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Inferring the spatiotemporal DNA replication program from noisy data
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We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary
locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring
initiation rates from experimental data concerning replication in cell populations. Previous work based on curve
fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were
constrained by the data. We introduce a nonparametric method of inference that is based on Gaussian process
regression. The method replaces specific assumptions about the functional form of the initiation rate with more
general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using
this inference method, we recover, with high precision, simulated replication schemes from noisy data that are
typical of current experiments.
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I. INTRODUCTION

Cells must accurately duplicate their DNA content at every
cell cycle. Depending on the organism, DNA replication can
initiate at one or at multiple sites called origins of replication.
The DNA is copied by a pair of oppositely moving replication
forks that propagate away from each origin. These forks
actively copy the genome away from the origin until they
encounter another replication fork. DNA replication can thus
be modeled as a process of initiation, growth, and coalescences
occurring in an asynchronous, parallel way until the whole
genome is copied. In this process, initiation has been observed
to be a stochastic process [1–6], while fork propagation, at
the large scales (10–100 kilobase) between origins, is largely
deterministic, and often constant [7]. Fork stalls from DNA
damage and other causes can alter the replication program [8],
but we do not consider such effects here.

The elements of stochastic initiation, deterministic growth,
and coalescence are formally equivalent to the processes of
nucleation, growth, and coalescence in crystallization kinetics,
and this equivalence has inspired efforts to model DNA
replication kinetics using the formalism developed in the
1930s by Kolmogorov, Johnson, Mehl, and Avrami (KJMA)
for crystallization kinetics [9]. Of course, DNA replication
takes place in a space that is topologically one dimensional, a
fact that allows one to take advantage of exact solutions to the
KJMA equations in one dimension [10].

The rate of initiation of origins is typically highly variable,
both in space, along the genome, and in time, throughout
S phase, the part of the cell cycle in which the genome is
duplicated. In many cases, we can describe the initiation pro-
cess by a rate I (x,t), where I (x,t) dx dt gives the probability
of initiation to occur in (x,x + dx) at (t,t + dt) given that x is
unreplicated up until time t . Loosely, we will say that I (x,t)
is the probability for an origin to initiate, or “fire”, at (x,t).

In addition to its intrinsic theoretical interest, describing
replication stochastically can help biologists understand better
the biological dynamics underlying replication. As we discuss
below, experiments have recently begun to deliver large
amounts of data concerning cell populations undergoing
replication. For example, it is now possible to measure the
fraction of cells f (x,t) that have replicated the locus x along

the genome by a time t after the beginning of S phase [11].
In contrast to the case of crystallization kinetics, there is little
fundamental understanding of the structure of the initiation
function I (x,t). Since direct observation of initiations in
vivo has not been possible, the task is to estimate, or infer,
I (x,t) from data such as the replication fraction f (x,t) or—
more conveniently, it will turn out—the unreplicated fraction
s(x,t) = 1 − f (x,t), which is also the probability that the
locus x is unreplicated at time t .

In this paper, we have two goals: The first, presented in
Secs. II and III, is to collect and generalize previous results on
the application of the KJMA formalism to DNA replication.
Previous work has focused on special cases: models of
replication in Xenopus laevis (frog) embryos were based
on experiments that averaged data from the whole genome
[12] and thus could neglect spatial variations. Conversely, in
recent experiments on a small section of a mouse genome,
spatial variations dominated and temporal variations could be
neglected. In budding yeast, origins are restricted to specific
sites along the genome [13], which also leads to a restricted
form of the initiation function. In general, however, both spatial
and temporal variations are important, and we extend here the
full KJMA formalism to handle such cases. Section IV gives a
brief example that illustrates the kinds of results and insights
that this approach to modeling replication can provide.

The second goal is to present a different way to infer
initiation rates I (x,t) from replication data such as s(x,t).
Replication timing data are increasingly available for a variety
of organisms and cell types [11,14–17], and advances in
experimental techniques now allow the determination of the
probability distribution of genome-wide replication timing
at fine spatial and temporal scales. For instance, in yeast,
the unreplicated fraction profiles have been determined at
1 kb resolution in space and 5 min resolution in time [18].
The increasing availability of data makes the ability to infer
initiation rates important.

Our main result, presented in Sec. V, is to adapt the tech-
nique of Gaussian process regression to “invert” experimental
replication data and estimate the initiation function I (x,t) and
fork velocity v. Previous approaches have mainly used curve
fitting, a technique that postulates a suitable functional form
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for I (x,t), with free parameters that are then constrained by
fitting to the data. This technique was used to infer initiation
functions in frog embryos [12], budding yeast [18–21], and
limited regions of human somatic cells [22].

Although the above efforts were successful, curve-fitting
methods are time consuming, requiring considerable effort
to generate initial guesses that are close enough to the
final inference. The situation is even more difficult if one
wants to describe replication over the whole genome of
higher eukaryotes. In these organisms, initiations are not
limited to well-positioned replication origins but also occur
in large extended initiation zones whose functional form
is not known a priori. Furthermore, the mapping of well-
positioned replication origins and extended initiation zones
along the genome is difficult [23], and not much is known
about the firing-time distributions. These added uncertainties
make curve-fitting approaches to local genomic data in higher
eukaryotes problematic.

Given the difficulty of extending and automating curve-fit
approaches, we explore here an alternative that does not depend
on knowing a priori the functional form of the initiation
function. The technique, Gaussian process regression, is
based on the Bayesian approach to data analysis and gives
a systematic way to infer the initiation rate without making
detailed assumptions about its functional form in the way
required of curve-fit methods. Although Gaussian process
regression is more powerful than curve-fitting methods, it
can be simpler to apply. Because no detailed tuning of
initiation conditions is required, the method can in principle be
automated. In contrast, curve-fitting methods require a good
technical understanding to use successfully.

II. GENERAL REPLICATION PROGRAM

We begin by establishing relationships that must be obeyed
by any spatiotemporal replication program with a constant
fork velocity. (Scenarios with variable or stochastic fork
velocities are straightforward but beyond the scope of this
paper.) We then show that many quantities of interest, such as
the densities of right- and left-moving forks or the initiation
and termination densities, are related to derivatives of the
unreplicated fraction profiles. Then we describe briefly how to
use these relationships to characterize the replication program.

A. DNA replication kinetics quantities

If the replication fork velocity v is constant, the replication
program in one cell cycle is completely specified by the
genomic positions and firing times of the replication origins.
From each origin, two divergent forks propagate at constant
velocity until they meet and coalesce with a fork of the opposite
direction at a replication terminus [Fig. 1(a)]. The spatial and
temporal coordinates of replication termini, as well as the
propagation lines of the replication forks and the replication
timing (the time at which a locus is replicated), can all be
derived from the genomic positions and firing times of the
replication origins. Note that the inherent stochasticity of
the replication program implies that the number of activated
origins, along with their positions and firing times, change
from one cell cycle to another, as depicted in Fig. 1(b).
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(b)

FIG. 1. Spatiotemporal representation of the replication program.
(a) Replication program in one cell cycle. From each replication origin
Oi (filled disk), two replication forks propagate at constant velocity
v until they meet a fork of the opposite direction at a replication
terminus �i (hollow disk). The replication timing curve—the time
at which a locus is replicated—is given by the intersecting set of
propagation lines of the replication forks (dark zigzag line). The
shaded area shows the domain of terminus �i . (b) Replication
program in several cell cycles. The number of activated origins, their
genomic positions, and firing times change from one cell cycle to
another.

Consequently, the number of terminations and initiations, the
number of forks, and the replication timing curve all change
from one cell cycle to another.

Let us define several quantities describing a stochastic
DNA replication program. The initiation and termination
densities ρinit(x,t) and ρter(x,t) give the (ensemble average)
number of initiation and termination events observed in
any given spatiotemporal region. The corresponding spatial
densities are given by ρinit(x) = ∫ t∞

0 dt ρinit(x,t) and ρter(x) =∫ t∞
0 dt ρter(x,t). Note that although the integration formally is

to t = ∞, the end of replication for a finite genome of length
L will at a finite (but stochastic) time tend [24]. Often, ρinit(x)
is called the efficiency of the locus x, as it equals the fraction
of cells where locus x has initiated.

In this paper, we use the compact notation (±) to distinguish
right-moving forks (velocity +v) from left-moving forks (ve-
locity −v). The fork densities ρ±(x,t) give the spatial densities
of (±) forks at a given time t . In other words, the (ensemble
average) number of (±) forks in a genomic region [x1,x2] at
time t is given by

∫ x2

x1
dx ρ±(x,t). Also, as forks propagate

at velocity ±v, the number of (±) forks crossing the locus x

during [t1,t2] is given by
∫ t2
t1

vdt ρ±(x,t). Consequently, the
proportions of cell cycles where the locus x is replicated by a
(±) fork is given by p±(x) = ∫ t∞

0 vdt ρ±(x,t). The replication
fork polarity p(x) = p+(x) − p−(x) measures the average
directionality of the fork replicating the locus x.

Replication timing—the time when a locus is replicated—
changes from one cell cycle to another. The variations can be
intrinsic, due to stochastic initiation in an individual cell, and
extrinsic, due to a population of cells. These variations lead
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to a probability distribution P (x,t) for the replication timing
at locus x. The closely related unreplicated fraction s(x,t) is
defined to be the fraction of cells where x is unreplicated at
time t . Since s(x,t) equals the probability that replication at x

occurs after t , we see that P (x,t) = −∂t s(x,t). The ensemble
average of the replication timing, or mean replication timing,
is then1

T (x) =
∫ t∞

0
dt P (x,t) t =

∫ t∞

0
dt s(x,t). (1)

B. Derivatives of the unreplicated fraction profiles

We can establish a number of relations among the quantities
defined in Sec. II A. In particular,

v[ρ+(x,t) + ρ−(x,t)] = −∂t s(x,t), (2a)

ρ+(x,t) − ρ−(x,t) = ∂xs(x,t), (2b)

ρ±(x,t) = −1

2

(
1

v
∂t ∓ ∂x

)
s(x,t), (2c)

ρinit(x,t) − ρter(x,t) = −1

2
v� s(x,t), (2d)

p(x) = vT ′(x), (2e)

ρinit(x) − ρter(x) = 1

2
vT ′′(x) = 1

2
p′(x), (2f)

where � = 1
v2 ∂

2
t − ∂2

x is the d’Alembertian operator. See the
Appendix for a proof of these relations.

From Eq. (2c), the densities of right- and left-moving forks
are directly given by derivatives of the unreplicated fraction.
The sum of the fork densities in Eq. (2a) is related to P (x,t) =
−∂t s(x,t), the probability distribution of replication timing at
locus x. Equations (2e) and (2f), previously derived in [25,26],
and, in special cases, in [27,28], show that the shape of the
mean replication timing curve T (x) gives direct information
about the fork polarity and the relative densities of initiation
and termination in a region. For instance, the replication fork
polarity profile p(x) was estimated in the human genome
using Eq. (2e) and shown to be the key determinant of the
compositional and mutational strand asymmetries generated
by the replication process [25,29,30].

Contrary to intuition [11], the above equations show that
there need not be a direct correspondence between well-
positioned replication origins and timing-curve minima [27].
Around a fixed, isolated origin i located at position xi , the
initiation density profile reduces to a Dirac delta function,
ρinit = Ei δ(x − xi), where the height Ei is the observed
efficiency of origin i (the fraction of cells where origin i

has initiated). Equation (2f) shows that the isolated origin
i produces a jump discontinuity of height 2Ei in the fork
polarity profile. Equation (2e) shows that at a minimum in
T (x), the fork polarity p(x) must change sign. Mathematically,
the efficiency Ei of the origin may or may not be large enough
to produce a sign shift in p(x) corresponding to a minimum of

1Our definition differs from that of [27,28] in that we neglect the
very small probability that no initiations occur on a chromosome.
Replication is then not well defined.

the T (x) curve. More intuitively, a weak origin (one that rarely
fires in a cell cycle) in a region that is almost always replicated
by a nearby strong origin may not affect the timing curve
enough to produce a local minimum. As a result, even fixed,
isolated origins do not necessarily imply minima in the mean
replicating time curve [27]. Indeed, in budding yeast, about
one origin in three is not associated with a local minimum of
the timing curve [21].

III. INDEPENDENT ORIGIN FIRING

The results of Sec. II B are valid for any initiation rule. If,
also, origins fire independently, then the whole spatiotemporal
replication program is analytically solvable. “Independence”
here means that an initiation event neither impedes nor favors
origin initiation at another locus and implies that we can
define a local initiation rate of unreplicated DNA, I (x,t). The
local initiation rate then completely specifies the stochastic
replication program. Most models of the replication program
proposed so far [19–21,27,31,32] assume the independent
firing of replication origins and are thus special cases of the
general formalism presented here. (An exception is [33].)
The replication program is then formally analogous to a
one-dimensional nucleation-and-growth process with time-
and space-dependent nucleation (initiation) rate. In the 1930s,
the kinetics of nucleation-and-growth processes were analyt-
ically derived for crystallization by Kolmogorov, Johnson,
Mehl, and Avrami in the KJMA theory of phase transition
kinetics [9]. Here, we will prove that the quantities describing
DNA replication—the unreplicated fraction profiles and the
probability distribution of the replication timing curve, the
density of initiation and termination and of forks—can all be
analytically derived from the local initiation rate.

The KJMA formulation of the replication program is an
exactly solvable model, as all higher-moment correlation
functions can also be analytically derived, for example, the
joint probability distribution of replication timing at different
loci, or the joint densities of initiations at different loci. We
will show that, even when origins fire independently, the
propagation of forks creates correlations in nearby replication
times and in nearby initiation events.

Many of these relationships were previously derived for
the special case of well-positioned replication origins [21,28].
The present formalism is more general, as it can include
extended initiation zones, and offers a more compact and
elegant derivation of these relationships.

A. Unreplicated fraction

We first note that the locus x is unreplicated at time t if and
only if (iff) no initiations occur in the past “cone” V(x,t)[v] of
(x,t) [gray area in Fig. 2(a)] defined by

V(x,t)[v] = {(x ′,t ′) : |x − x ′| � v(t − t ′)}. (3)

When the context is unambiguous, we will use the more
compact notation X = (x,t) and VX ≡ V(x,t)[v]. The unrepli-
cated fraction then equals the probability that no initiations
occur in VX (Kolmogorov’s argument [9]). As initiations occur
independently with an initiation rate I (x,t), this probability is
given by a Poisson distribution with time- and space-dependent
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FIG. 2. Kolmogorov’s argument. (a) A locus x is unreplicated at
time t iff no initiation occurs in the past cone VX of X = (x,t), the
gray region demarcated by the lines L±

X . (b) The loci x1,x2,x3 are all
unreplicated at times t1,t2,t3 iff no initiation occurs in VX1 ∪ VX2 ∪
VX3 (gray region).

rate [34]. Thus, the unreplicated fraction is given by [35]

s(x,t) = e
− ∫

VX
dt ′ dx ′ I (x ′,t ′)

. (4)

B. Replication timing and fork densities

We can extend Kolmogorov’s argument to find the fork
densities. From Eqs. (2c) and (4), we find

ρ±(x,t) =
[∫

L±
X

I

]
s(x,t), (5)

where the integrals of I over the lines L+
X and L−

X in Fig. 2(a)
are defined as∫

L±
X

I ≡
∫ t

0
dt ′ I [x ∓ v(t − t ′),t ′]. (6)

The interpretation of Eq. (5) is straightforward: a (±) fork
passes by x at time t iff no initiation occurs in VX and one
initiation occurs along L±

X.
Similarly, from Eq. (2a),

P (x,t) = v [ρ+(x,t) + ρ−(x,t)] = −∂t s(x,t),

= v

[∫
L+

X

I +
∫

L−
X

I

]
s(x,t). (7)

In words: to have replication at X = (x,t), no initiation occurs
in VX and an initiation along either the line L+

X or the line L−
X

causes a fork of velocity v to sweep by.

C. Initiation and termination densities

The initiation rate I (x,t) gives the number of initiations
at an unreplicated site. The initiation density ρinit(x,t) is then
determined by the rate of initiation at (x,t) times the probability
that no initiations occurred previously in the triangular area VX

defined in Fig. 2(a):

ρinit(x,t) = I (x,t)s(x,t). (8)

From Eqs. (2d), (4), and (8), the density of terminations is

ρter(x,t) = 2v

[∫
L+

X

I

] [∫
L−

X

I

]
s(x,t). (9)

A termination at X = (x,t) implies that no initiation occurs in
VX, one initiation occurs along L+

X, and one along L−
X.

D. Rate equations for fork densities

From the above formalism, we can easily recover the rate-
equation formalism proposed in [36] for fork densities. First,
using Eq. (2c), the relation (2d) can be rewritten as a rate
equation for the density of right- or left-moving forks,

(∂t ± v∂x)ρ±(x,t) = ρinit(x,t) − ρter(x,t). (10)

Then, from Eqs. (5), (8), and (9) we find [36]

(∂t ± v∂x)ρ±(x,t) = Is − 2v
ρ+ρ−

s
. (11)

Intuitively, fork densities change either because forks enter or
leave a region (transport) or because there is initiation (birth)
or termination (death).

E. Correlations in replication timing

As discussed in [21], the observation that neighboring
loci tend to have similar replication times can be fully
consistent with the independent-firing assumption. To more
precisely quantify the correlation between replication times at
different loci, we introduce the N -point unreplicated fraction
s(X1, . . . ,XN ), where Xi denotes the spacetime point (xi,ti).
We define s to be the fraction of cells where each of the N loci
xi is unreplicated at time ti . The joint probability distribution
of replication timing at loci x1, . . . ,xN is then given by

P (X1, . . . ,XN ) = (−1)N∂t1 · · · ∂tN s(X1, . . . ,XN ). (12)

In Fig. 2(b) we note that each locus xi is unreplicated at time
ti iff no initiations occur in VX1 ∪ · · · ∪ VXN

, the union of past
cones. Therefore,

s(X1, . . . ,XN ) = e
− ∫

VX1
∪···∪VXN

dX′I (X′)
. (13)

In [37], Sekimoto derived an equivalent expression in the more
general setting of a time-dependent growth law.

To see why replication-fork propagation creates correla-
tions between the replication times at different loci, consider
the N = 2 case. Since VX1 ∪ VX2 = VX1 + VX2 − VX1 ∩ VX2 ,
the two-point unreplicated fraction is equal to

s(X1,X2) = s(X1)s(X2)e
+ ∫

VX1
∩VX2

dX′ I (X′)
. (14)

If the replication times at loci x1 and x2 were uncorrelated,
both their probability distributions and their cumulative
distributions would factor: P (X1,X2) = P (X1)P (X2) and
s(X1,X2) = s(X1)s(X2). It is clear from Eq. (14) that repli-
cation times at loci x1 and x2 are correlated because initiation
events may occur in their common past cone VX1 ∩ VX2 .
Indeed, if I (X) is not identically zero in VX1 ∩ VX2 , then
s(X1,X2) �= s(X1)s(X2). However, if the loci x1 and x2 are
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sufficiently far apart—that is, if |x1 − x2| � 2vtend, where tend

is the duration of the S phase—then their past cones do not
intercept, and the replication times at x1 and x2 are indeed
uncorrelated.

F. The joint density of initiation

In Sec. III E, we saw that the propagation of replication
forks creates correlations in the timing of replication: a location
near an origin will tend to replicate soon after that origin
fires. A less obvious kind of correlation also exists in the
initiation densities, where, again, we argue that apparent
correlations can sometimes be deceptive. Indeed, experimental
observations of apparent origin synchrony [38] or of sequential
firing, as observed in temporal transition regions [39], suggest
that initiations may be temporally and spatially correlated,
contradicting the independent-firing assumption. Here, we will
see that inferring independence from such observations can be
subtle.

In order to quantify the correlations observed in the distri-
bution of initiations, we introduce the N -point joint density
of initiations ρinit(X1, . . . ,XN ), defined as the probability of
observing, during the same cell cycle, an initiation at each
Xi . Let us first assume that no Xi belongs to the past cone
of another Xj , as depicted in Fig. 2(b). Then, an initiation
at each Xi implies also that no initiation has occurred in
VX1 ∪ · · · ∪ VXN

. Since the origins fire independently, the joint
density of initiation is

ρinit(X1, . . . ,XN ) = I (X1) · · · I (XN )s(X1, . . . ,XN ). (15)

To illustrate why replication-fork propagation necessarily
creates correlations in the joint density of initiation, we rewrite
these expressions for N = 2:

ρinit(X1,X2) = ρinit(X1)ρinit(X2)e
∫
VX1

∩VX2
dX′I (X′)

. (16)

As in Eq. (14), initiation densities at X1 and X2 are correlated
because of possible origin firing in their common past cone
VX1 ∩ VX2 . To prove that neighboring initiations influence each
other then takes more than the observation of initiation clusters
or of sequential firing of nearby origins. Only a clear departure
from Eq. (16) would provide definitive evidence.

Finally, if one of the Xi belongs to the past cone of another
Xj , ρinit(X1, . . . ,XN ) is necessary null. As re-replication is
not allowed, we cannot observe an initiation in the future cone
of another origin firing. The joint density of initiation must
satisfy this trivial correlation.

G. Well-positioned replication origins

In organisms such as the budding yeast Saccharomyces
cerevisiae, origins initiate at predefined sites called potential
origins. The local initiation rate then has the form [21]

I (x,t) =
∑

i

δ(x − xi)Ii(t), (17)

where xi is the position of potential origin i and Ii(t) its
initiation rate. All the analytical formulas derived in [21,28] are
recovered as particular cases of the more general and compact

expressions Eqs. (4)–(16), with the local initiation rate given
by Eq. (17).2

Let us specify the expressions for s(x,t) and ρinit(x) in the
case of well-positioned origins. From Eqs. (4) and (17), the
unreplicated fraction can be written

s(x,t) =
∏

i

si

(
t − |x − xi |

v

)
, (18)

where si(t) ≡ e− ∫ t

0 dt ′ Ii (t ′) (19)

is the probability that the potential origin i has yet not initiated
at time t . In words, the locus x is unreplicated a time t iff each
origin i has not initiated before time t − |x − xi |/v. From
Eqs. (8) and (17), the initiation density profile will have sharp
peaks at potential-origin sites:

s(x,t) =
∏

i

si

(
t − |x − xi |

v

)
, (20)

where si(t) ≡ e− ∫ t

0 dt ′ Ii (t ′) (21)

where Ei , the observed efficiency of origin i, is defined as
the fraction of cells where the origin i has activated before
the end of the S phase. The observed efficiency of the origin
i depends on its initiation properties but is also affected
by the initiation properties of neighboring origins [21,28].
Indeed, when the locus xi is replicated by a fork coming
from a neighboring origin, the potential origin i will not
be activated during this cell cycle, and the potential origin
is passively replicated. It is then interesting to consider the
potential efficiency of a replication origin—the probability
that the origin would activate during the S phase if passive
replication by neighboring origins is prevented. The potential
efficiency qi of origin i, denoted origin competence in [19,28],
is equal to

qi = 1 − e− ∫ t∞
0 dt ′ Ii (t ′) = 1 − si(t∞), (22)

as si(t) is the probability that the origin i has not yet initiated
at time t . Contrary to a claim in [28], the KJMA formalism
does not assume 100% competent origins; in general, qi < 1.3

In budding yeast, passive replication has a strong impact on

2To make the connection with Refs. [21,28] more explicit, let us
specify some of the quantities introduced in those references in terms
of the local initiation rate. The initiation probability density φi(t)
in [21], or origin activation time probability density pi(t) in [28],
is given by φi(t) = pi(t) = −∂t si(t) = Ii(t)si(t). Note that this is
not a normalized probability distribution, as

∫ t∞
0 dt φi(t) = qi < 1

is the potential efficiency, or competence, of origin i. In [28], we
also have Mi(x,t) = si(t − |x − xi |/v) and pi(x,t) = Ii(t − |x −
xi |/v) si(t − |x − xi |/v). In terms of the local initiation rate, the
combinatorial expressions in [28] simplify greatly; for instance,
pi(x,t)

∏
j �=i Mj (x,t) = Ii(t − |x − xi |/v) s(x,t).

3For example, we can have qi < 1 if origins fail to be licensed
prior to the start of the S phase [19,28]. Let the licensing probability
for origin i be Li . Then si(t) = (1 − Li) + Lie

−I ′t , where I ′ is the
initiation rate if licensed, assumed, for simplicity to be constant
for all origins and all time. From Eq. (21), Ii(t) = − d

dt
ln si(t) ∼

I ′( Li

1−Li
)e−I ′t for times t 
 1/I ′. A finite licensing probability thus

cuts off the effective initiation rate at long times, and the failure to
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FIG. 3. (Color online) Replication program with two extended
initiation zones Z1 and Z2. (a) Heat map of the local initiation rate
I (x,t). The black lines correspond to single cell cycle realization
of the replication program, obtained by Monte Carlo simulation. (b)
Replication distribution Eq. (7). (c),(d) Densities of left- and right-
moving forks, Eq. (5). (e),(f) Densities of initiation [Eq. (8)] and
termination [Eq. (9)].

the efficiencies of replication origins: the observed efficiency
is usually much smaller than the potential efficiency [21].

IV. EXAMPLE REPLICATION PROGRAM

Let us now illustrate the formalism developed in the two
preceding sections on an artificial replication program that
consists of two extended initiation zones Z1 and Z2. In
Fig. 3(a), the spacetime representation of the local initiation
rate is color coded by a heat map. To give an idea of the
resulting stochasticity, we sample by Monte Carlo simulation
five realizations of the replication program, represented by
the black lines on Fig. 3(a). Several aspects of the replication
program, analytically derived from the local initiation rate
using the results of Secs. II and III, are represented on
Figs. 3(b)–3(f).

Notice how Fig. 3 reveals many fine details about the
replication process. For example, the density of termination
events in Fig. 3(f) shows three zones. At the center is
the strongest one, representing the case where forks from
the two origin regions collide after propagating roughly to
the midpoint between the initiation zones Z1 and Z2. The two

license origins can be absorbed into the effective initiation rate. Note
that if Li = 1, we recover Ii = I ′.

weaker termination zones overlap with the initiation zones and
represent cases where two or more initiation events within the
same zone lead to a fork collision soon after the initiation
event. Solving the analytical model allows us to detect and
quantify the probability for these different scenarios to occur.

V. INFERRING THE LOCAL INITIATION RATE

In Secs. II–IV, we showed how to solve the forward problem
of replication: given an initiation rate I (x,t), calculate various
quantities of interest for the replication process, for example
the unreplicated fraction s(x,t). Now we consider the inverse
problem: given a noisy measurement of s(x,t), can we infer
I (x,t)? In particular, we advance a nonparametric method that
avoids having to define a model structure for I (x,t).

To test the method under well-controlled circumstances,
we will focus on inverting simulated data based on the
spatiotemporal replication program presented in Sec. IV. The
data will have a spacetime resolution comparable to that of
present experiments and will include noise levels that are also
typical.

We begin by first reviewing past attempts to solve this
inverse problem, including fitting strategies and analytic
approaches based on expressing the initiation rate I (x,t)
as a function of the nonreplicated fraction s(x,t). After
discussing the limitations of previous attempts, we then
propose a Bayesian, nonparametric approach to infer I (x,t)
from replication timing data. We will test this inference
scheme on the artificial data set described above and show
that near-perfect reconstruction of the replication program
(with negligible posterior uncertainty) is attained for many
quantities of interest, such as the unreplicated fraction, the
densities of replication forks, and the densities of initiation
and termination. The local initiation rate is also inferred with
low posterior uncertainty in most regions except at the end of
the S phase, where the unreplicated fraction, already close to
zero, is insensitive to large variations in the initiation rate.

A. Curve-fitting strategies

As discussed in the Introduction (Sec. I), the replication fork
velocity v and initiation function I (x,t) can be estimated by
curve fitting [12,18–22]. The main issue is that one must make
strong assumptions about the prior functional form for I (x,t),
for example, whether origins are localized along the genome,
the type of time dependence, etc. Besides requiring a priori
knowledge about the biology that is not always available, the
underlying forms may not really be what is assumed. Also,
the number of parameters needed is not clear in advance. For
example, the number of detectable origins in budding yeast
is an output of the inference process. In addition, in the most
commonly used implementations of curve fitting, one needs
to provide initial values for all parameters. It is often not
easy to find initial values that are close enough to the best
estimate to converge. Methods such as genetic algorithms that
can optimize the fit globally improve upon this aspect, albeit
at the cost of greater computation [18,19].

For all these reasons, a successful curve fit requires both
a priori knowledge and a good level of technical expertise.
Below, we will explore a strategy that requires only vague a
priori expectations and that can, in principle, be automated.
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B. Exact inverse

Recently, we showed how to invert explicitly the KJMA
formula Eq. (4), thereby determining analytically I (x,t) from
s(x,t) [40]:4

I (x,t) = − 1
2v� ln s(x,t). (23)

Because Eq. (23) gives an exact expression for I (x,t), it would
seem to provide an alternative to curve-fit approaches: rather
than guess the form of I (x,t), we can simply calculate it
from the data s(x,t). Unfortunately, the analytical inverse is
numerically unstable: taking two derivatives amplifies noise
tremendously. Thus, Eq. (23) can be naively applied only
if essentially noise-free data for s(x,t) are available. For
example, in [40], we used Eq. (23) to invert simulations that
had negligible numerical noise. When applied directly to low-
resolution experimental data with realistic amounts of noise,
Eq. (23) gives unphysical results such as negative initiation
rates [12]. Simple ad hoc fixes, such as smoothing s(x,t) over
fixed space and time scales [40], lead to unacceptable distortion
in the estimate of I (x,t) and also do not give uncertainties in
estimated initiation rates. All of these shortcomings motivate
a more fundamental approach.

C. Bayesian inference

Here, we will adopt a Bayesian, nonparametric approach
to more properly infer I (x,t) from replication timing data.
Bayesian methods offer a consistent and conceptually well-
founded framework for inference, where all assumptions are
explicitly stated [42].

1. Introduction

The Bayesian formulation is well adapted to parameter-
estimation problems [42]. In our case, the goal is to infer
the parameter I (the local initiation rate) from the data d (a
noisy measurement of the unreplicated fraction). We recall that
the posterior probability of I , given data d, is determined by
Bayes’ theorem, which is derived from the product and sum
rules of probability theory [42]:

P (I |d,β)︸ ︷︷ ︸
posterior

= 1

P (d|β)
P (d|I,β)︸ ︷︷ ︸

likelihood

P (I |β)︸ ︷︷ ︸
prior

, (24)

where the normalizing factor, the evidence, is given by

P (d|β)︸ ︷︷ ︸
evidence

=
∫

dI P (d|I,β) P (I |β). (25)

In Eq. (24), the likelihood follows the noise model for the
data, while the prior encodes any available information—
even vague—about the parameter to infer; in replication, for
instance, we know that initiation rates I (x,t) must be positive.
We also expect that temporal and spatial variations of I (x,t)

4Generalizing Eq. (23) to a space- and time-dependent velocity
field v(x,t) is straightforward, albeit cumbersome [41]: I (x,t) =
1
2 [( 1

v
∂tv) 1

v
∂t + (∂xv)∂x − v�] ln s(x,t). Because it is not at present

clear whether systematic (as opposed to random) variation of fork
velocities is important, we focus on the constant-v case.

are smooth, although we may not know the smoothness scales.
Below, we will describe in more detail the probabilistic model
used for inference given such vague priors.

Often, the specification of a probabilistic model for the
likelihood and the prior requires an additional set of param-
eters, called hyperparameters, symbolized by β in Eqs. (24)
and (25). In our case, the hyperparameters comprise the fork
velocity v, which affects the relationship Eq. (4) between the
unreplicated fraction data and the initiation rate, the noise level
affecting the data, and additional parameters encoding prior
information about the initiation rate, for example the temporal
scale of smoothness. These hyperparameters can themselves
be inferred by another application of Bayes’ theorem [43]:

P (β|d) = 1

P (d)
P (d|β)P (β). (26)

The posterior probability of the hyperparameters is thus
proportional to the evidence and the prior probability of the
hyperparameters. Given the posterior P (β|d), we can elimi-
nate the hyperparameters by marginalization, or “integrating
out.” For example,

P (I |d) =
∫

P (I |d,β) P (β|d) dβ. (27)

The Bayesian formulation is also well adapted to model
selection. Given data and candidate theories, Bayes’ theorem
allows one to estimate the most probable model [43]. For
instance, we could compare the probabilistic model presented
here and the fitting procedure (which can easily be reformu-
lated in a Bayesian framework) employed in yeast. We could
even compare to a theoretical model that extends the KJMA
formalism to take into account correlations in the origin firing.
Such model comparisons are beyond the scope of the present
paper.

The inference task here is complicated by the nonlinear
relationship Eq. (4) between the data (the unreplicated fraction
profiles) and the initiation rate we seek to infer and by
the positivity constraint on the initiation rate. Indeed, if the
relationship were linear and no positivity constraint needed
to be enforced, then we would be able to derive the posterior
Eq. (24) analytically. Below, we will approximate the posterior
probability distribution by its mode, the maximum a posteriori
(MAP) approximation, which requires a high-dimensional
nonlinear optimization algorithm. To estimate the width of
the posterior, we will sample directly the posterior by Markov
chain Monte Carlo (MCMC) techniques. Finally, to estimate
the evidence, we will use the Laplace approximation, which
is the analog of the saddle-point approximation in statistical
physics.

2. Likelihood

We model the data as a noisy version of the unreplicated
fraction s, sampled in time and space:

dk = s(xk,tk) + ξk,

with s(x,t) = e
− ∫

VX
dx ′ dt ′ I (x ′,t ′)

, (28)

with noise described by independent, identically distributed
(i.i.d.) Gaussian random variables of standard deviation σd .
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FIG. 4. (Color online) Simulation of the replication program
with extended initiation zones (Fig. 3). (a) Artificial data set generated
by adding Gaussian noise of standard deviation σd = 0.05 to the true
unreplicated fractions in (b). In (a) and (b), the unreplicated replicated
fraction is given at every 1 kb from x = 1 to 100 kb and every 5 min
from t = 10 to 50 min.

Thus, ξk ∼ N (0,σ 2
d ), and the likelihood is

P (d|I,v,σd ) = Pnoise(d − s)

=
∏
k

1√
2πσ 2

d

e−(1/2σ 2
d )[dk−s(xk,tk )]2

, (29)

where the product is over all data points k.
In the artificial data set shown in Fig. 4, the noisy

unreplicated fractions are sampled every 1 kb in a fragment of
100 kb and every 5 min from t = 10 min to t = 50 min. These
resolutions match that of the recent budding-yeast experiments
described above. We chose σd = 0.05, again typical of current
experiments [17,21]. Note that Fig. 4 can also be interpreted
as a plot of replicated fraction f = 1 − s from times of 10 to
50 min.

Comment on the noise model. Although we model the noise
by i.i.d. Gaussian random variables of standard deviation σd ,
it is straightforward to substitute any noise model in Eq. (29),
including correlations, time- or space-dependent variance,
or non-Gaussian distributions. As a real-world example, the
analysis of data on budding yeast showed a variance that
increased throughout the S phase and a noise distribution,
that while Gaussian for small fluctuations, was exponential for
larger ones [21]. In general, small deviations from the Gaussian
form will not affect the analysis much.

3. Prior

A key advantage of the Bayesian formulation is that
we can specify the prior, the set of possible initiation rate
functions, without having to impose a particular functional
form. Nevertheless, we do have some vague prior knowledge
about I (x,t) that should be used to constrain the set of possible
initiation functions: it must be positive and its temporal
variations are smooth. In some cases, spatial variations are
also smooth.

To ensure the positivity of the initiation rate, we change
variables, defining

I (x,t) ≡ I0 × 10m(x,t). (30)

In other words, rather than trying to infer the initiation rate I

directly, we will infer its logarithm m.

To enforce smooth variations in the initiation rate, we will
use a Gaussian process prior [44] on m = log10(I/I0):

m ∼ GP(0,�), (31)

with a homogeneous, squared-exponential covariance function
that depends on the spatial separation �x and the temporal
separation �t :

�(x,t ; x + �x,t + �t) = σ 2
0 e−(�x/
0)2

e−(�t/τ0)2
. (32)

A Gaussian process m can be viewed as the infinite-
dimensional analog of the multivariate normal distribution;
it defines a probability distribution over functions. The precise
definition is that the values of m at an arbitrary set of points
(X1, . . . ,XN ) are distributed according to the multivariate
normal distribution [m(X1), . . . ,m(XN )] ∼ N (0,�), with co-
variance matrix �ij = �(Xi,Xj ). In our case, we would like
to infer the initiation rate at a spatial resolution of δx = 1 kb
and a temporal resolution of δt = 0.5 min (we set δt in order to
have δx = v δt , with a fork velocity equal to v = 2 kb min−1).
This defines the grid of points X ≡ (x,t) where m should be
evaluated. The prior distribution on m = {m(x,t)} is therefore
the multivariate normal

P (m|σ0,τ0,
0) = 1√
det(2π�)

e−(1/2)m�−1m, (33)

with the covariance function � evaluated at the grid of points
(x,t) using Eq. (32). In the covariance function Eq. (32), σ0

quantifies the prior expectations about the range of values taken
by m. The square-exponential decay as a function of the time
interval separating two points, on a characteristic time scale
τ0, enforces the smoothness of the function m on the same
time scale, and similarly for the spatial scale 
0. The limit

0 → 0 means that m values at different genomic positions
are uncorrelated. It is obtained by replacing the squared
exponential in Eq. (32) by a Dirac delta function δ(�x). The
squared-exponential form of the covariance matrix the defined
in Eq. (32) is the standard choice in the Gaussian process
literature [44]. It yields smooth functions that are differentiable
to all orders. Other choices are possible, when appropriate.
For example, correlations that decay exponentially lead to
functions that are continuous but not differentiable.

In Gaussian process regression, the task is to go from a
Gaussian-prior representation of m(x,t) [Eq. (31)] to a poste-
rior representation that incorporates the noisy observations dk .
Note that many authors define a Gaussian process regression to
be one where the posterior distribution for m is also a Gaussian
process (that is, they assume that the data are related to m by
a linear transformation). Here, the data and m are nonlinearly
related, and the resulting distribution for m is non-Gaussian.
For simplicity, we also refer to this case as Gaussian process
regression, but we will need to use special techniques to deal
with the non-Gaussian nature of the posterior distribution.

4. Hyperparameters

As discussed earlier, we can estimate the hyperparameters
from the data set itself. Here, instead of carrying out this
procedure for all of them, we will do so only for the most
interesting ones, the fork velocity v and the spatial scale

0 for I (x,t) variations. The latter is especially delicate, in
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FIG. 5. Diagram summarizing the forward replication model
m → d evaluated at grid points (x,t) and its hyperparameters
(σ0,τ0,
0,I0,v,σd ). The symbol “∼” means “distributed as,” and the
dashed arrow denotes the inference d → m.

that some organisms, such as budding yeast, have near-δ-
function initiation sites, while others, such as frog embryos,
permit initiation anywhere and have slowly varying densities.
Accordingly, we will carry out the self-consistent selection for
these parameters below.

We first fix the hyperparameters of lesser interest. For
example, σ0 and I0 set the range of values allowed for the
initiation rate. Their precise value should not matter much, as
long as the allowed range of values is larger than the actual
range of values taken by the initiation rate. Here, we choose
I0 = 10−4 kb−1 min−1 and σ0 = 3, to allow for a very wide
range of values for the initiation rate. This choice allows a 1σ

range of initiation rates of between 10−1 and 10−7 kb−1 min−1.
The temporal scale τ0 defines how quickly I (x,t) can vary.

Although in principle as interesting as the spatial scale 
0,
the evidence to date suggests that the experimental range of
values is much narrower. For example, previous analysis of
the replication kinetics in yeast [21] is consistent with τ0 ≈
10 min., about 1/4 the duration of the S phase, and we used
this value in the inference procedure.

The complete probabilistic model is summarized in Fig. 5.
Below, we first use the model to infer the logarithmic
initiation rate m = log(I/I0) from the data d, assuming the
hyperparameters to be known. In the last section, we will
solve for mMAP over a grid of values for v and 
0 and find
that the posterior is almost entirely concentrated at the correct
(simulation) values.

5. Posterior

The posterior P (m|d,β) for the logarithmic initiation rate
m = log10(I/I0) is given by Bayes’ theorem Eq. (24), with
the likelihood given by Eq. (29), the prior given by Eq. (33),
and the hyperparameters β = {v,σd,I0,σ0,τ0,
0}. Note that the
parameter m to infer is evaluated at a resolution of 1 kb in space

and 0.5 min in time and thus forms an (NxNt = 100 × 100)-
dimensional vector. Thus, the posterior for m is a probability
distribution defined on a very high-dimensional (104) space.
Below, we will consider both replacing the distribution by its
mode (maximum a posteriori approximation) and sampling
the posterior by MCMC techniques.

6. Maximum a posteriori approximation

The mode of the posterior distribution, which gives the
maximum a posteriori estimate, can be found by minimizing
the “energy” functional [45,46]

E(m) =− ln P (m,d|β)

= − ln P (d|m,β) − ln P (m|β)

= 1

2σ 2
d

∑
k

[dk − s(xk,tk)]2 + 1

2
Nd ln 2πσ 2

d

+ 1

2
m�−1m + 1

2
ln det(2π�)

with s(x,t) = e
− ∫

VX
dx ′ dt ′ I0×10m(x′ ,t ′ )

. (34)

The quantity E(m) is the negative logarithm of the joint
posterior, with Nd the number of data points. The MAP
estimate mMAP = argmin E(m) can be interpreted as a com-
promise between minimizing the least-square fit 1

2σ 2
d

(d − s)2

(the “energy”) and minimizing 1
2m�−1m (the “entropy”),

where smoother states have lower entropy because they are
compatible with fewer data sets. Alternatively, we can view the
minimization as a regularized “Tikhonov” inverse [47], where
the compromise is between finding the m that best reproduces
the data d and minimizing the Tikhonov penalty term, which
favors smooth m on the spatial scale 
0 and temporal scale τ0.

We minimized E in Eq. (34) numerically via the Newton
conjugate gradient algorithm [48]. Although we minimize in
a 104-dimensional space, the program converges in less than a
minute on a regular laptop.

The MAP approximation is to replace the posterior distri-
bution by a Dirac δ function at its mode,

P (m|d,β) � δ(m − mMAP). (35)

That is, we simply substitute mMAP into the analytical
expression of the initiation rate and into all other quantities
of interest. As shown in Fig. 6(a), the estimated local initiation
rate IMAP = I0 × 10mMAP is very close to the true initiation
rate, Fig. 3(a). Similarly, the estimated unreplicated fraction,
Fig. 6(b), density of right- and left-moving forks, Figs. 6(c)
and 6(d), as well as the density of initiation, Fig. 6(e), and
termination, Fig. 6(f), obtained by simply substituting IMAP

in the analytical expressions of Sec. III are indistinguishable
from their true values in Fig. 3. Finally, note that all those
quantities are reconstructed at the desired temporal resolution
of 0.5 min, while the original data d in Fig. 4 have only a
temporal resolution of 5 min. This interpolation is possible
because the temporal smoothness scale τ0 = 10 min.

7. MCMC sampling of the posterior

The MAP approximation Eq. (35) would seem to be a
rather crude one, as it neglects the posterior uncertainty
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FIG. 6. (Color online) Near-perfect reconstruction of the replica-
tion program in Fig. 3. All characteristics of the replication program
are reconstructed using the MAP estimate mMAP of m = log10(I/I0).
(a) Local initiation rate IMAP = I0 × 10mMAP . (b) Replication distribu-
tion Eq. (7). (c),(d) Densities of left- and right-moving forks, Eq. (5).
(e),(f) Densities of initiation [Eq. (8)] and termination [Eq. (9)].

for m. Moreover, the MAP estimate mMAP is usually not
a representative sample from the posterior, and its value is
not invariant under reparametrization [43]. However, in our
particular case, the MAP estimate mMAP does yield a very
accurate reconstruction of the replication program: Since,
as we will see below, the posterior uncertainty for most
quantities turns out to be negligible, samples from the posterior
distribution are almost always close to the MAP value.

To estimate the width of the posterior distribution Eq. (24),
we used Markov chain Monte Carlo sampling. We first
implemented the classic Metropolis-Hastings algorithm, but
it was very slow. We then tried instead the Hamiltonian Monte
Carlo algorithm [43], which was about 100 times faster. We
initialized the Markov chain at the MAP estimate in order to
skip the burn-in phase and used the Hessian of the energy E(m)
as a preconditioning matrix for the momentum. We generated
an effectively independent sample (i.e., an evaluation over
the entire spacetime grid) every 5 s on a regular laptop.
Ten samples from the posterior distribution are given in
Fig. 7, as well as the 90% credible interval. We see that the
posterior uncertainty for the unreplicated fraction, Fig. 7(c),
the replication fork polarity, Fig. 7(d), the density of initiation,
Fig. 7(e), and of termination, Fig. 7(f), are negligible, with
a small posterior uncertainty at the boundaries. The local
initiation rate has low posterior uncertainty, Fig. 7(a), except at
the end of the S phase, Fig. 7(b). The large uncertainty on the
initiation rate at the end of the S phase is easily understandable:
At the end of the S phase, the unreplicated fractions are close
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FIG. 7. (Color online) Negligible posterior uncertainty, except
for the initiation rate at the end of the S phase. Ten MCMC samples
(light blue lines) from the posterior probability distribution Eq. (24),
and the 90% credible interval (between heavy green lines). Local
initiation rate at (a) t = 20 min and (b) 40 min. (c) Unreplicated
fractions at t = 20 and 40 min. (d) Replication fork polarity. Spatial
density of (e) initiation and (f) termination.

to zero; thus, even large variations of the local initiation rate
result in minor variations in the unreplicated fractions that will
be much smaller than the noise level. The initiation rate thus
cannot be accurately inferred in these regions. However, as we
have seen in Figs. 7(c)–7(f), the large uncertainty in the local
initiation rate at the end of the S phase results in negligible
uncertainty for other quantities of interest.

8. Inferring v and �0

We inferred the most important hyperparameters, the fork
velocity v and the spatial smoothness scale 
0, directly from
the data. By Bayes’ theorem applied to the hyperparameters
in Eq. (26), the posterior distribution for v and 
0 is
given by

P (v,
0|d,β ′) = 1

P (d|β ′)
P (d|v,
0,β

′) P (v,
0), (36)

where β ′ = {σd,I0,σ0,τ0} contains the remaining hyperpa-
rameters. If we assume a flat prior on v and 
0, the
posterior P (v,
0|d,β ′) is simply proportional to the evidence
P (d|v,
0,β

′) = P (d|β). From Eq. (25), the evidence P (d|β)
is evaluated by integrating the joint posterior P (m,d|β)
over m, a 104-dimensional vector. Such a high-dimensional
integration cannot be performed numerically. In the Laplace
approximation [43], the joint posterior is approximated by a
Gaussian around its maximum (the MAP estimate mMAP):

P (m,d|β) � e−EMAP−(1/2)(m−mMAP)·E′′
MAP(m−mMAP), (37)

where EMAP is the energy Eq. (34) at the MAP, and E′′
MAP

is the Hessian of the energy evaluated at the MAP. As the
distribution is a Gaussian, the integration over m can be done
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analytically. The logarithmic evidence is then

ln P (d|β) � 1
2 ln det(2πE′′

MAP) − EMAP. (38)

This formula corresponds to the saddle-point approximation
often encountered in statistical physics.

We then evaluated the Laplace approximation of the
logarithmic evidence on a grid of values for v and 
0, spanning
v = 1 kb/min to v = 3 kb/min every 0.1 kb/min for the
fork velocity, and 
0 = 0 kb to l = 20 kb every 5 kb for
the spatial smoothing scale. We found that the value of the
evidence at v = 2 kb/min and 
0 = 15 kb (the true values of
the artificial data set) was several orders of magnitude larger
than the evidence at other values. In other words, the posterior
probability for v and 
0 is, at the resolution considered, almost
equal to 1 at the true values of (v,
0) and zero elsewhere.
Therefore, for the data set considered here, we can infer
accurately (at a resolution of 0.1 kb/min and 5 kb) the fork
velocity and the spatial scale with near certainty.

9. Scaling up to a genome-wide analysis

The inference procedure described here was performed on a
small fragment of length 100 kb. The Gaussian-process method
involves, in effect, inverting a matrix whose size scales with
the number Nd of s(x,t) data points. Since matrix inversion
varies as N3

d and since mammalian chromosomes are 10–100
times longer, we would need to increase the computation times
by a factor of 103–106, which would be demanding. However,
the N3

d scaling is a worst-case scenario that holds when all
data points are correlated. But only data on length scales of 
0

and time scales t0 are actually correlated, meaning that there
are roughly independent blocks of size 
0 × t0, within which
correlations must be accounted for. Consequently, the matrix
is sparse, and computations should scale as Nd , not N3

d . The
Gaussian-processes literature includes many specific examples
where such sparse approximations have been successful [49].

VI. CONCLUSIONS

In this article, we have generalized the forward analysis of
the DNA replication problem to the case of arbitrary initiation
rates I (x,t). We then introduced an inference procedure based
on a Gaussian-process prior that avoids the need of earlier
curve-fitting methods to specify the form of I (x,t) in advance.
We then showed that a small test case (100 kb genome) with
typical replication parameters and typical experimental noise
and resolution could be successfully inverted, with very small
errors for all replication quantities of interest, except in cases
where the experimental data were not very informative. (These
cases were typically the end of the S phase and the edges of
the sample.) The method may in principle be generalized to
handle realistic genome sizes.

Assuming that the method does scale up and can success-
fully reproduce earlier analyses, we will then have a powerful
method for learning about DNA replication in multiple
organisms. Further, while we have focused on microarray and
sequencing experiments, our methods should be compatible
with the numerous other experimental methods, including
fluorescence-activated cell sorting (FACS) [50], molecular
combing [50], and Okazaki-fragment mapping [51]. Moreover,
while the analysis is conceptually more complicated than curve

fitting, it can be automated and thus has the potential to be more
widely used in the biological community.

From a more theoretical point of view, Gaussian-process
regression [44] can be regarded as the equivalent of a free-field
theory, in that the objects of interest are fields (defined over
space and time) and are supposed to always show Gaussian
fluctuations. In our case, the nonlinear relation between the
replication data and the initiation rate of interest meant that
our result was far from Gaussian. Although we used MCMC
methods to sample the resulting non-Gaussian distributions,
it would be interesting to explore other approaches to data
analysis. In one approach, the parameter space of the proba-
bilistic model defines a Riemannian manifold, allowing one
to formulate a search algorithm for the MAP estimate [52] or
MCMC exploration [53] in geometric terms. Taking a geomet-
ric approach can speed up the numerical algorithms discussed
here. Alternatively, one can use the equivalent of interacting
field theories and not assume Gaussian distributions. In this
regard, the work of Enßlin and collaborators on information
field theory [54] is an especially promising approach.
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APPENDIX

We prove Eqs. (2a)–(2f) by first considering the replication
program in one cell cycle. Then we show that the results
derived for a single cell cycle generalize straightforwardly
to the ensemble average for a stochastic or variable replication
program.

1. In one cell cycle

Consider N origins O1, . . . ,ON located at genomic posi-
tions x1 < · · · < xN and initiated at times t1, . . . ,tN , with fork
velocities ±v. From simple geometry [Fig. 1(a)], we see that
each pair of origins (Oi,Oi+1) leads to a single termination
event �i at location x

(�)
i and time t

(�)
i , where

x
(�)
i = 1

2
(xi+1 + xi) + 1

2
v(ti+1 − ti),

(A1)

t
(�)
i = 1

2v
(xi+1 − xi) + 1

2
(ti+1 + ti).

The spatiotemporal densities of initiation and termination are
therefore given by

ρinit(x,t) =
∑

i

δ(x − xi)δ(t − ti),

(A2)
ρter(x,t) =

∑
i

δ
(
x − x

(�)
i

)
δ
(
t − t

(�)
i

)
,

where δ(·) is the Dirac delta function. Integrating over time
gives the corresponding spatial densities:

ρinit(x) =
∑

i

δ(x − xi), ρter(x) =
∑

i

δ
(
x − x

(�)
i

)
. (A3)

032703-11



A. BAKER AND J. BECHHOEFER PHYSICAL REVIEW E 89, 032703 (2014)

The replication timing curve T (x) is defined as the time
at which the locus x is replicated and is represented as the
solid line in Fig. 1(a). Let us define the domain of origin Oi to
be x ∈ [x(�)

i−1,x
(�)
i ]. Within the domain, the replication timing

curve is given by

T (x) = ti + |x − xi |
v

. (A4)

The straight lines about each origin are one-dimensional
analogs of the “light cones” of relativity that radiate from a
source. In the similarly defined domain of terminus �i , defined
as x ∈ [xi−1,xi] and illustrated in Fig. 1(a), the replication
timing curve is given by the “past cones” from �i :

T (x) = t
(�)
i −

∣∣x − x
(�)
i

∣∣
v

. (A5)

The unreplicated fraction s(x,t) is given by

s(x,t) = H [T (x) − t], (A6)

where H is the Heaviside step function.
In Fig. 1(a) in the domain of origin Oi , right-moving and

left-moving replication forks have densities that are given by

ρ±(x,t) = H [±(x − xi)]
1

v
δ[t − T (x)]. (A7)

Equivalently, in the domain of terminus �i , the fork densities
are given by

ρ±(x,t) = H
[∓(

x − x
(�)
i

)] 1

v
δ[t − T (x)]. (A8)

Note that p±(x) = ∫ t∞
0 vdt ρ±(x,t) equals 1 if the locus x

is replicated by a ± fork. Thus, the replication fork polarity
p(x) = p+(x) − p−(x) = ±1 gives the directionality (±) of

the fork replicating the locus x. In the domain of origin Oi ,
the replication fork polarity is equal to

p(x) = sgn(x − xi). (A9)

It is then straightforward, using the theory of distribution
[55] and the above definitions Eqs. (A2)–(A9), to differentiate
s(x,t) and check the relations Eqs. (2a)–(2f).

2. Ensemble average

Because of the stochasticity of the replication program
[1,4–6], the number of activated origins, their positions, and
their firing times, all change from one cell cycle to another
[Fig. 1(b)]. This variability may also reflect heterogeneity
in the population of cells considered. For instance, mixtures
of different cell types or cells of the same cell type but
with different epigenetic states can give different stochastic
replication programs. The ensemble average then corresponds
to a superimposition of the different replication programs. A
clear-cut example of the latter is the replication program in the
human female X chromosome, where the ensemble average of
replication seems to be “biphasic,” superposing the replication
programs from the active and inactive X chromosomes [16,56].

The unreplicated fraction s(x,t), the densities of initiation
ρinit(x,t) and termination ρter(x,t), the fork densities ρ±(x,t),
the fork polarity p(x), and the mean replication timing
T (x) defined in Sec. II A all correspond to the ensemble
averages of their one-cell-cycle counterparts given in Sec. A 1.
We proved in Sec. A 1 that the relations Eqs. (2a)–(2f) were
true in each cell cycle. As derivatives and averages commute,
we can straightforwardly extend Eqs. (2a)–(2f) to the ensemble
average.
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[14] D. Schübeler, D. Scalzo, C. Kooperberg, B. van Steensel, J.
Delrow, and M. Groudine, Nat. Genet. 32, 438 (2002).

[15] I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger, C.-W.
Chang, Y. Lyou, T. M. Townes, D. Schubeler, and D. M. Gilbert,
PLoS Biol. 6, e245 (2008).

[16] R. S. Hansen, S. Thomas, R. Sandstrom, T. K. Canfield, R.
E. Thurman, M. Weaver, M. O. Dorschner, S. M. Gartler, and
J. A. Stamatoyannopoulos, Proc. Natl. Acad. Sci. USA 107, 139
(2010).

[17] C. A. Müller, M. Hawkins, R. Retkute, S. Malla, R. Wilson,
M. J. Blythe, R. Nakato, M. Komata, K. Shirahige, A. P. S.
de Moura, and C. A. Nieduszynski, Nucleic Acids Res. 42, e3
(2014).

[18] M. Hawkins, R. Retkute, C. A. Müller, N. Saner, T. U. Tanaka,
A. P. de Moura, and C. A. Nieduszynski, Cell Rep. 5, 1132
(2013).

[19] A. P. S. de Moura, R. Retkute, M. Hawkins, and C. A.
Nieduszynski, Nucleic Acids Res. 38, 5623 (2010).

032703-12

http://dx.doi.org/10.1046/j.1365-2443.1997.1520350.x
http://dx.doi.org/10.1046/j.1365-2443.1997.1520350.x
http://dx.doi.org/10.1046/j.1365-2443.1997.1520350.x
http://dx.doi.org/10.1046/j.1365-2443.1997.1520350.x
http://dx.doi.org/10.1006/jmbi.2000.3930
http://dx.doi.org/10.1006/jmbi.2000.3930
http://dx.doi.org/10.1006/jmbi.2000.3930
http://dx.doi.org/10.1006/jmbi.2000.3930
http://dx.doi.org/10.1006/jmbi.2000.3500
http://dx.doi.org/10.1006/jmbi.2000.3500
http://dx.doi.org/10.1006/jmbi.2000.3500
http://dx.doi.org/10.1006/jmbi.2000.3500
http://dx.doi.org/10.1091/mbc.E05-07-0657
http://dx.doi.org/10.1091/mbc.E05-07-0657
http://dx.doi.org/10.1091/mbc.E05-07-0657
http://dx.doi.org/10.1091/mbc.E05-07-0657
http://dx.doi.org/10.1038/ncb1206-1313
http://dx.doi.org/10.1038/ncb1206-1313
http://dx.doi.org/10.1038/ncb1206-1313
http://dx.doi.org/10.1038/ncb1206-1313
http://dx.doi.org/10.1016/j.jmb.2007.10.046
http://dx.doi.org/10.1016/j.jmb.2007.10.046
http://dx.doi.org/10.1016/j.jmb.2007.10.046
http://dx.doi.org/10.1016/j.jmb.2007.10.046
http://dx.doi.org/10.1038/msb.2010.8
http://dx.doi.org/10.1038/msb.2010.8
http://dx.doi.org/10.1038/msb.2010.8
http://dx.doi.org/10.1038/msb.2010.8
http://dx.doi.org/10.1103/PhysRevLett.104.218104
http://dx.doi.org/10.1103/PhysRevLett.104.218104
http://dx.doi.org/10.1103/PhysRevLett.104.218104
http://dx.doi.org/10.1103/PhysRevLett.104.218104
http://dx.doi.org/10.1063/1.1750380
http://dx.doi.org/10.1063/1.1750380
http://dx.doi.org/10.1063/1.1750380
http://dx.doi.org/10.1063/1.1750380
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750872
http://dx.doi.org/10.1063/1.1750872
http://dx.doi.org/10.1063/1.1750872
http://dx.doi.org/10.1142/S0217979291000717
http://dx.doi.org/10.1142/S0217979291000717
http://dx.doi.org/10.1142/S0217979291000717
http://dx.doi.org/10.1142/S0217979291000717
http://dx.doi.org/10.1103/PhysRevE.54.3562
http://dx.doi.org/10.1103/PhysRevE.54.3562
http://dx.doi.org/10.1103/PhysRevE.54.3562
http://dx.doi.org/10.1103/PhysRevE.54.3562
http://dx.doi.org/10.1126/science.294.5540.115
http://dx.doi.org/10.1126/science.294.5540.115
http://dx.doi.org/10.1126/science.294.5540.115
http://dx.doi.org/10.1126/science.294.5540.115
http://dx.doi.org/10.1016/S0022-2836(02)00522-3
http://dx.doi.org/10.1016/S0022-2836(02)00522-3
http://dx.doi.org/10.1016/S0022-2836(02)00522-3
http://dx.doi.org/10.1016/S0022-2836(02)00522-3
http://dx.doi.org/10.1093/nar/gkl758
http://dx.doi.org/10.1093/nar/gkl758
http://dx.doi.org/10.1093/nar/gkl758
http://dx.doi.org/10.1093/nar/gkl758
http://dx.doi.org/10.1038/ng1005
http://dx.doi.org/10.1038/ng1005
http://dx.doi.org/10.1038/ng1005
http://dx.doi.org/10.1038/ng1005
http://dx.doi.org/10.1371/journal.pbio.0060245
http://dx.doi.org/10.1371/journal.pbio.0060245
http://dx.doi.org/10.1371/journal.pbio.0060245
http://dx.doi.org/10.1371/journal.pbio.0060245
http://dx.doi.org/10.1073/pnas.0912402107
http://dx.doi.org/10.1073/pnas.0912402107
http://dx.doi.org/10.1073/pnas.0912402107
http://dx.doi.org/10.1073/pnas.0912402107
http://dx.doi.org/10.1093/nar/gkt878
http://dx.doi.org/10.1093/nar/gkt878
http://dx.doi.org/10.1093/nar/gkt878
http://dx.doi.org/10.1093/nar/gkt878
http://dx.doi.org/10.1016/j.celrep.2013.10.014
http://dx.doi.org/10.1016/j.celrep.2013.10.014
http://dx.doi.org/10.1016/j.celrep.2013.10.014
http://dx.doi.org/10.1016/j.celrep.2013.10.014
http://dx.doi.org/10.1093/nar/gkq343
http://dx.doi.org/10.1093/nar/gkq343
http://dx.doi.org/10.1093/nar/gkq343
http://dx.doi.org/10.1093/nar/gkq343


INFERRING THE SPATIOTEMPORAL DNA REPLICATION . . . PHYSICAL REVIEW E 89, 032703 (2014)

[20] H. Luo, J. Li, M. Eshaghi, J. Liu, and R. K. M. Karuturi, BMC
Bioinformatics 11, 247 (2010).

[21] S. C.-H. Yang, N. Rhind, and J. Bechhoefer, Mol. Syst. Biol. 6,
404 (2010).

[22] A. Demczuk, M. G. Gauthier, I. Veras, S. Kosiyatrakul, C. L.
Schildkraut, M. Busslinger, J. Bechhoefer, and P. Norio, PLoS
Biol. 10, e1001360 (2012).

[23] D. M. Gilbert, Nat. Rev. Genet. 11, 673 (2010).
[24] J. Bechhoefer and B. Marshall, Phys. Rev. Lett. 98, 098105

(2007); S. C.-H. Yang and J. Bechhoefer, Phys. Rev. E 78,
041917 (2008).

[25] A. Baker, B. Audit, C. Chen, B. Moindrot, A. Leleu, G.
Guilbaud, A. Rappailles, C. Vaillant, A. Goldar, F. Mongelard,
Y. d’Aubenton-Carafa, O. Hyrien, C. Thermes, and A. Arneodo,
PLoS Comput. Biol. 8, e1002443 (2012).

[26] B. Audit, A. Baker, C.-L. Chen, A. Rappailles, G. Guilbaud,
H. Julienne, A. Goldar, Y. d’Aubenton-Carafa, O. Hyrien, C.
Thermes, and A. Arneodo, Nat. Protoc. 8, 98 (2013).

[27] R. Retkute, C. A. Nieduszynski, and A. P. S. de Moura, Phys.
Rev. Lett. 107, 068103 (2011).

[28] R. Retkute, C. A. Nieduszynski, and A. de Moura, Phys. Rev. E
86, 031916 (2012).

[29] A. Baker, C. L. Chen, H. Julienne, B. Audit, Y. d’Aubenton-
Carafa, C. Thermes, and A. Arneodo, Eur. Phys. J. E 35, 123
(2012).

[30] A. Baker, H. Julienne, C. L. Chen, B. Audit, Y. d’Aubenton
Carafa, C. Thermes, and A. Arneodo, Eur. Phys. J. E 35, 92
(2012).

[31] J. Lygeros, K. Koutroumpas, S. Dimopoulos, I. Legouras, P.
Kouretas, C. Heichinger, P. Nurse, and Z. Lygerou, Proc. Natl.
Acad. Sci. USA 105, 12295 (2008).

[32] J. J. Blow and X. Q. Ge, EMBO Rep. 10, 406 (2009).
[33] S. Jun, J. Herrick, A. Bensimon, and J. Bechhoefer, Cell Cycle

3, 211 (2004).
[34] N. Van Kampen, Stochastic Processes in Physics and Chemistry,

3rd ed. (North-Holland, Amsterdam, 2007).
[35] S. Jun, H. Zhang, and J. Bechhoefer, Phys. Rev. E 71, 011908

(2005).
[36] M. G. Gauthier, P. Norio, and J. Bechhoefer, PLoS One 7, e32053

(2012).
[37] K. Sekimoto, Physica A 135, 328 (1986).

[38] R. Berezney, D. D. Dubey, and J. A. Huberman, Chromosoma
108, 471 (2000).

[39] G. Guilbaud, A. Rappailles, A. Baker, C.-L. Chen, A. Arneodo,
A. Goldar, Y. d’Aubenton-Carafa, C. Thermes, B. Audit, and O.
Hyrien, PLoS Comput. Biol. 7, e1002322 (2011).

[40] A. Baker, B. Audit, S. C.-H. Yang, J. Bechhoefer, and A.
Arneodo, Phys. Rev. Lett. 108, 268101 (2012).

[41] A. Baker, Ph.D. thesis, Ecole Normale Supérieure de Lyon,
2011.

[42] E. T. Jaynes, Probability Theory: The Logic of Science
(Cambridge University Press, Cambridge, 2003).

[43] D. MacKay, Information Theory, Inference and Learning Algo-
rithms (Cambridge University Press, Cambridge, 2003).

[44] C. E. Rasmussen and C. K. Williams, Gaussian Processes for
Machine Learning (MIT Press, Cambridge, MA, 2006).

[45] J. C. Lemm, Bayesian Field Theory (The Johns Hopkins
University Press, Baltimore, 2003).

[46] W. Bialek, Biophysics: Searching for Principles (Princeton
University Press, Princeton, NJ, 2012).

[47] E. T. Jaynes, in Inverse Problems, edited by D. W. McLaughlin,
SIAM-AMS Proceedings No. 14 (AMS, Providence, RI, 1984),
pp. 151–166.

[48] J. Nocedal and S. Wright, Numerical Optimization (Springer,
New York, 2006).

[49] E. Snelson and Z. Ghahramani, in Advances in Neural Infor-
mation Processing Systems, edited by Y. Weiss, B. Schölkopf,
and J. Platt (MIT Press, Cambridge, MA, 2006), Vol. 18,
pp. 1259–1266.

[50] E. Ma, O. Hyrien, and A. Goldar, Nucleic Acids Res. 40, 2010
(2012).

[51] S. R. McGuffee, D. J. Smith, and I. Whitehouse, Mol. Cell 50,
123 (2013).

[52] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Phys. Rev.
Lett. 104, 060201 (2010); ,Phys. Rev. E 83, 036701 (2011).

[53] M. Girolami and B. Calderhead, J. R. Stat. Soc. B 73, 123
(2011).

[54] N. Oppermann, M. Selig, M. R. Bell, and T. A. Enßlin, Phys.
Rev. E 87, 032136 (2013).

[55] W. Rudin, Functional Analysis, 2nd ed. (McGraw-Hill,
New York, 1991).

[56] A. Koren and S. A. McCarroll, Genome Res. 24, 64 (2013).

032703-13

http://dx.doi.org/10.1186/1471-2105-11-247
http://dx.doi.org/10.1186/1471-2105-11-247
http://dx.doi.org/10.1186/1471-2105-11-247
http://dx.doi.org/10.1186/1471-2105-11-247
http://dx.doi.org/10.1371/journal.pbio.1001360
http://dx.doi.org/10.1371/journal.pbio.1001360
http://dx.doi.org/10.1371/journal.pbio.1001360
http://dx.doi.org/10.1371/journal.pbio.1001360
http://dx.doi.org/10.1038/nrg2830
http://dx.doi.org/10.1038/nrg2830
http://dx.doi.org/10.1038/nrg2830
http://dx.doi.org/10.1038/nrg2830
http://dx.doi.org/10.1103/PhysRevLett.98.098105
http://dx.doi.org/10.1103/PhysRevLett.98.098105
http://dx.doi.org/10.1103/PhysRevLett.98.098105
http://dx.doi.org/10.1103/PhysRevLett.98.098105
http://dx.doi.org/10.1103/PhysRevE.78.041917
http://dx.doi.org/10.1103/PhysRevE.78.041917
http://dx.doi.org/10.1103/PhysRevE.78.041917
http://dx.doi.org/10.1103/PhysRevE.78.041917
http://dx.doi.org/10.1371/journal.pcbi.1002443
http://dx.doi.org/10.1371/journal.pcbi.1002443
http://dx.doi.org/10.1371/journal.pcbi.1002443
http://dx.doi.org/10.1371/journal.pcbi.1002443
http://dx.doi.org/10.1038/nprot.2012.145
http://dx.doi.org/10.1038/nprot.2012.145
http://dx.doi.org/10.1038/nprot.2012.145
http://dx.doi.org/10.1038/nprot.2012.145
http://dx.doi.org/10.1103/PhysRevLett.107.068103
http://dx.doi.org/10.1103/PhysRevLett.107.068103
http://dx.doi.org/10.1103/PhysRevLett.107.068103
http://dx.doi.org/10.1103/PhysRevLett.107.068103
http://dx.doi.org/10.1103/PhysRevE.86.031916
http://dx.doi.org/10.1103/PhysRevE.86.031916
http://dx.doi.org/10.1103/PhysRevE.86.031916
http://dx.doi.org/10.1103/PhysRevE.86.031916
http://dx.doi.org/10.1140/epje/i2012-12123-9
http://dx.doi.org/10.1140/epje/i2012-12123-9
http://dx.doi.org/10.1140/epje/i2012-12123-9
http://dx.doi.org/10.1140/epje/i2012-12123-9
http://dx.doi.org/10.1140/epje/i2012-12092-y
http://dx.doi.org/10.1140/epje/i2012-12092-y
http://dx.doi.org/10.1140/epje/i2012-12092-y
http://dx.doi.org/10.1140/epje/i2012-12092-y
http://dx.doi.org/10.1073/pnas.0805549105
http://dx.doi.org/10.1073/pnas.0805549105
http://dx.doi.org/10.1073/pnas.0805549105
http://dx.doi.org/10.1073/pnas.0805549105
http://dx.doi.org/10.1038/embor.2009.5
http://dx.doi.org/10.1038/embor.2009.5
http://dx.doi.org/10.1038/embor.2009.5
http://dx.doi.org/10.1038/embor.2009.5
http://dx.doi.org/10.4161/cc.3.2.655
http://dx.doi.org/10.4161/cc.3.2.655
http://dx.doi.org/10.4161/cc.3.2.655
http://dx.doi.org/10.4161/cc.3.2.655
http://dx.doi.org/10.1103/PhysRevE.71.011908
http://dx.doi.org/10.1103/PhysRevE.71.011908
http://dx.doi.org/10.1103/PhysRevE.71.011908
http://dx.doi.org/10.1103/PhysRevE.71.011908
http://dx.doi.org/10.1371/journal.pone.0032053
http://dx.doi.org/10.1371/journal.pone.0032053
http://dx.doi.org/10.1371/journal.pone.0032053
http://dx.doi.org/10.1371/journal.pone.0032053
http://dx.doi.org/10.1016/0378-4371(86)90146-9
http://dx.doi.org/10.1016/0378-4371(86)90146-9
http://dx.doi.org/10.1016/0378-4371(86)90146-9
http://dx.doi.org/10.1016/0378-4371(86)90146-9
http://dx.doi.org/10.1007/s004120050399
http://dx.doi.org/10.1007/s004120050399
http://dx.doi.org/10.1007/s004120050399
http://dx.doi.org/10.1007/s004120050399
http://dx.doi.org/10.1371/journal.pcbi.1002322
http://dx.doi.org/10.1371/journal.pcbi.1002322
http://dx.doi.org/10.1371/journal.pcbi.1002322
http://dx.doi.org/10.1371/journal.pcbi.1002322
http://dx.doi.org/10.1103/PhysRevLett.108.268101
http://dx.doi.org/10.1103/PhysRevLett.108.268101
http://dx.doi.org/10.1103/PhysRevLett.108.268101
http://dx.doi.org/10.1103/PhysRevLett.108.268101
http://dx.doi.org/10.1093/nar/gkr982
http://dx.doi.org/10.1093/nar/gkr982
http://dx.doi.org/10.1093/nar/gkr982
http://dx.doi.org/10.1093/nar/gkr982
http://dx.doi.org/10.1016/j.molcel.2013.03.004
http://dx.doi.org/10.1016/j.molcel.2013.03.004
http://dx.doi.org/10.1016/j.molcel.2013.03.004
http://dx.doi.org/10.1016/j.molcel.2013.03.004
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevE.83.036701
http://dx.doi.org/10.1103/PhysRevE.83.036701
http://dx.doi.org/10.1103/PhysRevE.83.036701
http://dx.doi.org/10.1103/PhysRevE.83.036701
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1103/PhysRevE.87.032136
http://dx.doi.org/10.1103/PhysRevE.87.032136
http://dx.doi.org/10.1103/PhysRevE.87.032136
http://dx.doi.org/10.1103/PhysRevE.87.032136
http://dx.doi.org/10.1101/gr.161828.113
http://dx.doi.org/10.1101/gr.161828.113
http://dx.doi.org/10.1101/gr.161828.113
http://dx.doi.org/10.1101/gr.161828.113



