrence networks are not connected. So, in the following
sections, we only consider connected networks with Hurst
indices H from 0.4 to 0.95.

III. FUNDAMENTAL TOPOLOGICAL PROPERTIES

In this section, we numerically study the basic topological
features of recurrence networks including the degree distri-
bution, the clustering coefficient and the motif distribution.
Recent works have shown that a large number of real-world
networks are referred to as scale-free networks because the
degree distribution P (k) follows a power law

P (k) ∼ k−α, (4)

with the degree exponent α varying in the range 2 < α <

3 [5,6,45]. The degree distributions of the visibility graphs
constructed from FBMs have power-law tails [8,24,46]. In
addition, Xie et al. [25] found that horizontal visibility graphs
constructed from FBMs have exponential degree distributions

P (k) ∼ e−λk, (5)

and the degree exponent λ increases with Hurst index H .
It has been shown that many real-world complex networks

share similar universal statistical features, such as the small-
world character and the scale-free distribution, but may
demonstrate different local structure characteristics [4,5,47].
An in-depth study of motif distribution can help us to
understand the design principles of complex networks on
the local structure level [47,48]. In 2004, Milo et al. [48]
developed an approach for comparing network local structures,
basing on the significance profile. They calculated the triad
significance profile for networks from different fields and
found that networks with similar characteristic profiles are
grouped into superfamilies.

A. Degree distribution

Degree distribution is one of the most fundamental and
important topological properties of complex networks. We
simulated FBMs with different Hurst indices H ranging from
0.40 to 0.95 with an increment of 0.05. For each value of
H , we generated 1000 realizations and then calculated the
average degree distribution. For example, we give the average
degree distribution of recurrence networks constructed from
FBMs with Hurst index H = 0.6 in Fig. 3. We find that all
the recurrence networks constructed from FBM series exhibit
exponential degree distributions. We estimated the degree
exponents λ and display the average degree exponents 〈λ〉 in
Fig. 4. From Fig. 4, we can see that the parameter λ increases
first and then decreases with the increase of H . The inflection
point is at around H = 0.8. We find that the relationship
between H and 〈λ〉 can be fitted by a cubic polynomial function
which is also shown in Fig. 4.
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FIG. 3. Degree distribution of one recurrence network con-
structed from fractional Brownian motion with Hurst index H = 0.6.

B. Clustering coefficient

The clustering coefficient measures the density of triangles
in a complex network. The definition of the clustering
coefficient given by Watts and Strogatz in Ref. [4] has been
used quite widely in complex network. The local clustering
coefficient Ci is defined as

Ci = 2Ei

ki(ki − 1)
=

∑
j,h Ai,jAj,hAh,i

ki(ki − 1)
, (6)

where ki is the degree of node i, Ei is the actual number of
edges among ki nearest-neighbor nodes of the node i. The
clustering coefficient of the whole network is then given by
the average of Ci over all the nodes in the entire network:

C = 1

N

∑

i

Ci . (7)
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FIG. 4. Relationship between H of fractional Brownian motion
and average degree exponent 〈λ〉 of the associated recurrence
networks. Here the average is calculated from 1000 realizations.

i

T
1

i

j k j kT
2

FIG. 5. All two triples centered on vertex i.

From the geometrical point of view, the local clustering
coefficient Ci also can be defined as

Ci = number of triangles connected to vertex i

number of triples centered on vertex i
, (8)

where a triple represents a vertex with edges connected to any
two neighbor vertices. There are two different triples as shown
in Fig. 5. The triple T1 will occur if the three vertices are all
close to each other. Conversely, the triple T2 will occur if the
vertex i is connected to its two neighbor vertices j and k,
but vertices j and k are not connected. In network topology,
the triangle structure T1 means transitivity and stability in the
network.

In this paper, we study the dependence of the clustering
coefficient C of the recurrence networks against the Hurst
index H of the original FBMs. For each H , we simulated
the FBM 1000 times; hence we obtained 1000 FBM series.
For each FBM series, a recurrence network was constructed
and its clustering coefficient C was calculated. We display the
relationship between H and the average clustering coefficient
〈C〉 of recurrence networks in Fig. 6. From Fig. 6, we can see
that the average clustering coefficient 〈C〉 increases with the
Hurst index H . The results show that there are more triangle
structures in the recurrence network when the Hurst index H

increases from 0.4 to 0.95. This means that the transitive and
stable structure is more common for large Hurst indices. This
phenomenon can be easily explained by the following points. It
is well known that the Hurst index characterizes the raggedness
and irregularity of FBM. As already mentioned, the FBM is a
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FIG. 6. Relationship between H of fractional Brownian motion
and average clustering coefficient 〈C〉 of the associated recurrence
networks. Here the average is calculated from 1000 realizations.
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self-similar process with stationary increments and possesses
long-range dependence. The Hurst index H (0 < H < 1) is a
measure of the intensity of long-range dependence in a FBM
series. More specifically, the FBM with H = 0.5 indicates the
absence of long-range dependence. And the closer Hurst index
H is to 1, the greater the extent of long-range dependence or
persistence. The Hurst index H less than 0.5 corresponds to
antipersistence, which means that the process displays strong
negative correlation and fluctuates violently. For large Hurst
index H , the FBM series is relatively more smooth and regular.
The result is that close data points in the original FBM series
are mapped to state vectors X(i) which are close to each
other in a dense region of the phase space so that these
nodes X(i) are more likely to be connected to each other
in recurrence network. As expected, there are many more
transitive and stable structures T1 to appear in the recurrence
network constructed from the FBM series with large Hurst
index H . However, the FBM series with small Hurst index
H is relatively more rough and irregular. As a consequence
of this, these close points in the original FBM series are
mapped to state vectors X(i) in a sparse region of the phase
space that are less likely to be mutually connected, and
therefore the triple T2 will be more common. From this point
of view, the recurrence network reflects the smoothness and
regularity of the FBMs to some extent.

C. Motif distribution

Because it is very time consuming to study next a few
properties of large complex networks, we only generated 100
realizations of FBM for each value of Hurst index H and
calculated the average in the following.

Research has shown that subgraphs or motifs are the
building blocks of complex networks and the superfamilies
of networks can be defined as the network motif patterns
of occurrence [47,48]. Distinct from the degree distribution
and the clustering coefficient, the occurrence frequency of
small subgraphs or motifs can characterize the local structural
properties of real-world networks and then map the relation
between the function and the local structure of real-world
systems [47]. Xu et al. [12] observed the superfamily phe-
nomenon in the nearest-neighbor networks constructed from
different time series. They also found that the distribution
of network motif ranks can be used to distinguish and to
characterize different types of dynamics in periodic, chaotic,
and periodic with noise processes [12]. Xie et al. [25] calcu-
lated the frequencies of occurrence of the six motifs of size
four within the horizontal visibility graphs constructed from
FBMs.

In this work, the constructed recurrence networks are
connected and undirected, so here we only consider motifs
with four nodes as in Ref. [25]. Figure 7 shows all six different
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FIG. 7. All six network motifs of size 4 in connected and
undirected network. These motifs are labeled M1, M2, M3, M4, M5,
and M6, respectively.

network motifs of size four in connected and undirected
networks. These motifs reflect the different local structure
characteristics in network. There are two extreme blocks: motif
M1 and motif M6. The motif M1 means the most irregular
and nontransitive structure that will appear if the node is
connected to its three neighbor nodes, but these neighbors
are not connected to each other. On the contrary, the motif M6

indicates the most transitive structure that will appear if the
three neighbors are also connected to each other. The relative
occurrence frequencies of motifs [25] are defined as

P (M) = n(M)∑
M=M1,...,M6

n(M)
, (9)

where n(M) is the number of motif M in the network.
After constructing the recurrence networks based on the
recurrence plot method described above, we calculated the
occurrence frequencies of various motifs within the recurrence
networks by the network motif detection tool provided by
Milo et al. [49]. For each Hurst index H , which runs
from 0.40 to 0.95 with a step of 0.05, 100 realizations
of FBMs were generated. Then we constructed these time
series into 100 recurrence networks and obtained the average
of P (M).

In Fig. 8, we rearrange the relative occurrence frequencies
〈P (M)〉 in descending order for different Hurst indices H . As
we can see from Fig. 8, these seemingly unrelated recurrence
networks are divided into two superfamilies based on the
very similar motif rank distributions. Figure 8(a) shows a
superfamily determined by the motif rank M2M3M1M5M6M4,
which includes the recurrence networks constructed from
FBMs with Hurst indices H = 0.4, 0.45, 0.5, 0.55, and 0.6.
The rest of the recurrence networks with Hurst indices H =
0.65, . . . ,0.95 belong to another superfamily and the motif
rank pattern is M2M3M5M6M1M4 [Fig. 8(b)]. In addition,
three particular motifs M1, M5, and M6 play an important role
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FIG. 8. (Color online) Network motif rank distributions of
FBMs with different Hurst indices H . (a) Motif rank pattern
M2M3M1M5M6M4 for 0.4 � H � 0.6. (b) Motif rank pattern
M2M3M5M6M1M4 for 0.65 � H � 0.95. Here the average is cal-
culated from 100 realizations.
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FIG. 9. Dependence of average occurrence frequencies of motifs M1, M2, M3, M4, M5, and M6 on the Hurst indices H . Here the average
is calculated from 100 realizations.

in the classification of recurrence networks we constructed
because their order determines the motif rank distributions. A
similar phenomenon was also observed in Refs. [12,13]. They
gave a detailed explanation for this common phenomenon.
Figure 9 further illustrates the dependence of 〈P (M)〉 with
respect to the Hurst index H . More specifically, the occur-
rence frequency 〈P (M1)〉 of motif M1 strictly monotonically
decreases with the increase of the Hurst index H [see Fig. 9(a)].
In contrast to the motif M1, the frequencies 〈P (M5)〉 and
〈P (M6)〉 increase with the increase of the Hurst index H [see
Fig. 9(e) and Fig. 9(f)]. We also note that the fluctuation of
the frequencies 〈P (M4)〉 is comparatively small in Fig. 9(d),
which means that the motif M4 almost does not appear in all of
the recurrence networks. These results indicate that there are
more regular and transitive structures in the networks when
the Hurst index H varies from 0.4 to 0.95. That is to say, the
fully transitive motif M6 will be common in these recurrence
networks constructed from the FBM series with large Hurst
index H than the ones with small Hurst index H . On the
contrary, the irregular and nontransitive structure such as M1

will be more common for these network with small Hurst
index H . These trends roughly coincide with the ones in
the previous subsection. It should be noted that two triples
T1 and T2 in Fig. 5 are just two motifs with three nodes in
an undirected network. Measuring and analyzing the density
distribution of the motifs with four nodes may be seen as
a generalization of the aforementioned transitivity concept.
Therefore, as mentioned in the previous subsection, we can

give a similar explanation for these trends in this subsection.
In this sense, recurrence networks capture the correlation of
the associated FBMs.

IV. FRACTAL DIMENSION

In 1967, Mandelbrot introduced the fractal idea in Ref. [50].
In fractal geometry, a fractal object is self-similar because
it contains small parts similar to the whole [51,52]. Re-
cently, the fractal and self-similarity properties of complex
networks have been studied extensively in various fields
and systems [30,53,54]. Song et al. [55] found that many
real-world networks such as the worldwide web (WWW),
social networks, protein-protein interaction (PPI) networks,
and cellular networks consist of self-repeating patterns. They
also believed that these complex networks are self-similar
under a certain length scale. After the small-world character
and scale-free property, self-similarity has become the third
basic characteristic of complex networks.

To gain further understanding of complex networks, numer-
ous algorithms have been developed to calculate the fractal
dimension of complex networks. Song et al. [56] proposed
to calculate the fractal dimension via a box-counting method.
Kim et al. [28,54] investigated the skeleton and fractal scaling
in complex networks using an improvement algorithm which
is a modified version of the original method introduced by
Song et al. Then Zhou et al. [57] developed an alternative
algorithm, based on the edge-covering box counting, to detect
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self-similarity of cellular networks. In this section, we adopt
the random sequential box-covering method proposed by Kim
et al. [28] for calculating the fractal dimensions of recurrence
networks.

For a given network, let NB(lB) be the smallest number of
boxes of lateral size lB which are needed to cover the entire
network. The fractal scaling implies the power law relationship
between NB(lB) and lB ; the fractal dimension dB is then given
by

NB(lB) ∼ l
−dB

B . (10)

Usually, the fractal dimension dB can be obtained by fitting
the linear relationship between NB(lB) and lB in a log-log plot.

Before introducing the random sequential box-covering
algorithm [28], we use Floyd’s algorithm [58] of Matlab-BGL
toolbox [43] to calculate the shortest-path distance matrix D

for each network according to the adjacency matrix ANN of
the recurrence network. The random sequential box-covering
algorithm [28] can be described as follows. We start with all
vertices labeled as not burned.

(i) Then select a vertex randomly at each step; this vertex
serves as a seed and then consider the seed as the center of a
box.

(ii) For the center of the box, search all the neighbor vertices
within distance lB and burn all vertices which are found but
have not been burned yet. Assign the newly burned vertices to
the new box. If no newly burned vertex is found, then discard
this box.

(iii) Repeat steps (i) and (ii) until all vertices in the entire
network are assigned to their respective boxes.

In this work, we simulated FBM series with different Hurst
indices H ranging from 0.4 to 0.95 in the step of 0.05. For each
H , we simulated 100 FBM time series and then constructed the
obtained series into 100 recurrence networks. Apparent power
law behaviors of the two typical empirical recurrence networks
constructed from FBM series with different Hurst indices are
shown in Fig. 10. The fractal dimension dB is the absolute
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FIG. 10. Fractal scaling of recurrence networks constructed from
FBMs with Hurst indices H = 0.4 and 0.6. The fractal dimension is
the absolute value of the slope of the linear fit.
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FIG. 11. Relationship between H of fractional Brownian motion
and average fractal dimension 〈dB〉 of the associated recurrence
networks. Here the average is calculated from 100 realizations.

value of the slope of linear regression between ln NB(lB) and
ln lB for each Hurst index. Figure 11 shows the relationship
between Hurst index H and the average fractal dimension
〈dB〉 over 100 realizations. As we can see from Fig. 11, the
average fractal dimension 〈dB〉 decreases with increasing H .
Furthermore, it is surprising that the curve shows a nice linear
relationship:

〈dB〉 = 2.0064 − 1.0441H, (11)

which approximates the theoretical relationship between Hurst
index H and the fractal dimension d of the graph of FBM d =
2 − H . Our numerical results show that the fractal dimension
of the recurrence networks constructed is very close to that of
the graph of the original FBMs. In other words, the fractality
of FBMs is inherited in their recurrence networks. We can
explain here why the two fractal dimensions are so closely
related that the Hurst index H of the FBM series can be
approximately estimated from the perspective of the complex
network. As it has already been mentioned, the pairs of nodes
in the recurrence network can be connected only when the
two corresponding state vectors X(i) in phase space are close
enough so that the phase-space distance between them is less
than the critical recurrence threshold εc. This is to say that
recurrence networks we constructed are random geometric
graphs faithfully representing the geometry of a set in phase
space. Hence neighborhood sizes around a node in the network
as well as around the corresponding state vector in phase space
will show the same scaling behavior. This results in analogous
behavior of the derived fractal dimensions.

So far, we have numerically studied the basic topological
properties and the fractal dimensions of the recurrence net-
work. More recently, some chaotic model systems such as
the logistic map, Hénon map, generalized baker’s map, and
Bernoulli map, and periodic and two-dimensional quasiperi-
odic motions have been studied analytically by Donner
et al. [59] and Donges et al. [21] from the point of view of the ε-
recurrence network. To better understand the interrelationships
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between network properties and dynamical system, they
defined some continuous measures based on well-known graph
theoretical measures and gave two notions of dimension in
phase space (clustering dimension and transitivity dimension).
They have put forward a theoretical framework for these
measures. Their results indicated that ε-recurrence networks
show a strong relation between dynamical systems and graph
theory [21,59]. Their work provides us with a possible way to
derive the analytical results of these topological properties and
dimensions for the recurrence network of FBM series in our
future work.

V. MULTIFRACTAL ANALYSIS

In real world, two fractal objects may have the same fractal
dimension but look completely different. For these real-world
fractals, however, the tool of multifractal analysis shows better
performance and seems more powerful than fractal analysis.
Multifractal analysis has been successfully applied in a variety
of fields such as financial modeling [60,61], biological systems
(e.g. [62–65]), and geophysical data analysis (e.g. [66,67]).
Wang et al. [30] applied the modified fixed-size box-counting
algorithm to explore the multifractal behavior of some the-
oretical networks, namely scale-free networks, small-world
networks, random networks, and a kind of real networks,
namely PPI networks of different species. Their numerical re-
sults indicate that multifractality exists in scale-free networks
and PPI networks, while for small-world networks and random
networks their multifractality is not clear-cut.

Fixed-size box-covering algorithm [68] is one of the most
common and important methods of multifractal analysis. For
a given measure μ with support set E in a metric space, we
consider the partition sum

Zε(q) =
∑

μ(B)	=0

[μ(B)]q, (12)

where q ∈ R and the sum runs over all different nonempty
boxes B of a given size ε in a covering of the support set
E. From the definition above, we can obtain Zε(q) � 0 and
Zε(0) = 1. The exponent τ1(q) of the measure μ can be defined
as

τ1(q) = lim
ε→0

ln Zε(q)

ln ε
, (13)

and the generalized fractal dimensions of the measure μ are
defined as

D(q) = τ1(q)

q − 1
, (14)

for q 	= 1, and

D(q) = lim
ε→0

Z1,ε

ln ε
, (15)

for q = 1, where Z1,ε = ∑
μ(B)	=0 μ(B) ln μ(B). The linear

regression of [ln Zε(q)]/(q − 1) against ln ε for q 	= 1 gives
numerical estimates of the generalized fractal dimensions
D(q), and similarly a linear regression of Z1,ε against ln ε

for q = 1. In particular, D(0) is the box-counting dimension
(or fractal dimension), D(1) is the information dimension, and
D(2) is the correlation dimension. If the τ1(q) or D(q) curve

versus q is a straight line, the object is monofractal. However,
if this curve is convex, the object is multifractal.

In order to calculate the exponents τ1(q) and the generalized
fractal dimensions D(q) and then study the multifractality of
networks, the measure μ of each box is usually defined as
the ratio of the number of nodes covered by the box and the
total number of nodes in the entire network. Wang et al. [30]
proposed a modified fixed-size box-counting algorithm to
calculate the τ1(q) and D(q) and then investigate the multi-
fractal behavior of complex networks. Recently, Li et al. [29]
made some improvements based on the modified fixed-size
box-counting algorithm proposed by Wang et al. [30]. The
improved algorithm [29] can be summarized as follows

(i) Initially, make sure all nodes in the entire network are
not covered and no node is selected as a center of a box.

(ii) According to the size N of networks constructed, set t =
1,2, . . . ,1000 appropriately. Rearrange the nodes into 1000
different random orders. More specifically, in each random
order, nodes which will be selected as a center of a box are
randomly arrayed.

(iii) Set the radius r of the box which will be used to cover
the nodes in the range r ∈ [1,d], where d is the diameter of
the network.

(iv) Treat the nodes in the t th random order that we got in
(ii) as the center of a box, search all the neighbor nodes by
distance r from the center, and cover all nodes which are found
but have not been covered yet.

(v) If no newly covered nodes have been found, then discard
this box.

(vi) Repeat steps (iv) and (v) until all the nodes are covered
by the corresponding boxes. We denote the number of boxes
in this box covering as N (t,r).

(vii) Repeat steps (iv) to (vi) for all 1000 random orders to
find a box covering with minimal number of boxes N (t,r).

(viii) For the nonempty boxes B in the first box covering
with minimal number of boxes N (t,r), define the measure of
this box as μ(B) = NB/N , where NB is the number of nodes
covered by the box B, and N is the size of the network. then
calculate the partition sum Zr (q) = ∑

μ(B)	=0[μ(B)]q .
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FIG. 12. Linear regressions for calculating the generalized di-
mensions of the recurrence network.
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TABLE I. Comparison of recurrence networks transformed from FBM series with different Hurst indexes. Here the average is calculated
from 100 realizations.

H 〈D(0)〉 〈D(1)〉 〈D(2)〉 
D(q)

0.40 1.632 955 359 4555 32 1.462 113 762 291 203 1.324 568 844 472 558 1.675 426 636 215 924
0.45 1.595 331 264 113 667 1.345 243 849 453 671 1.182 356 286 524 482 2.067 323 904 428 986
0.50 1.570 768 526 526 059 1.294 972 986 568 832 1.135 291 034 040 322 2.132 106 915 333 559
0.55 1.496 955 506 340 691 1.276 092 858 298 725 1.120 419 709 203 580 1.778 923 958 082 282
0.60 1.471 252 546 702 877 1.264 224 152 311 605 1.090 156 202 522 773 1.740 584 602 742 986
0.65 1.348 210 637 236 297 1.225 915 988 658 060 1.103 150 737 927 043 1.642 556 252 215 174
0.70 1.304 446 382 642 433 1.134 347 097 612 430 0.989 670 372 719 278 1.488 149 695 525 952
0.75 1.251 720 498 742 988 1.085 148 989 401 195 0.950 681 208 097 028 1.445 178 739 248 894
0.80 1.206 437 282 010 590 1.064 415 121 034 396 0.949 594 824 553 587 1.375 606 925 727 599
0.85 1.154 054 167 326 104 1.014 055 134 463 063 0.904 518 905 840 645 1.231 289 283 108 065
0.90 1.106 243 766 095 298 0.974 358 969 483 122 0.869 233 664 007 547 1.084 781 493 689 348
0.95 1.056 322 443 543 536 0.921 690 208 443 068 0.819 310 269 771 388 1.042 386 684 931 838

(ix) For different value of r , repeat steps (iii) to (viii) to
calculate the partition sum Zr (q) and then use the Zr (q) for
linear regression.

A key step of linear regression is to obtain the ap-
propriate range of r ∈ [rmin,rmax]. Then we calculate the
exponents τ1(q) and generalized fractal dimensions D(q)
in the scaling ranges. In our calculation, we obtain the
generalized fractal dimensions through a linear regression of
[ln Zr (q)]/(q − 1) against ln(r/d) for q 	= 1, and similarly
a linear regression of Z1,r against ln(r/d) for q = 1, where
Z1,r = ∑

μ(B)	=0 μ(B) ln μ(B).
Figure 12 shows the linear regression for the recurrence

network constructed from FBM with Hurst index H = 0.6.
The numerical results show that the best fit occurs in the
range r ∈ (2,10) for this case (H = 0.6). We select the best
linear fit scaling range to calculate the exponents τ1(q) and
generalized fractal dimensions D(q) and then to determine the
multifractality of recurrence networks from the shape of these
curves.

In this paper, we detect the multifractal behavior of recur-
rence networks using our improved version of the modified

−10 −8 −6 −4 −2 0 2 4 6 8 10
−35

−30

−25

−20

−15

−10

−5

0

5

10

q

〈τ
1(q

)〉

 

 

H=0.4
H=0.5
H=0.6
H=0.7
H=0.8
H=0.9

FIG. 13. (Color online) Average τ1(q) curves of the recurrence
networks. Here the average is calculated from 100 realizations.

fixed-size box-counting algorithm introduced by Li et al. [29].
For each value of the Hurst index H , we averaged the results
over 100 realizations of the FBM series. We summarize the
corresponding numerical results in Table I, which includes
the Hurst index H , the average box-counting dimension
〈D(0)〉, the average information dimension 〈D(1)〉, the average
correlation dimension 〈D(2)〉, and 
D(q), where the quantity


D(q) = max D(q) − min D(q) (16)

was used to verify how D(q) changes along each curve. From
Table I, we can see that the average box-counting dimension
〈D(0)〉, the average information dimension 〈D(1)〉, and the
average correlation dimension 〈D(2)〉 roughly decrease with
the increase of the Hurst index H from 0.4 to 0.95. We show the
average 〈τ1(q)〉 curves in Fig. 13 and average 〈D(q)〉 curves
in Fig. 14. From Figs. 13 and 14, we find that the 〈τ1(q)〉
and 〈D(q)〉 curves of recurrence networks are not straight
lines. So the multifractality exists in these recurrence networks
constructed from the FBM series. Meanwhile, we also find that
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FIG. 14. (Color online) Average D(q) curves of the recurrence
networks; D(0) is the fractal dimension of the network. Here the
average is calculated from 100 realizations.
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ciated recurrence networks with respect to the Hurst index H of
fractional Brownian motion. Here the average is calculated from 100
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the multifractality of these networks becomes stronger at first
and then weaker which is indicated by the value of 
D(q) =
D(−10) − D(10) when the Hurst index of the associated time
series becomes larger from 0.4 to 0.95. In particular, the
recurrence network with the Hurst index H = 0.5 possesses
the strongest multifractality. The dependence relationships of
the average information dimension 〈D(1)〉 and the average
correlation dimension 〈D(2)〉 on the Hurst index H are given
in Fig. 15. As shown in Fig. 15, we find that these relationships
can be well fitted by the following linear formulas:

〈D(1)〉 = 1.7825 − 0.9046H (17)

and

〈D(2)〉 = 1.5736 − 0.7956H. (18)

VI. CONCLUSIONS

In this work, we constructed recurrence networks from
FBM series based on the idea of recurrence plot. We extracted
the statistical properties of time series from the perspective of
complex networks. We studied the basic topological features
of the recurrence networks constructed from FBM series with
different Hurst indices H . Our numerical results indicate
that the recurrence networks constructed exhibit exponential
degree distributions. With the increase of H , the average

degree exponent 〈λ〉 increases first and then decreases. The
relationship between H and 〈λ〉 can be fitted by a cubic
polynomial function. It was found that the average clustering
coefficient 〈C〉 increases with the Hurst index H , which means
that there are more transitive and stable structures for networks
constructed from FBMs with large Hurst index H . At the
microscopic level, we investigated the motif rank distribution
of recurrence networks. We found that the recurrence networks
are grouped into two superfamilies based on the motif rank
distribution. The three key motifs M1, M5, and M6 determine
the motif rank pattern and then classify networks. At the same
time, we also paid attention to the dependence relationship of
the average occurrence frequency 〈P (M)〉 with respect to the
Hurst index H .

From the aspect of fractality and self-similarity, we per-
formed fractal and multifractal analyses using the random
sequential box-covering method and the improved method
based on a modified fixed-size box-counting algorithm,
respectively. The numerical results show that the average
fractal dimension 〈dB〉 decreases with Hurst index H and the
linear relationship 〈dB〉 ≈ 2 − H was obtained surprisingly.
Moreover, our numerical results of multifractal analysis show
that the multifractality exists in these recurrence networks,
and the multifractality of these networks becomes stronger at
first and then weaker when the Hurst index of the associated
time series becomes larger from 0.4 to 0.95. In particular, the
recurrence network with the Hurst index H = 0.5 possesses
the strongest multifractality. We also noted that the average
information dimension 〈D(1)〉 and the average correlation
dimension 〈D(2)〉 roughly decrease with the increase of the
Hurst index H from 0.4 to 0.95. The dependence relationships
of the average information dimension 〈D(1)〉 and the average
correlation dimension 〈D(2)〉 on the Hurst index H can be
well fitted with linear functions. From the above results,
we conclude that the inherent nature of time series affects
the structure characteristics of the associated networks and the
dependence relationship between them appears retained. Our
work supports complex network as a suitable and effective tool
to perform time series analysis.
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