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Using hydrodynamic simulations, we demonstrate that confined colloidal suspensions can greatly enhance the
unfolding of collapsed single polymers in flow. When colloids come in direct contact with the polymers due to the
flow, the collapsed chains become flattened or elongated on the surface of the colloids, increasing the probability
of forming large chain protrusions that the flow can pull out to unfold the polymers. This phenomenon may be
suppressed if the colloid size is commensurate with the confining channels, where the colloids form well-defined
banding structures. Here, we analyze the colloid banding structures in detail and their relation to the chain
unfolding. We find that for colloid volume fractions up to 30%, the confined colloids form simple cubic (sc),
hexagonal (hex), or a mixture of sc + hex structures. By directly changing the heights of the confining channels, we
show that the collapsed polymers unfold the most in the mixed sc + hex structures. The diffuse (not well-defined)
bands in the mixed sc + hex structures provide the highest collision probability for the colloids and the polymers,
thus enhancing unfolding the most. Without colloidal suspensions, we show that the confining channels alone
do not have an observable effect on the unfolding of collapsed polymers. The well-defined colloid bands also
suppress the unfolding of noncollapsed polymers. In fact, the average size for noncollapsed chains is even smaller
in the well-defined bands than in a channel without any colloids. The appearance of well-defined bands in this
case also indicates that lift forces experienced by the polymers in confinement are negligible compared to those
exerted by the colloidal band structures. Our results may be important for understanding the dynamics of mixed
colloid polymer solutions.
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I. INTRODUCTION

Understanding the dynamics of single polymers in flow
has been an active research topic for decades because of its
close relation to both the rheology of polymer solutions [1]
and the emerging technology of manipulating single DNAs
[2]. More recently, studies on globular proteins (polymers)
have also shown that the protein dynamics in flow directly
correlates with the protein functions and stabilities [3,4]. For
polymers in a good or � solvent (which we refer to as
noncollapsed polymers) subject to shear flow, the polymers
undergo periodic unfolding and refolding cycles as long as the
shear rate is faster than the characteristic chain relaxation time
[2,5,6]. The averaged polymer extension increases smoothly
with increasing shear rates, and there is no well-defined
unfolding transition. On the other hand, for polymers in a
bad solvent (which we refer to as collapsed polymers) subject
to shear flow, the polymers show a well-defined unfolding
transition at a threshold shear rate [7–9]. To understand
the origin of the unfolding of collapsed polymers in flow,
a nucleation-based mechanism has been proposed, and the
scaling laws derived from this model appear to be in excellent
agreement with simulations results [8,9]. The core of this
nucleation process involves the concept of thermally excited
polymeric protrusions extending from the collapsed chains.
The nucleation barrier is overcome when the hydrodynamic
drag force acting on a protrusion is larger than the restoring
cohesive force, giving rise to the shear rate threshold value.

Recently, we have demonstrated that colloidal suspensions
can greatly enhance the unfolding of collapsed polymers [10].
The enhancement comes from colloids colliding with the
collapsed chains, increasing the probability of forming large
chain protrusions that the flow can pull out to unfold the

polymers. Interestingly, we have observed a nonmonotonic
enhancement when changing colloid sizes. By analyzing the
banding structures of the colloids in confining channels, we
have discovered that commensurability between the colloids
and the channels has a profound effect on the unfolding of
polymers. (The colloid sizes are said to be commensurate with
a channel if the colloids can form well-defined colloid bands
within the channel [11].) To the best of our knowledge, there
has been no research systematically analyzing the relations
of the confined colloid banding structures and polymer
unfolding. In this study, we explore such a system providing
direct relations between the structure of colloidal bands and
the dynamics of polymers within these sheared colloidal
dispersions. In particular, we want to understand the effects
of commensurability of the colloids and the channels on the
unfolding of collapsed and noncollapsed polymers.

Understanding the dynamics of polymers in colloidal sus-
pensions is important since the polymer and colloid mixtures
are ubiquitous in our world and found in everyday items such
as ink, milk, and paint. However, current research on polymer
and colloid mixtures has mainly focused on the microstructures
or the phase behavior of the colloids, ignoring the internal
degrees of freedom of the polymer chains [12]. We believe
that the dynamics of the polymers is as important as that of the
colloids, especially in the driven systems.

II. SIMULATION METHODS

In our model system, colloids are simulated as purely
repulsive spheres of size rc and volume fraction φ with a no-slip
boundary condition at the surface [13]. Single polymers are
simulated with N = 50 beads of radius a interacting through
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FIG. 1. (Color online) (a) Unfolding sequences for collapsed polymers (ε̃ = 2.08) at the same shear rate (γ̇ τ = 2) but with different colloid
volume fractions (φ = 0%, 15%, and 30%). (b) Time sequences of the nearest colloid distance Rc−p (upper sequence; see text for definition)
and the polymer extension Rs (lower sequence; see text for definition) for the φ = 15% case in (a) from t/τ = 400 to 540, where a well-defined
unfolding transition appears. (c) Snapshots of the specific simulation times when a colloid is very close to the polymer. Note that in each
snapshot, the polymer is represented by blue beads, the nearest colloid by a red sphere, and other colloids by white spheres.

the intrinsic potential U = Us + ULJ . The first term accounts
for the connectivity of the chain,

Us = κ

2
kBT �N−1

i=1 (ri+1,i − 2a)2, (1)

where ri+1,i is the distance between adjacent beads along the
chain. The spring constant is taken to be κ = 800/a2, which
ensures the average bond length is not larger than 10% of the
equilibrium bond length for all the shear rates considered. The
second term is a Lennard-Jones (LJ) potential:

ULJ = ε̃kBT �ij [(2a/ri,j )12 − 2(2a/ri,j )6], (2)

where ε̃ determines the depth of the potential, and ri,j is the
distance between the ith and the j th bead. In this work,
we use ε̃ = 0.41 for noncollapsed polymers and ε̃ = 2.08
for collapsed chains. Every other interaction (i.e., polymer-
colloid, colloid-colloid, polymer-wall, and colloid-wall) in
the system is purely repulsive, and we use a stiff Hookean
interaction that is only present if the distance between two
particles is less than the sum of their radii.

The simulation box is bounded in the z direction by no-slip
walls separated by a distance H , and periodic boundaries are
used in the other two directions. The implicit fluid inside the
simulation box is simulated on a three-dimensional grid by
the fluctuating lattice-Boltzmann (LB) equation [14], which
accounts quantitatively for the dissipative and fluctuating
hydrodynamic interactions. For simplicity, we set the grid
spacing 	x and the LB time step 	t equal to unity. Other
parameters for the fluid are the density ρ = 1, the kinematic
viscosity ν = 1/6, and the temperature kBT = 10−4. The
polymer beads couple to the fluid in a dissipative manner
[15]; in LB units, the effective radius of the polymer beads

is a = 0.5, and the characteristic monomer diffusion time
is τ = 6πηa3/kBT ∼= 4 × 103, where η = νρ is the dynamic
viscosity. Detailed descriptions of the simulation methods for
the polymers and the colloids can be found in Ref. [16].

III. RESULTS AND DISCUSSION

A. Collisions from colloidal suspensions

Collapsed polymers in shear flow display two dynamical
regimes: for low shear rates the chains remain in a compact
state, while above a critical shear rate the polymers undergo
sudden and repeated unfolding transitions. Recently, we have
demonstrated that colloids can greatly enhance the unfolding
of collapsed polymers [10,17]. Figure 1(a) presents the typical
time sequences of the polymer extension Rs(t) of the collapsed
polymers at the same shear rate γ̇ τ = 2, but with different
colloid volume fractions. The polymer extension Rs is defined
as the projected polymer length along the flow direction and
is illustrated in Fig. 1(c). The effect of colloids is obvious
since, for φ = 0%, the chain remains collapsed, while at higher
volume fractions the chain starts exhibiting pronounced and
repeated unfolding and refolding events.

To analyze the polymer unfolding in detail, in Fig. 1(b)
we replot the time sequence of the polymer extension for the
φ = 15% case from t/τ = 400 to 540, where a well-defined
unfolding transition appears [black star in Fig. 1(a)]. In
addition, in Fig. 1(b) we also plot the time sequence of the
nearest colloid distance Rc−p(t). The nearest colloid distance
Rc−p is defined as the distance from the polymer center of
mass to the center of the nearest colloid. [See Fig. 1(c) for an
illustration.] As can be appreciated by examining Fig. 1(b),
colloids continuously collide with the polymer. The collisions
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occur whenever the normalized distance Rc−p

rc+rp
≈ 1, where

rc is the radius of the colloids, and rp the average radius
of the polymer globule. The most important collision for
polymer unfolding occurs at t/τ = 438.7 [single red star in
Fig. 1(b)], where a colloid compresses the polymer chain into
a quasi-two-dimensional pancake globule [the first snapshot in
Fig. 1(c)]. Large chain protrusions are formed in this collision
event, and the fluid flow is able to unfold the whole chain
afterwards. At t/τ = 453.7 and 467.4 [double and triple red
stars in Fig. 1(b)], the normalized nearest colloid distance
Rc−p

rc+rp
is much less than unity. This behavior occurs because the

extended polymer slightly wraps the colloids, and the polymer
center of mass resides within the colloid at those moments
[second and third snapshots in Fig. 1(c)].

In Fig. 2(a), we show the mean extension 〈Rs〉 for a
collapsed polymer as a function of the dimensionless shear rate
γ̇ τ for different φ’s. As can be seen in this plot, the polymer
unfolding is clearly enhanced by the colloids and is correlated
with the colloid volume fraction. The critical shear rate that is
required for the collapsed polymers to unfold decreases from
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FIG. 2. Rescaled chain extension 〈Rs〉/2Na for collapsed poly-
mers (ε̃ = 2.08) as a function of the shear rate γ̇ τ for (a) different
colloid volume fractions (φ = 0%, 15%, and 30%) but with a fixed
colloid size (rc = 5), and (b) different colloid sizes (rc = 3, 4, and
5) but with a fixed colloid volume fraction (φ = 30%). Inset in
(a): Rescaled chain extension 〈Rs〉/2Na for collapsed polymers
(ε̃ = 2.08) as a function of the shear rate γ̇ τ in empty channels
with the channel heights H = 33 and 66.

γ̇ ∗τ ≈ 3 to 1 when the colloid volume fraction increases from
φ = 0% to 30%.

B. Confinement effects

We have shown that confined colloidal suspensions have
significant effects on the unfolding of collapsed polymers.
However, one might suspect that the confining channels alone
also affect the polymer unfolding. The inset in Fig. 2(a) shows
the mean extension 〈Rs〉 for the collapsed polymers as a
function of the dimensionless shear rate γ̇ τ in empty channels
with the channel heights H = 33 and 66. Doubling the height
from H = 33 to 66, we find no significant differences for
polymer unfolding. In fact, the mean polymer extension in both
the H = 33 and H = 66 channels is almost identical for all the
shear rates considered. In contrast, our previous simulations
show that colloids in the channels can alter the critical shear
rate for polymer unfolding by up to fivefold [10]. As a result,
we conclude that the polymer unfolding is insensitive to the
confining channels alone in our simulations.

C. Shear bands with different colloid sizes

In previous sections, we have discussed only the collisions
from the single (nearest) colloids with the polymers or the
empty confining channels. However, the collective dynamics
of the overall colloidal suspensions in the channels also affects
the unfolding of polymers drastically. Literature has shown
that confined colloidal suspensions exhibit complex ordering
transitions under flow, and the transitions highly depend on the
commensurability between the colloid sizes and the confining
channel dimensions [11]. In a confining channel with a fixed
height and colloid volume fraction, we have observed that, for
collapsed polymers, the polymer extension 〈Rs〉 may depend
on the colloid sizes rc nonmonotonically [10]. This interesting
result is shown again here in Fig. 2(b), where we have a fixed
channel height H = 33 and colloid volume fraction φ = 30%,
but with different colloid sizes rc = 3, 4, and 5. When rc = 5
we observe the largest polymer extension, while for rc = 4
we observe the smallest polymer extension with rc = 3 being
somewhat in the middle.

To understand the origin of the nonmonotonic polymer
extension with the different colloid sizes, we first look at
the complex colloid banding structures formed across the
confining channels. In particular, we want to realize how the
colloid banding structures can affect the collision probability
for the colloids and the polymers. In the top panels of Fig. 3,
we show the distribution of the polymers (red line) and colloids
(black line) as a function of the z position within the channels
at a shear rate γ̇ τ = 10. The green line corresponds to the
distribution of the extended polymers and will be discussed
later. For the rc = 5 and rc = 3 cases [Figs. 3(a) and 3(c)],
only diffuse colloid bands appear in the middle. On the
contrary, for the rc = 4 case [Fig. 3(b)], the colloid bands
are fully developed. More importantly, the distribution of the
polymers is highly regulated by the colloid bands. With the
well-defined bands [the rc = 4 case; Fig. 3(b)], the polymers
almost always reside between the colloid bands where the
collision probability for the colloids and the polymers is
the smallest. In contrast, with the more diffuse bands [the
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FIG. 3. (Color online) Top panels: Number density of polymers np [red (dark gray) line] (ε̃ = 2.08), extended polymers ne [green (light
gray) line], and colloids nc (black line) as a function of the z position within the channels at a shear rate γ̇ = 10 and colloid volume fraction
φ = 30%. The extended polymers are defined by the condition dRs(t)/dt > 0. Middle top panels: Number density of the extended polymers
divided by the total number density of the polymers. Middle lower panels: Average velocity profile in the x direction. Lower panels: Local
rescaled shear rate γ̇ /γ̇0, where γ̇0 is the imposed shear rate in the system. The different parts correspond to (a) rc = 5, (b) rc = 4, and (c)
rc = 3. Note that the data in the gray areas are removed because the polymer density in those regions is negligible.

rc = 3 and 5 cases; Figs. 3(a) and 3(c)], the polymers are
more likely to reside in the colloid bands where the collision
probability for the colloids and the polymers is higher. The
ratios of the distribution of the extended polymers ne (green
line; see the figure legend for the definition) and the distribution
of the polymers in all conditions np (red line) are shown in
the middle top panels of Fig. 3. This ratio (ne/np) shows
the relative probability for the polymers to extend in the
channel. As can be more clearly seen in the rc = 4 and rc = 3
cases [Figs. 3(b) and 3(c)], the polymer unfolding is largely
enhanced in the colloid bands (where the collision probability
for the colloids and the polymers is high), and is suppressed
between the bands (where the collision probability for the
colloids and the polymers is low). Middle lower and lower
panels in Fig. 3 show the velocity profile and the local shear
rate in the channel. Although between the shear bands the local
shear rate can increase up to 1.5 times higher than the imposed
shear rate, the polymer unfolding is not enhanced there. The
fact that the polymers unfold more in the colloid bands (where
the local shear rate is lower) and unfold less between the bands
(where the local shear rate is higher) strengthens our finding
that the colloid collision is the main reason for enhancement.

Whether the colloids form the well-defined bands in the
channels can be examined by the characteristic gap width η

[11]. For a hexagonal packing, the characteristic gap width is
defined as

ηhex = H − 2rc√
3rc

+ 1. (3)

On the other hand, for a single cubic packing, the characteristic
gap width is simply the channel height divided by the diameter

of the colloids,

ηsc = H

2rc

. (4)

The colloids and the confining channels are commensurate
with each other if the characteristic gap width is close to
integers. Table I summarizes the characteristic gap width for
the colloids of sizes rc = 3, 4, and 5 in a channel with H = 33.
For rc = 3 and 5, there are no preferred structures since neither
ηhex nor ηsc for these colloid sizes is close to integer values.
In contrast, for rc = 4, the colloids tend to form the simple
cubic structure since, here, ηsc = 4.13 is closer to an integer.
Table I predicts that the well-defined bands appear only in the
rc = 4 case, and this prediction is coincident with our previous
analysis of the colloid banding structures (Fig. 3).

Another interesting effect of the dynamic colloidal struc-
tures is to completely modify the lift forces experienced by the
polymers in confinement. As can be seen in the case in which
one has a commensurate system [Fig. 3(b)], the distribution
of the polymer is completely dictated by the colloids. In the
absence of the latter, the polymer would simply migrate to the
center and exhibit a sharp Gaussian-like distribution, as seen
in Fig. 9(d). Note that the shear rates in Fig. 3 are higher than

TABLE I. Characteristic gap width for colloids of different sizes
in a channel with height H = 33.

rc ηhex ηsc

3 6.20 5.50
4 4.61 4.13
5 3.66 3.30

032602-4



UNFOLDING OF COLLAPSED POLYMERS IN SHEAR . . . PHYSICAL REVIEW E 89, 032602 (2014)

y

z

y

z

y

z

g(y, z)

y

z

simple cubic (sc) 

hexagonal (hex) 

(a) (b) 

(c) (d) 

rc = 5 rc = 4

rc = 3 rc = 3

Δlsc

Δlhex

(γ̇τ = 10)

1×10-5

8×10-6

6×10-6

4×10-6

2×10-6

0
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and (c) rc = 3. (d) Representative snapshot of the colloids (rc = 3)
in the channel. Note that in this special moment, the colloids form
the simple cubic structure on the upper part of the channel, and the
hexagonal structure on the lower part of the channel.

in Fig. 9, which implies that the lift force is even stronger.
Furthermore, the system is already unfolding continuously,
which increases the lift force substantially, as L4, where L is
the stretch of the polymer [18]. Compared to the case where no
clear bands are formed, we can see that ordering of the colloids
induces a strong hydrodynamic force on the polymers. There
are of course some steric effects due to excluded volume of
the colloids that will expel the polymer from regions of high
density, yet the band structure seems to be the most important
factor. This issue will be touched upon further in later sections.

To analyze the packing structures predicted in Table I, in
Figs. 4(a) to 4(c) we plot the radial distribution function for the
colloids in the y-z plane g(y,z). For the rc = 4 case [Fig. 4(b)],
g(y,z) shows a clear simple cubic structure. The colloids in
different layers distribute directly above or below each other.
On the other hand, for the rc = 5 and rc = 3 cases [Figs. 4(a)
and 4(c)], g(y,z) shows mixed simple cubic and hexagonal
structures. Besides distributing directly above or below each
other, the colloids in different layers also pack with mismatches
in order to form the hexagonal structures.

In Fig. 4(d), we show a snapshot of the instant colloid dis-
tribution for the noncommensurate rc = 3 case. Interestingly,
the upper part of the colloids forms the simple cubic structure,
while the lower part forms the hexagonal structure. Although
instant colloid distribution seems to have well-defined bands,
the colloid structures change continuously over time. As shown
in Fig. 3(c), for the noncommensurate rc = 3 case, over time
the colloids form diffuse structures in the middle of the
channel.

D. Shear bands with different channel heights

To study the dynamics of polymers in specific colloidal
structures, we directly change the confining channel heights

TABLE II. Characteristic gap width for colloids of size rc = 5 in
channels with different heights.

H ηhex ηsc

33 3.66 3.30
36 4.00 3.60
40 4.46 4.00

to match the commensurability of each structure. Table II
summarizes the characteristic gap width for colloids of size
rc = 5 in three channels with heights H = 33, 36, and 40.
For H = 33, the colloids do not prefer any structures, and
g(y,z) analysis [Fig. 4(a)] shows that the colloids form mixed
structures. On the other hand, the colloids form the hexagonal
(hex) structure for H = 36, and the simple cubic (sc) structure
for H = 40. Figure 5 shows the average extension for the
collapsed polymers as a function of the shear rate in different
structures. There are two interesting trends. First, we find
that the polymers unfold the most in the mixed hex + sc

structures at all shear rates. Second, comparing the unfolding
of the polymers in the specific hex or sc structures, we find
separate dynamical regimes. At the intermediate shear rates,
1 < γ̇ τ < 4, the polymers unfold more in the hex structure.
However, at higher shear rates γ̇ τ > 4, the polymer extension
is similar in both the hex and sc structures.

To explain the complex dynamics of the polymers in the
different colloid structures and shear rates, we first analyze the
colloid banding structures in each condition. Figure 6 shows
the colloid and polymer distribution in the different colloid
structures (different channel heights) with two shear rates
γ̇ τ = 2 [Figs. 6(a) to 6(c)] and γ̇ τ = 10 [Figs. 6(d) to 6(f)]. For
the mixed sc + hex structures [H = 33; Figs. 6(a) and 6(d)],
the colloids form diffuse bands in the middle of the channel,
and the polymers intermix with the diffuse colloids to achieve
a high collision probability for the colloids and polymers. On
the other hand, for the specific hex or sc structures [H = 36 or
H = 40; Figs. 6(b), 6(c), 6(e), and 6(f)], the colloids form
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FIG. 5. Chain extension for collapsed polymers (ε̃ = 2.08) as a
function of the shear rate for the same colloid size rc = 5 and volume
fraction φ = 30%, but with different confining channel heights.
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well-defined bands in the middle of the channels. As can
be seen in Figs. 6(b) and 6(c), the distances between bands
agree with the packing structures. For the hexagonal packing
(H = 36),

	lhex = 7.3 ∼ 2rc sin
(π

3

)
= 8.7. (5)

On the other hand, for the simple cubic packing (H = 40),

	lsc = 9.1 ∼ 2rc = 10. (6)

For the simple cubic structure [H = 40; Figs. 6(c) and 6(f)],
the polymers almost always reside between the colloid bands,
as can be seen from the alternating polymer and colloid
distribution. One can quickly observe that the polymer and
colloid distribution is very similar in both the (H = 40 and
rc = 5) combination [Figs. 6(c) and 6(f)], and the (H = 33
and rc = 4) combination [Fig. 3(b)]. Since the polymers
usually reside between the colloid bands where the collision
probability for the polymers and colloids is small, the polymers
unfold the least in the simple cubic structure. Surprisingly, for
the hexagonal structure [H = 36; Figs. 6(b) and 6(e)], the
distribution of polymers and colloids largely overlaps. This
special distribution exists because the hexagonal packing is a
much more compact structure, and the empty space between
the colloid bands is small. [The relative space between the
colloid bands in the hex and sc structures can be compared in
Fig. 4(d).] As a result, the polymers cannot reside between the
colloid bands in the hex structures. It may seem at first sight
that the collision probability for the colloids and polymers is
the highest in this distribution. Nevertheless, further analysis
(discussed in detail later) shows that the diffuse colloid bands
still have the highest collision probability. Comparing the
polymer and colloid distribution at low [Figs. 6(a) to 6(c)]
and high shear rates [Figs. 6(d) to 6(f)], we find two interesting
behaviors. First, the polymers largely concentrate in the middle
of the channel at high shear rate. This behavior is due to

the hydrodynamic lifting force for polymers and has been
thoroughly discussed in the literature [19–21]. It can become
a large force [18], and thus deviations from the center can only
be accounted for by other strong forces due to the colloids, as
we discuss now. Second, when increasing the shear rate, the
hexagonal structure is more favorable than the simple cubic
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FIG. 7. (Color online) Radial distribution function for colloids
to the polymer center of mass with different confining channel heights
(H = 33, 36, and 40) with shear rates (a) γ̇ τ = 2 and (b) γ̇ τ = 10.
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FIG. 8. Average extension for noncollapsed polymers (ε̃ = 0.41)
as a function of the shear rate with different colloid volume fractions
(φ = 0%, 15%, and 30%).

structure, as can be seen from the increasing hex peaks in
Figs. 6(b) and 6(e), and the decreasing sc peaks in Figs. 6(c)
and 6(f). Notice that in Fig. 6(b) the polymer mimics a
substitution and does not reside at “interstisial” sites, as for
the case of Fig. 6(c).

Analyzing the distribution of the polymers and colloids in
the channels is useful to observe the banding structures of
the colloids and their relations to the polymers. However, it
is sometimes hard to directly extract the collision probability
for both components from the banding structures. Thus, we
also plot the radial distribution function for the colloids to
the polymers g(r) (Fig. 7), where r is now the distance from
the colloid centers to the polymer center of mass. As shown,

the hexagonal structure (H = 36) has the least colloids
around the polymers. Nevertheless, it is harder to distinguish
between the H = 33 and H = 40 cases.

E. Noncollapsed polymers in shear bands

The unfolding of noncollapsed polymers starts at lower
shear rates and is characterized by a smooth deformation.
Instantaneous perturbations by the colloids on the shape of the
noncollapsed coils have no obvious effects on the initiation of
unfolding. Nevertheless, we do observe interesting behaviors
at higher shear rates where the colloids start to form bands.
Figure 8 shows the average extension for the noncollapsed
polymers as a function of the shear rate γ̇ τ for different φ’s.
For all the colloid volume fractions (φ = 0%, 15%, and 30%),
the average extension increases smoothly from γ̇ τ = 0.01 to
0.2. However, at higher shear rates γ̇ τ > 0.2, we observe
nonmonotonic effects. Compared to a channel without any
colloids (φ = 0%), the average elongation is larger when
φ = 15% but smaller when φ = 30%.

Figure 9 shows the distribution of the noncollapsed
polymers and colloids in the channels with two shear rates
γ̇ τ = 0.1 and 1, and three colloid volume fractions φ = 0%,
15%, and 30%. For γ̇ τ < 1 or φ < 30% [Figs. 9(a) to 9(e)],
the colloids do not form well-defined bands, and the polymers
distribute evenly across the channel and concentrate in the
middle. However, at γ̇ τ = 1 and φ = 30% [Fig. 9(f)], the
colloids form well-defined bands. Furthermore, the polymer
distribution at φ = 30% and γ̇ τ = 1 is different from other
cases with lower shear rates or colloid volume fraction.
As shown in Fig. 9(f), the polymers distribute much more
narrowly between the colloid bands. For the noncollapsed
polymers, the smaller average extension within the well-
defined bands may result from the smaller polymer coil heights
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FIG. 9. (Color online) Colloid nc (black line) and polymer np (red line) distribution in the channel with (a) φ = 0% and γ̇ τ = 0.1,
(b) φ = 15% and γ̇ τ = 0.1, (c) φ = 30% and γ̇ τ = 0.1, (d) φ = 0% and γ̇ τ = 1, (e) φ = 15% and γ̇ τ = 1, and (f) φ = 30% and γ̇ τ = 1.
The noncollapsed polymers are characterized by ε̃ = 0.41.
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within those bands. (The coil height is defined as the projected
height of the polymer coil in the z direction.) Previous studies
have shown that the unfolding of the noncollapsed chains is
suppressed if the polymers are unable to sample the whole
conformation of large coil heights when in confinement [22].

IV. CONCLUSIONS

Confined colloidal suspensions can greatly enhance the
unfolding of collapsed polymers in flow. In this paper, we
show that the enhancement is mainly due to the collisions
from the colloids with the collapsed chains, and the confining
channels alone do not have an observable effect on the
polymer unfolding. For colloid volume fractions up to 30%, the
confined colloids form simple cubic, hexagonal, or a mixture
of both structures, depending on the commensurability of
the colloid sizes and the channel heights. By changing the
colloid sizes or the channel heights, we show that the collapsed
polymers unfold the most in the mixed structures because the

diffuse colloid bands in these structures provide the highest
collision probability for the colloids and the polymers. Lastly,
we show that the well-defined colloid bands also suppress the
unfolding of noncollapsed polymers. The suppression is due
to the redistribution of the noncollapsed polymers within the
well-defined bands, where the noncollapsed chains tend to
have smaller coil heights. The dynamics of polymers is thus
completely controlled by the band structure of the colloids.
Further studies in this direction are needed to provide a unified
picture on the effects of bands and surfaces on the stability and
dynamics of polymer chains.
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