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This article presents a physical theory for the aggregation of ionomer molecules in aqueous solution. To study
this phenomenon, we consider a system of charged rigid rods with uniform surface charge immersed in water.
The free-energy functional derived for this system consists of hydrophobic and direct electrostatic contributions
as well as entropic terms. Energy minimization gives the stable aggregation number as a function of surface
charge density, surface tension, geometric parameters, and density of rods in solution. We provide configuration
diagrams of the system, which display the impact of the hydrophobic and electrostatic interaction strengths on
the stabilization of finite-size bundles.
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I. INTRODUCTION

Charged polymers are found in a wide range of contexts,
from biological systems to electrochemical devices [1]. They
can be categorized according to the role of electrostatics in their
properties: the behavior of polyelectrolytes in solution of high
dielectric constant is governed by electrostatic interactions
over distances larger than typical molecular distances, whereas
ionomers are polymers with bulk properties governed by ionic
interactions between discretely distributed surface groups.
Ionomers are moderately charged, typically with less than
15 mol% of charged groups [2,3].

Aggregation is a major feature of charged polymers. It
occurs on limited sections of the polymer, typically on the
order of the persistence length. Polymers of major biological
interest such as DNA or F-actin are prominent examples
of polyelectrolytes; their aggregation behavior has a critical
impact on their biological function. Therefore, numerous stud-
ies have investigated the underlying aggregation mechanisms
of polyelectrolytes [4–13]. Oosawa’s seminal polyelectrolyte
model showed that like-charged rods do not attract each
other if counterion fluctuations are not taken into account.
Charge fluctuations due to Manning condensation [14–17]
of multivalent cations, present in the electrolyte, are the
key to aggregation in these systems; however, as found in
these studies, thermodynamic equilibrium corresponds to an
infinite bundle (see discussion in Ref. [12] and references
therein), which contrasts with the observed finite-size bundles.
To account for this discrepancy, kinetic arguments were put
forward [11–13]. The high charge density of the condensing
polyions and the multivalence of the counterions are key
features of the aggregation process of highly charged polyions.
Saito and Yoshikawa [18] explored a similar problem, the
equilibrium of stiff polyelectrolyte rods in a monovalent salt
bath, and considered the depletion force as the additional
interaction governing equilibrium. They found finite-size
bundles in certain regimes.

The case of ionomers aggregating in the sole presence of
monovalent counterions has been studied in melts without
water [19]. The case of solution with protons as counterions re-
mains open despite its importance in such systems as the poly-
mer electrolyte membranes (PEMs) that are used in fuel cells.
Contrary to polyelectrolytes, ionomers are not charged enough

for the electrostatic interaction to be the only significant
interaction. If we think of uncharged hydrophobic polymers,
they tend to phase separate from an aqueous solution. Hence,
for an ionomer that is a copolymer with hydrophobic neutral
blocks, the hydrophobicity of the neutral block provides a
supplementary interaction to drive aggregation. Aggregation
is thus the consequence of the interplay of electrostatic and
hydrophobic interactions [17]. Understanding the conditions
of ionomer aggregation in the sole presence of monovalent
counterions is a nontrivial theoretical problem. Besides a
theoretical interest, the problem has direct practical implica-
tions. Ionomer aggregation in water determines the physical
properties of PEMs. The structure and stability of ionomer
aggregates in PEMs determine water sorption [20] and stability
of the membrane. These properties in turn are the key to PEM
operation in polymer electrolyte fuel cells: they govern the
water distribution, conductivity, and mechanical response [21].

There are numerous structural investigations of perfluoro-
sulfonated acid (PFSA) membranes [22–25], among which
Nafion remains the most widely studied material. Neverthe-
less, controversy persists in view of structure and properties
of PEMs. Proposed models fall into two categories: Eisen-
berg’s picture of ionic clusters [26] or structured polymer
matrix models. The early model of inverted micelles based
on Eisenberg’s picture proposed in Refs. [27,28] has been
essentially discarded. All viewpoints consider microphase
separation between the backbone matrix and aqueous domains;
yet they differ as to the shape of the respective phase: water
channels with no clearly discernible shape amidst the polymer
matrix [29], water-filled cylindrical pores [30], or fibrillar
ionomer structure immersed in water [31–33]. One reason for
this diversity is the loss of phase information in diffraction
investigations of ionomer-water mixtures.

Another reason for the variety of experimentally backed
structural models is the wide range of ionomer densities
evaluated. There is evidence that PFSA membranes undergo
a structural inversion from an elastic nanoporous medium
at low to medium level of hydration to a gel-like network
of cross-linked nanofibers in the limit of high hydration
[24,30,31,34–38]. Our study focuses on the limit of dilute
ionomer solutions, which is relevant for fully hydrated mem-
branes.
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In this work, we study the microscopic structure in the
hydrophobic phase of PFSA membranes by developing a
model of the aggregation of stiff charged rods immersed
in water. In what follows, we formulate the “dry core”
physical model, discuss its relevance to the aggregation of
PFSA in aqueous solution, present our analysis of the model,
and discuss its implications for the stabilization of PFSA
membranes as compared to other membranes.

II. PHYSICAL MODEL OF AGGREGATION

A. Assumptions

In this section, we introduce the physical model of aggrega-
tion, referred to hereafter as the “dry core” model. We present
the main assumptions at the outset:

(1) The local morphology of PFSA ionomers is described
as stiff rods.

(2) Rods are disconnected and their set has a monodisperse
distribution of lengths.

(3) Aggregates are cylindrical close-packed electrolyte-
free bundles of rods.

(4) Dissociation only occurs at the surface of the bundles
and the surface charge is considered as being uniform.
As for the interactions at play, we consider electrostatic and
hydrophobic interactions as the driving forces that govern for-
mation of equilibrium in this system. To solve the electrostatic
problem, we employ the Poisson-Boltzmann formalism.

Let’s review these assumptions and explain their origin.
The morphological simplification (assumption 1) is a typical
assumption made in studies of aggregation of highly charged
polymers in solution [39]. It stems from the stiffness of PFSA
ionomers and the local nature of aggregation. These polymers
are comb-like polymers with charged groups on side chain
heads as shown in Fig. 1. We can use the work [40] on neutral
comb polymers to estimate the order of the radius of an equiv-
alent tube (dotted object in Fig. 1). This yields 0.4 to 0.5 nm
as an estimate. As aggregation of ionomers occurs locally, not
along the whole polymer chain, we consider rigid rods. Their
length L is of the order of the persistence length of the ionomer.

-

-

-

L

rR

FIG. 1. (Color online) Section of Nafion ionomer and its repre-
sentation as rod of radius rR and length L. Anionic groups are depicted
as red spheres. Their number is not representative: given the length
L of the rods here considered, there are more of them. They are
described by a continuous surface charge density σ at the surface of
the rod.

Experiments using different techniques have consistently
pointed at correlation lengths of the order of 300 to
500 Å [24,41,42], which is longer by a factor of 6 to 10
than for their uncharged counterpart, polytetrafluoroethylene
(PTFE) [43]. In this study, we explore a range of rod lengths
from 50 to 400 Å. As a consequence of this description as stiff
rods, we do not explicitly take into account the side chains.
As for the ionizable groups at the side chain heads, we replace
them by a uniform density of ionizable groups at the surface
of the rods σR .

Assumption (2) states that we model an ensemble of rodlike
chains as a solution of stiff rods. This approximation is
appropriate for a model describing local aggregation phenom-
ena. This formalism is not suitable for larger-scale structural
models. Bundles are designated by the number of rods, or
aggregation number, k. We assume an ideally monodisperse
distribution of aggregation numbers. The nonmonodisperse
case can be described by convoluting our results with an
appropriate distribution of single-rod properties.

For the calculation of the equilibrium aggregation number
we use a mean-field description: the entire system is divided
into cells of equal size, which each contain a single bundle in
the core and the dissociated protons in the outer electrolyte
shell. The ensemble of cells is replaced by a single cell with
cylindrical geometry, which is concentric with the bundle in
the core. The cell length is the same as the rod length, L.
We neglect end effects: this approximation has been tested
by varying the rod length. No dependency on the rod length
is observed until getting close to the upper limit of the rod
lengths describable in this mean-field approach. The radius of
a cell, rC , is a function of the density ρ of rods,

rC =
√

k

πρL
. (1)

rR

k=3 k=4 k=5

rB

k=7 k=19

Cross-section

rC

L

Side view

FIG. 2. (Color online) Aggregation of rod-like ionomer into k

bundles with minimal radii corresponding to a given number of rods
k per bundle (left). We describe the ionomer as a stiff rod with length
L and with radius rR with a continuous surface charge σ . We assume
close packing of the rods into bundles. The model employs a mean-
field approach: a single effective cell consists of a bundle in the
core with radius rB , surrounded by a concentric electrolyte shell
with radius rC that contains dissociated protons. Protons interact
electrostatically with the uniformly charged surface of the bundle
(right). Bundle cores are assumed to be electrolyte- and proton-free.
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FIG. 3. (Color online) Radius rB of the bundle and rC of the cell
as a function of the number k of rods in the bundle, using Ref. [44].
Results depicted for L = 20 nm and rR = 0.50 nm.

Figure 2 introduces the geometric parameters of the model,
and Fig. 3 depicts rC and rB as functions of k.

Assumption (3) stems from the strong hydrophobicity of
PTFE: we consider a compact packing of the rods to mini-
mize the interface with the aqueous solvent; the equilibrium
structure of a k bundle is thus given by the close packing of
k identical rods with circular cross-section in a cylinder of
the same length L and with a minimal radius rB = rB(k,rR)
to accommodate k rods of radius rR (see Fig. 3) [44]. The
dry core model assumes that the space between rods inside a
bundle is electrolyte-free. This assumption is legitimate for
small bundles. It implies assumption (4), that there is no
dissociation of the ionizable groups of rods inside the bundle.
To be deprotonated, ionizable groups have to be at the surface
of the rod.

In order to simplify the equations, we consider a continuous
charge density at the surface of the bundle. We write this
surface charge density as

σ = ηk
rR

rB

σR , (2)

where σR is the surface charge that would be obtained at the
surface of a rod if all its ionizable groups were ionized. The
fraction η depends on the properties of side chains. At this
stage, a precise quantitative expression of this dependency
remains inaccessible. Nevertheless we can define and compare
specific cases as depicted in Fig. 4. The first limiting case
corresponds to zero-length side chains, �SC → 0. In this case,
only ionizable groups located directly at the interface with
the electrolyte dissociate. This case represents a lower bound
of η in Eq. (2). The upper bound is given by the limiting
case of perfect dissociation, η = 1. This situation corresponds
to an ionomer with very long and flexible side chains, with
all head groups protruding to the surface of the bundle. This
case requires �SC > rB , an assumption that is bound to fail
in a strong aggregation limit. Between these limiting cases or
bounds, a continuum of intermediate cases exist, which depend
on length and flexibility of side chains. Here, we evaluate the
specific intermediate case with side chain length of the order
of the rod radius, �SC ≈ rR . This case implies that side chains
that are end-grafted to rods in the outer-layer of a bundle can
dissociate.
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FIG. 4. (Color online) Proportion η of dissociated groups for
different cases: total dissociation in the limit �SC > rB (o), minimal
dissociation in the limit �SC → 0 (♦), and an intermediate case for
�SC ≈ rR (×). The value of η is calculated using the geometric
parameters of the close packing of cylinders for the different
dissociation scenarios [44].

B. Free-energy functional

As previously explained, ionomers are moderately charged.
Backbone hydrophobicity constitutes a significant driving
force for aggregation, which works together with direct
electrostatic interactions to control aggregation phenomena
in the system. Three kinds of electrostatic interactions exist,
encompassing terms for proton-proton, proton-anionic head
group and anionic head group-anionic head group interactions.

As we employ the Poisson-Boltzmann approach to solve
the electrostatic problem, proton-proton interactions are not
explicitly accounted for. Protons are instead described by
a continuous distribution nH . This simplifying treatment is
well-suited for most problems in weak electrolytes. Charge
fluctuations induced by monovalent counterions can be ne-
glected in this problem as compared to the impact of hydropho-
bicity. Poisson-Boltzman equation is thus deemed sufficient to
describe the electrostatic problem. The linearized version of
this equation is widely adopted in case of a weak electrolyte
thanks to compensating approximations it entails [45]. This
is the reason why it can be employed even for polyelectrolytes.
The most prominent example is the use of the Debye-Hückel
theory to describe electrostatic interactions between biological
macroions and more specifically DNA [46].

The electrostatic interaction between dissociated protons
and charged anionic groups at rod surfaces causes a net
repulsive interaction between rods. This contribution is given
by the electrostatic energy of the proton distribution nH in a
cylindrical cell that contains a bundle with a correspondingly
negatively charged surface at equilibrium. For hydrophobic
interaction terms, we use an interfacial energy determined by
the surface tension. We approximate the interfacial area by the
area of the bundle cylinder.

Hence, the free-energy density of a k bundle in its
cylindrical cell is

f (k) = Lρ(f̃k − f̃1) − T (sk − s1). (3)

The entropy sk per k bundle is given by

sk = −ρ0kB[xk ln xk − (1 + xk) ln(1 + xk)], (4)
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where xk stands for the k bundle molar fraction with reference
to the solvent (water in this case), that is xk = ρ/(kρ0) with
ρ0 = 33.12 nm−3. The free energy is written with reference to
the single-rod limit, f̃1, considered to be a baseline of fixed
energy. f̃k is the contribution per rod and per unit length of a
bundle in an isolated cell,

kf̃k

2π
= rBγ − rB

σ

q
Esolv + rB

∫ σ

0
dσ ′ϕrB

(σ ′)

+ q

∫ rC

rB

rdr ϕ(r)nH (r), (5)

where γ is the coefficient of surface tension, ϕ is the
potential created by the k bundle, and nH is the proton-density
distribution in the cell. The first term on the right-hand side
of Eq. (5) accounts for hydrophobic interactions; the second
term accounts for the anion solvation energy; the third term
expresses the electrostatic repulsion between rods as the
energetic cost to build the bundle surface with a surface charge
σ (similarly to the definition of a work function); the last term
is the electrostatic interaction between the k bundle and the
dissociated protons in the cell.

To evaluate the free energy, we calculate the electrostatic
potential ϕ and the proton distribution. We consider the limit
of low-charge densities, which yields the following expression
of proton density:

nH (r) = n0
H exp(−qβϕ) ≈ n0

H (1 − qβϕ), (6)

where q is the elementary charge, β−1 = kBT , and we obtain

∇2ϕ − κ2ϕ = −4πqn0
H

ε
, (7)

where the inverse Debye length κ is defined by κ2 =
16π2n0

H�B , with the Bjerrum length defined as �B =
q2β/(4πε).

At the surface of the bundle, at r = rB , the electric field
is related to the surface charge density via Gauss’ law. At the
boundary of the cylindrical cell, the cell model approximation
requires that the electric field is zero. Therefore, the boundary
conditions are

êr (εext �∇ϕext|r=rB
− εint �∇ϕint|r=rB

) = −4πσ, (8)

�∇ϕ(r = rC) = 0. (9)

In this case, the solution to Eq. (7) is

qβϕ(r) = 1 + 4πqβσ

εκ
�̃(r), (10)

where

�̃(r) = K1(κrC)I0(κr) − I1(κrC)K0(κr)

I1(κrC)K1(κrB) − I1(κrB)K1(κrC)
, (11)

with In and Kn being modified Bessel functions of the first and
second kind. Thus, the proton distribution in Eq. (6) is

nH (r) = −4πσ

εκ
qβn0

H �̃(r). (12)

TABLE I. List of system parameters.

Parameters Baseline Value range used in this work

γ 4.0 eV nm−2 2.0 eV nm−2 to 4.0 eV nm−2

σ −0.5 (e) nm−2 −0.5 (e) nm−2 to −1.0 (e) nm−2

ρ 1.19 × 10−2 nm−3

εr 55.3 55.3
T 373 K 373 K
rR 0.5 nm 0.25 nm to 0.70 nm
L 20 nm 5 nm to 40 nm
Esolv −0.2 eV −0.1 to −0.4 eV

To evaluate the normalization constant, we employ the condi-
tion of electroneutrality of the cell,

L

∫ rC

rB

rdrnH (r) = rBL
|σ |
q

. (13)

This induces a self-consistent loop to calculate n0
H defined by

n0
H = r2

B

16π2�B

[ ∫ rC

rB
rdr�̃(r)

]2 . (14)

We initialize this self-consistent calculation by using the
homogenous limit,

ninit
H = 2σ

qrB

[
1 − (

rC

rB

)2] . (15)

C. Parameters: Baseline case

Regarding the dissociation factor introduced in Eq. (2),
the baseline is defined as the intermediate case. We consider
the system at T = 373 K and assume an aqueous solution
with εr = 55.3. As for the parameters defining the strength
of the interactions, we chose the baseline to correspond to
Nafion. For the surface tension we use the value of Teflon,
γ = 4.0 eV nm−2, as a reference. The reference surface
charge density is σ = −0.5 (e) nm−2, where, as in Table I,
the notation (e) denotes “in the units of the elementary
charge e.” This value of σ corresponds to an ion exchange
capacity of 0.9 meq g−1. For the density of rods, we use a
typical value for Nafion membrane, ρ = 1.19 × 10−2 nm−3.
We use the solvation energy calculated for triflic acid [47] as a
reference and thus employ a value of Esolv = −0.2 eV as the
baseline. The remaining geometric parameters are extracted
from experiments (rod length) and theoretical considerations
(rod radius). Table I summarizes the baseline case as well
as the range of values explored in this study. The plots and
results presented in Sec. III will refer to the baseline case
unless otherwise stated.

III. RESULTS

A. Free-energy functional minimization

Since we investigate the aggregation properties through
the minimization of the free-energy functional introduced in
Eq. (3), we start this section by discussing the shape of the free
energy as a function of bundle size. Different cases exist. The
functional can be decreasing on the whole range of bundle size
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FIG. 5. (Color online) Free energy plotted as a function of
aggregation number for different surface tensions in the case of perfect
dissociation, �SC � rR . As can be seen, the free energy is a decreasing
function, which implies relaxation toward a phase-separated state.

considered as shown in Fig. 5. In this case the system is driven
to complete phase separation. Figure 6 displays a case with
increasing free energy for the largest values of the surface
charge density σ . In this case, the equilibrium is a solution
of dispersed rods. In between these limiting cases, there is a
region of the parameter space for which the functional is flat
and shallow. In this case, equilibration can be expected to be a
rather slow process and thermal excitation should give rise to
a statistical distribution of structural conformations of bundles
with similar energy. This behavior can be inferred from results
seen in Figs. 6 and 7.

B. Dissociation

Here we discuss the limiting cases of dissociation, defined
in Sec. II A (see Fig. 4). In the limit of perfect dissociation,
which corresponds to η = 1 in Eq. (2), we can observe that the
free energy decreases as the aggregation number increases, for
any combination of surface charge density and surface tension,
as in Fig. 5. As a result, the system, in this limit, will always
approach a perfectly phase-separated state. As such this limit is
unphysical: side chains have finite lengths; it is thus impossible
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FIG. 6. (Color online) Free energy plotted as a function of
aggregation number for different surface charge densities in the case
of minimum dissociation, �SC → 0. As the surface charge density
increases, the free energy moves toward positive values. Moreover,
a metastability can be observed at the transition with different
configurations on the zero-energy manifold.
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FIG. 7. (Color online) Free energy for different radii rR .

for all ionizable groups to protrude to the surface of the bundle,
irrespective of the bundle size. Perfect dissociation with η = 1
could be achieved only for bundles with radius below a critical
value.

In the limit of minimal dissociation, the analysis of the free
energy as a function of aggregation number reveals that there
are two equilibrium configurations: either a phase separated
system or a system of dispersed rods. If we look at Fig. 6,
we can see that the free energy is a decreasing function
of bundle size for nontrivial bundles (k � 2) at low surface
charge densities. At sufficiently high surface charge density,
|σ | � 0.4 (e) nm−2, the free energy becomes a monotonously
increasing function of bundle size. It moves toward positive
values and becomes mostly increasing as the surface charge
density increases. In other words, the equilibrium changes
from a phase separated system at low surface charge density
to a solution of dispersed rods at high surface charge density.
This trend is expected as it corresponds to an evolution from
a system dominated by hydrophobicity to one governed by
repulsive electrostatic interactions. The transition occurs when
the free energy crosses the zero-energy level for aggregation
numbers k � 2. Interestingly, at the transition, as the free
energy is mostly convex for k � 2, there is metastability with
different aggregation numbers belonging to the zero-energy
manifold.

C. Impact of geometrical parameters

Figures 7 and 8 display the impact of the rod radius on
the equilibrium bundle size. The overall trend is that the
aggregation number increases with rR . This dependence is
continuous and more pronounced for a smaller absolute value
of the ion solvation energy, Esolv = −0.2 eV, as illustrated in
Fig. 8(a). At the value Esolv = −0.3 eV, shown in Fig. 8(b),
bundle formation does not occur for rR � 0.6 nm as the penalty
for ion solvation is too high.

As previously explained, for the sake of relevance to
the aggregation in PFSA membranes, we focus on 5 � L �
40 nm, consistent with the following condition,

L � Lk
lim = k

πρr2
B

, (16)

where Lk
lim is a limit imposed by geometric considerations.

This condition is equivalent to imposing rB � rC , which is
a condition for the cell model to be a valid approximation.
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FIG. 8. Equilibrium size of bundles for different rod radii rR

with baseline case parameters. The solvation energy is: (a) Esolv =
−0.2 eV and (b) Esolv = −0.3 eV.

Figure 9 shows Llim for a reference rod density of ρ = 1.19 ×
10−2 nm−3. It appears that Lk

lim depends strongly on rR . If we
want to be able to describe rods with L = 40 nm we should
have rR < 0.7 nm.

In Fig. 10, a sharp drop of the equilibrium bundle size
occurs around Llim ≈ 40 nm. Below this value there is a small
range of increase of the equilibrium bundle size but further
away from this upper limit of validity of the cell model, the
equilibrium bundle size is remarkably stable, which indicates
that end effects can be neglected.

Another important parameter controlling stable bundle
sizes is the density of rods, ρ (Fig. 11). In the limit of
dilute systems (the lowest density we investigated was ρ =
5.0 × 10−5 nm−3), the free energy flattens, indicating that
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FIG. 9. Upper bound Lk
lim for the length of the rods as a function

of the size k of the bundle. Depicted for the reference density ρ =
1.19 × 10−2 nm−3 and the radius rR = 0.50 nm.
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FIG. 10. Bundle equilibrium size as a function of rod length L.

the relaxation to equilibrium slows down with dilution. For
ρ < 0.02 nm−3, the mean distance of rods in a dispersed
solution is larger than the Bjerrum length �B . Equilibration
processes are thus slowed down as electrostatic interactions
are weakened.

Similarly to what happens for the rod length, around the
upper limit of validity of the cell model, the equilibrium bundle
size increases before plunging to kmin = 1, which indicates
the breakdown of the mean-field approximation. The critical
value of the density derives from the inequality introduced in
Eq. (16).

D. Dependence on surface tension and charge density

In this subsection, we discuss the stable size of bundles,
i.e., the number of rods per bundle at equilibrium, as a
function of surface tension γ and surface charge density σ .
This information is displayed in the form of configuration
diagrams, shown in Fig. 12.

The system exhibits diverging aggregation numbers in the
limit of vanishing surface charge density. In this limit of
negligible electrostatic interactions, hydrophobic interactions
drive the system toward complete phase separation. The
entropic component of the free energy introduced in Eq. (3)
is independent of surface charge density. As for the internal
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FIG. 11. Equilibrium aggregation number as a function of rod
density ρ.
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FIG. 12. (Color online) Configuration diagram for the baseline
case, except the solvation energy, which is (a) Esolv = −0.2 eV,
respectively, (b) Esolv = −0.3 eV. The equilibrium bundle size is
reported along z axis.

energy, Eq. (5), it can be written anew as follows:

kf̃k

2π
=

[
γ + 4π

εκ
�̃(rB)σ 2 +

(
1

qβ
− Esolv

q

)
σ

]
rB

+ q

∫ rC

rB

rdr ϕ(r)nH (r). (17)

This form reveals that all contributions but the hydrophobic
one scale with the surface charge σ , or positive powers of it.

Another visible limit in this configuration diagram is the
dispersed rod region. It corresponds to the region where
electrostatic interactions dominate. Indeed, if there were only
electrostatic interactions, aggregation could not occur as the
counterions are monovalent. It is normal to reach this limit in a
sector where surface tension is weak in comparison to electro-
static interaction terms. The boundary of this dispersed-rod do-
main prescribes a parabolic curve as implied in Eq. (17). When
γ = 0, the dispersed rod state exists over a certain range of σ .
Increasing γ , the last term in Eq. 17 is not affected and the level
sets of the first term in square brackets are exactly parabolic in
(γ,σ ) space. Hence, within the parabola defined by the level
set corresponding to the limit of stability of the dispersed rod
at γ = 0, the dispersed rod state minimizes the free energy.
For increasing Esolv, the parabolic domain expands to a wider
range of |σ | values and a larger apex value along the γ axis.

This is clearly visible when comparing Figs. 12(a) and 12(b),
for Esolv = −0.2 eV and Esolv = −0.3 eV, respectively.

Between the limit of complete phase separation and the
single rod limit, a cascade of intermediate configurations exist.
The largest domain corresponds to 9-bundles (light green in the
online colored version of Fig. 12). This configuration presents
eight rods at the surface and one rod in the center. If the energy
of solvation were so strong as to impose full dissociation,
the equilibrium aggregation number would be k = 6, which
corresponds to the largest single-layer bundle. For keq = 9,
the solvation energy still imposes very high dissociation, but
the hydrophobicity requires to minimize more the interfacial
area between bundles and water. These configurations lead to
the formation of a close-packed bilayer-type configuration that
maximizes dissociation with eight out of nine rods at the sur-
face of the bundle. These geometric remarks provide an intu-
itive understanding and a rule of thumb to predict trends as side
chain length changes. Upon increasing side chain length, the
equilibrium aggregation number shifts toward larger values.
For �SC ≈ 2rR , we can expect bundles with two or three layers
as the most stable configurations, namely k = 19 and k = 20.
These expectations still need to be further tested experimen-
tally. The available SAXS and SANS data for Nafion, Hyflon,
and Aciplex [48,49] are not conclusive in view of the precise
characteristics of stable bundles. Local probes, such as atomic
force microscopy, might prove more insightful in this regard.

IV. DISCUSSION

The results presented in this paper warrant a number of
comments. First, the limit of perfect dissociation represents an
unphysical limit as the assumption of side chain head groups
protruding to the surface of the bundle, whatever the size of
a bundle, cannot hold. To explore the limit of near perfect
dissociation one of the basic assumptions of the model needs
to be challenged, namely the absence of electrolyte inside
the bundle. Given the large difference of dielectric constant
between aqueous solution (55.3) and ionomer (typically about
2), we can expect a quasineutralization of the charges inside
the bundle leaving an effective surface charge at the external
interface between the bundle and the aqueous solution [50].
Such calculations would thus bring back a system similar to
the one here studied, albeit with a significantly reduced portion
of dissociated and mobile protons.

The proposed theoretical formalism draws attention to a
major structural correlation effect. It refers to the correlation
between the degree of ionomer dissociation and the effective
length of side chains. The proposed treatment of different
dissociation regimes in this paper is a coarse approach to
incorporate this correlation, but it allows relevant conclusions
for the impact of the lengths of side chains on ionomer
aggregation to be drawn.

The self-assembly of rigid ionomer molecules into ag-
gregates with cylindrical geometry emerges as a consistent
scenario from the theoretical analysis. These aggregates form
the microscopic building blocks of the membrane skeleton.
Primary tests for the validity of this conclusion are studies
of ionomer aggregation in dilute solution. Indeed, forma-
tion of cylindrical aggregates was found experimentally in
Nafion solution. Aggregate radii determined from diffraction
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experiments, using small-angle neutron or x-ray scattering
(SANS or SAXS) [24,34,51–53], as well as spectroscopic
measurements using electron spin resonance (ESR) [54,55],
are in the range of 15 to 25 Å, which compares well with
results of our theory.

Furthermore, experimental studies showed that the radius
of cylindrical aggregates in solutions of short side chain PFSA
ionomers is smaller than in solutions of long side chain PFSA
ionomers [34]. This result agrees with the trend predicted on
the basis of the theory: longer side chains result in larger
equilibrium bundle size.

Studies of ionomer aggregation in the dense ionomer limit,
corresponding to membrane formation, are more precarious.
Nevertheless, we maintain a claim that cylindrical aggregates
represent the primary structural motif, from which complex
statistical structures of PEMs are formed. Atomic force mi-
croscopy results support this claim [56]. Gebel and coworkers
have carried out analyses of SANS and SAXS measurements
for PFSA ionomer membranes [31–33]. From the scaling law
for the scattering intensity as a function of the wave number,
I (q) ∝ q−1, which is characteristic of cylindrical structures,
they concluded that cylindrical polymer aggregates are the
building blocks of membranes.

However, the interpretation of scattering data for water-
filled PEMs remains controversial [30,32,57]. Plots of the
free energy of ionomer bundles as a function of aggregation
number, shown in Fig. 7, could partly explain this lasting
controversy. The free energy minima are shallow and there
is a quasidegeneracy of bundles with different aggregation
numbers, due to small energy differences (in the order of kBT )
associated with transitions between bundle sizes. Thus, a free-
energy minimum can be well-defined at the microscopic scale
for a single bundle, but for a macroscopic ensemble of bundles
it seems unreasonable to predict a stable configuration on the
basis of free-energy considerations. By the same argument it
appears futile trying to identify a prevailing shape of pores.
A PEM is expected to exhibit a random statistical distribution
of bundle sizes and pore shapes. However, at the macroscopic
scale, a PEM does not relax to a structurally well-defined
state. This reasoning could explain why membrane fabrication
and pretreatment methods have such a vital impact on PEM
structure and properties.

Atomistic molecular dynamics (MD) have consistently
been unable to rationalize the aggregation of backbones in
PFSA systems [58–61]. The reason is the extremely slow
relaxation in these systems [62]. As noted in Ref. [59]:
finding the equilibrium microstructure when starting with a
totally random distribution of polymer chains in the simulation
box is prohibitive due to insufficient simulation times. For
the same reason, coarse-grained simulation approaches, such
as coarse-grained molecular dynamics or dissipative particle
dynamics [63,64], have been unable to address this problem.
Moreover, the microscopic aggregation is absent from the
computational framework that is based on self-consistent mean
field theory [65,66]. A way to overcome the limitation of

short computable time scales is to start with preconstrained
systems, similarly to what was done in Ref. [59]. Following
this approach, different morphological models for microscopic
structures could be evaluated and compared. Thereby, distri-
butions of bundle sizes could be investigated further.

We can compare our results with other works that explored
the aggregation of charged polymers using approaches based
on minimization of free-energy functionals. In Ref. [18],
the authors explored aggregation of polyelectrolytes in a
monovalent salt bath of stiff charged rods with small surface
tension. They found an equilibrium bundle radius of rB = 9 nm
for γβ−1 = 0.197 nm−2. These bundle radii correspond to
aggregation numbers of k = 40–80. The equilibrium bundle
sizes are, therefore, much larger than those found in our work;
the main reason for the large discrepancy is the screening
of electrostatic interactions by salt ions within the bundle. In
their work, the authors also found an increase of equilibrium
aggregation number upon the increase of the surface tension,
similar to our results. In the absence of hydrophobicity they
found no aggregation, as expected.

V. CONCLUSION

We have studied the stability of bundles of ionomer
molecules to investigate microscopic aggregation phenomena
in solutions of PFSA ionomer molecules. Ionomers were de-
scribed as rigid rods with uniform surface charge density. The
discrete distribution of ionomer side chains was not explicitly
accounted for. The impact of the length of side chains was eval-
uated by implicitly comparing different dissociation scenarios.

A free-energy functional developed for this system accounts
for direct electrostatic as well as hydrophobic interactions.
The model proves sufficient to describe the formation of
microscopic cylindrical bundles observed in dilute solutions
of typical PFSA materials. Bundles are characterized by their
aggregation number, which is sensitive to the density of acid
groups along the ionomer backbone and to the surface tension
of hydrophobic backbone segments. Predicted trends for the
variation of bundle sizes with these parameters are consistent
with experimental studies on ionomer aggregation in solution.

We claim that cylindrical bundles of ionomer backbones
are the prevailing structural motif in ionomer membranes.
However, the small energy differences between bundles of
varying size imply that a membrane exhibits random statistical
distributions of bundle sizes as well as of shapes and sizes of
pores enclosed by such bundles. Rationalizing these distribu-
tions will be essential in order to understand elastic properties,
water sorption behavior, and transport properties of PEMs.
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