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Stochastic resonance in an intracellular genetic perceptron
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Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of
the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating
circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy
process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence.
We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon,
which manifests itself in noise-induced increase of response in efficiency after the learning event under the
conditions of optimal stochasticity.
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I. INTRODUCTION

Multicellular systems, e.g., neural networks of a living
brain, can learn and be intelligent. Some of the principles
of this intelligence have been mathematically formulated in
the study of artificial intelligence (AI), starting from the
basic Rosenblatt’s and associative Hebbian perceptrons and
resulting in modern artificial neural networks with multilayer
structure and recurrence. In some sense, AI has mimicked
the function of natural neural networks. But could this AI be
implemented on a genetic level inside one cell, hence, working
as an intracellular AI? Now we observe the translation of
these principles to a new, much smaller scale inside the
cell. Indeed, even single cells or unicellular organisms are
able to perform tasks such as decision-making and learning
by utilizing their genetic regulatory frameworks, i.e., as a
sequence of chemical reactions. As a proof-of-principle, it
was shown that a neural network can be built on the basis
of chemical reactions or linked chains of chemical reactions
can act as Turing machines or neural networks [1]. Bray has
demonstrated that a cellular receptor can be considered as
a perceptron with weights learned via genetic evolution [2]
and shown that protein molecules may work as computational
elements in living cells [3]. Qian et al. have experimentally
shown that neural network computations, e.g., a Hopfield-type
memory, can be implemented with DNA gate architecture and
DNA strand displacement cascades [4]. Without any doubt,
complex bimolecular circuits can provide individual cells with
the “intelligent” behavior required for survival.

Associative learning, mostly known with respect to
Pavlov’s dog’s ablility to associate the ringing of a bell
with getting meat, can also occur on the intracellular scale,
as was first formally shown by Gandhi [5]. Later it was
shown that real genomic interconnections of the bacterium
Eschericia coli can function as a liquid-state machine learning
associatively how to respond to a wide range of environmental
inputs [6]. In 2008 Saigusa et al. showed experimentally that
the amoebae can anticipate periodic events [7], conversely
explaining this by the onset and sustaining of intracellular
periodic oscillations. Finally, in 2008 Fernando et al. sug-
gested a scheme of the single-cell genetic circuit, which can

associatively learn association between two stimuli within the
cellular life [8].

On the other hand, it has been demonstrated that gene
expression is genuinely a noisy process [9]. Stochasticity
of a gene expression, both intrinsic and extrinsic, has been
experimentally measured, e.g., in Ref. [10], and modeled
either with stochastic Langevin-type differential equations or
with Gillespie-type algorithms to simulate the single chemical
reactions underlying this stochasticity [11]. Naturally, the
question arises as to what the fundamental role of noise in
intracellular intelligence is. Can stochastic fluctuations only
corrupt the information processing in the course of learning
or can they also help cells to “think”? Indeed, recently it
was shown that counterintuitively under certain conditions
in nonlinear systems noise can lead to ordering, e.g., in the
effect of stochastic resonance (SR) [12], which has found many
manifestations in biological systems, in particular to improve
the hunting abilities of the paddlefish [13], to enhance human
balance control [14], to help brain’s visual processing [15],
or to increase the speed of memory retrieval [16]. Here we
will show that, surprisingly, the correct amount of noise in
intracellular genetic intelligence can produce an improve-
ment in performance in certain situations or tasks, hence,
demonstrating stochastic resonance in an intracellular genetic
perceptron (SRIGP).

II. THE MODEL

To show this we will use the model of the associative
genetic perceptron suggested in Ref. [8] (Fig. 1), which is
able to learn associatively in the manner of Pavlov’s dogs.
Pavlovian conditioning is the process in which a response
typically associated with one stimulus can become associated
with a second independent stimulus by repeated, simultaneous
presentation of the two stimuli. After a sufficient amount of
learning events (simultaneous presentation of stimuli resulting
in a response) the presentation of the second stimulus should
be able to elicit a response by itself. A scheme of the gene
regulatory circuit demonstrating this ability is shown in Fig. 1.
This scheme is completely symmetric except for the fact that in
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FIG. 1. Schematic representation of an intracellular associative
genetic perceptron: nodes represent proteins, black lines represent
activatory (pointed arrow) and inhibitory (flat-ended arrow) transcrip-
tional interactions. Square boxes are molecules whose production is
not regulated within this circuit but is important to the regulation of
the circular nodes.

the left part of the scheme with proteins u1, r1, w1, responsible
for main stimulus (as “meat”), the basal expression of w1 is
always present, whereas in the right part of the scheme with
proteins u2, r2, w2, responsible for the “bell” stimulus, initially
there is no basal expression of w2, and a concentration of this
protein is zero. The flat-headed arrow connecting the ui and ri

molecules does not represent gene inhibition but the effect will
be similar. What it represents is the fact that ui will bind with
an ri molecule, thus preventing the ri molecule from inhibiting
genes wi .

The system is governed by a set of coupled stochastic
differential equations (SDEs) based on typical mathematical
description of activation and inhibition of gene expression
through the Hill functions [17]; see for detail of the model
Ref. [8]:

dp

dt
= vp

[(
w4

1

K4
w + w4

1

) (
1 − r2

1

K2
r + r2

1

)]

+ vp

[(
w4

2

K4
w + w4

2

) (
1 − r2

2

K2
r + r2

2

)]
− δpp + σpξp

dw1

dt
=

(
p2

K2
p + p2

) (
1 − r2

1

K2
r + r2

1

)
− δww1 + ε1 + σw1ξw1

dw2

dt
=

(
p2

K2
p + p2

) (
1 − r2

2

K2
r + r2

2

)
− δww2 + σw2ξw2, (1)

where

ri(t) = R

k + ui(t)
(2)

describes the effect of stimulus, and noise is represented
by correlated in time Gaussian variables ξp, ξw1 , ξw2 , for
all 〈ξ (t)ξ (t ′)〉 = σδ(t − t ′). The intensities σp,w1,w2 depend
additionally on the variables as in chemical Langevin equa-
tion [11], thus making noise multiplicative in these SDEs.
The reaction governing the relationship between ri and ui is
assumed to be much faster than the gene expression rates so is

(a) (d)

(b) (e)

(c) (f)

FIG. 2. Learning the association of two stimuli. Plots of concen-
tration of inputs u1, u2 and output p vs. time t . (a) u1, (b) u2, (c) p,
and (d) w1 and w2. Noisy (solid) and nonnoisy (dashed) simulations
for w2. (e) An excitation event happens at t = 36 000. At the time
of excitation the noisy path very slightly exceeds the nonnoisy path
leading to a much greater excitatory jump in w2, thus a better “learning
event”; (f) the converse is also possible.

simply given as an instantaneous conversion to the equilibrium
concentration. This equation is taken from what is known as
Michaelis-Menten enzyme kinetics, where k represents some
kind of equilibrium ratio between the two molecules compared
to their bound complex and total number of molecules ri is
a constant. The ε1 term in the w1 equation represents the
asymmetry of the system. It is this “basal rate” of growth that
gives us an “unconditioned” stimuli whereby w1 will always
have some nonzero base value. It is this property that allows
any input of u1 to stimulate a response in p, and it is the lack
of this basal rate that means initially any isolated input of w2

will not elicit a response. The constants of this system are
as follows: vp = 1, vw = 1, δp = 0.005, δw = 0.0001, ε1 =
0.05, Kw = 50, Kp = 50, Kr = 0.05, R = 10, and k = 10 [8].

Without noise, with all σ equal to 0, we can understand the
dynamics more easily by simulating these genetic networks
and watching how the variables respond to “pulses” of the
inputs u1,2 at various points in time [see Figs. 2(a)–2(d)].
This collection of images summarizes the dynamics that we
desired from this system. An initial pulse of u2 elicits no
response from the system at t ≈ 1000; this is the conditioned
stimulus. At t ≈ 3000 a pulse of u1 stimulates a response
from the system, the unconditioned stimulus. At t ≈ 5000 we
observe synchronized pulses of both u1 and u2; at this point
the association is “learned.” This is evidenced by the sudden
increase in w2 at this point. At t ≈ 8000 we see a lone pulse
of u2 eliciting a response in p on its own. This shows that the
system has now “learnt” and has fundamentally changed its
functionality. Later on at t ≈ 43 000 it returns to a state where
u2 does not elicit a response. This is observable in the fact
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that w2 has decayed too close to 0 again and is explained by
the fact that within the cell gene products such as w2 will be
recycled and thus the concentration of these molecules will
decay exponentially if they are no longer being produced.

III. STOCHASTIC RESONANCE

Next let us investigate how noise will affect the dynamics.
The response of the system to an input of unconditioned
stimulus u2 is highly dependent on the quantity of w2 and
due to the sharp switching nature of the Hill functions, small
differences can cause much larger excitation behavior. As our
w2 quantity will now behave as a stochastic trajectory it would
be of interest to examine how this will affect its value at the
time of an input pulse. As Figs. 2(e) and 2(f) show, respectively,
noise can improve the learning event, and the converse is also
possible. To study averaging influence of noise there are two
performance measures which we will consider. First, we would
like to consider the likelihood of eliciting a response from an
input that is just out of the memory range of the nonnoisy
system. Second, we would like to consider the noisy system’s
ability to respond to a sequence of such inputs.

By performing repeated simulations and calculating the
average response, we can plot the probability of eliciting a
response against the intensity of noise. A response is classified
as the output quantity p exceeding a value of 40 during the
input pulse. To define a successful firing event we require that
the output exceeds the designated threshold of 40 within the
input duration, but we will also require that it settles down
quickly and does not exceed a lower threshold 5 during the
interval between pulses, namely, in the 7000 s preceding the
pulse p. This requirement allows us to treat the high noise limit
as a failure of functionality. This is important as we are only
interested in the output exceeding the threshold as a response
to the input and not simply as a consequence of a highly noisy
system, and we cannot treat it truly as a response if it cannot
be easily distinguished from an interval.

In the first case, we are interested in eliciting simply a
single response that lies out of range of the nonnoisy system.
A likelihood of triggering first response L is shown in Fig. 3(a).
This is the classic stochastic resonance bell curve, in our case
explained by the mechanism of threshold stochastic resonance
without period force [18]. An initial increase in effectiveness
followed by a decrease due to a loss of order in the higher
noise range, hence, demonstrating SRIGP.

In the second case we present the system with a set of
ten evenly spaced input pulses, again the initial one is just
out of range of the nonnoisy system. In the best case the
system responds to all ten pulses; see Fig. 3(b). Repeated
simulations are performed and we can plot the expected
number of responses against the intensity of noise added, as
in Fig. 3(c). Again we observe this characteristic bell-shaped
curve of improvement followed by regression after an optimal
point.

The points at which we are considering input pulses to
occur are at the limits of the systems memory, this implies
that we are dealing with low concentrations of w2. This means
that the existence of the stochastic resonance bell curve can be
understood from identifying the upward biasing of the noisy
Hill function as likely to cause some improvement. The Hill

function relevant to our decaying w2 molecules is

w4
2

K4
w + w4

2

. (3)

From this we can clearly see the sharp switching nature of
this function that is ultimately responsible for the excitability
of the system. Above w2 = 100 we see that the function is
essentially constant at 1. This is why we will get a uniform
response regardless of our value of w2 provided that value
is sufficient. Below w2 = 100 there is a sharp drop-off until
below w2 = 20 we are essentially at 0. It is worth observing
that at low concentrations we have a highly asymmetric
function, any effect of noise is most likely going to take
advantage of this bias. We can explore this bias analytically.
Let our Hill function be

g(x) = x4

K4 + x4
.

Now let X ∼ N (x0,σ
2) be our random variable for the intrinsic

noise in the system when we have w = x0. Let f (x) be the
probability distribution function for the normal distribution
with mean x0 and variance σ 2

0 :
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We know that E[X] = x0 and that for g(X)

E[g(X)] =
∫ ∞

0
f (x)g(x) dx.

By considering

h(x0) = E[g(X)] − g(x0),

we see the following; see Fig. 3(d). For values of w = x0

less than approximately 10 we see an upward biasing of the
noise with respect to our Hill function. This is plotted for σ0 =

Σ

Σ

(a) (b)

(c) (d)

FIG. 3. SR in genetic perceptron. (a) Likelihood of first response
L vs. noise intensity σ ; (b) demonstration of a perfect 10 out of 10
response to the series of inputs, with an upper and lower threshold
both marked on; (c) average number N of responses, out of 10, vs.
noise intensity; (d) numerical plot of h(x0) vs. x0.
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0.5 but holds for all values, the amplitude of the oscillations
increasing with σ0. What this means is that the expectation of
the Hill function for a noisy variable at small concentrations
will be larger than the value of the Hill function for a nonnoisy
variable. This suggests that the influence of noise may provide
us with some constructive effects.

IV. DISCUSSION

In summary, the investigations into the associative percep-
tron have shown a significant improvement in two different
measures of functionality due to noise. In the first instance
we saw a marked improvement in the likelihood of eliciting
a response from an input out of the memory range of the
nonnoisy system. Second, we noticed an increase in the
effectiveness also when considering the ability to repeatedly
respond to inputs. In both cases there was a stochastic
resonance bell curve demonstrating an optimal level of noise
for the task. The improvement in excitory behavior comes as a
result of the strong asymmetry of the Hill functions, identified
earlier as the crucial term in the equation when it comes to this
kind of dynamics. While our noise is unbiased in whether it
will increase or decrease the concentration value, as it normally
distributed, the fact that this variable is then applied to Hill
functions means that small increases in the positive direction
have much more impact than those in the negative direction.
This was demonstrated using the expectation of a function of
random variables and we were able to prove that this biasing
does indeed exist for small concentrations. In the case of
eliciting a first response, it was noticed that the optimal noise

actually corresponded to a scaling factor of approximately 1
to the initially derived intensity of noise.

Our demonstration of SR at the level of intracellular
behavior gives insights into fundamental role of stochasticity
in gene expression. It seems that the ability of cells to “think”
has been probably evolved for functional success and adapted
evolutionarily to the present noise. Indeed, an optimal amount
of noise extends the memory of successful associative learning.
Malfunction of this adaptation could be a possible cause
of cancer as a failure to use an optimal amount of noise
can lead to the wrong classification of intracellular signals.
Manifestation of intracellular intelligence may change our
views on the functionality of the brain, because it bears witness
to neural network functionality not only between its cells
but also inside one single cell. In its turn, the possibility of
stochastic resonance on the intracellular scale means that our
brain can effectively utilize not only the external noise but also
the intrinsic noise of gene expression. Finally, construction of
intelligent intracellular gene-regulating networks is the hot
topic of synthetic biology [19], and here we have shown
that unavoidable noise can be constructively used in such
design.
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