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Backflow-mediated domain switching in nematic liquid crystals
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We study the dynamics of the nematic liquid crystal kickback effect upon removal of a primary electric field
and its amplification by a perpendicular secondary electric field resulting in the formation of domains with a
reverse director orientation. Using computational fluid dynamics, we show that the domain formation is a robust
phenomenon that takes place also in the complex case of multiple irregular random Freedericksz domains in
three dimension as they appear in a realistic experimental situation. We propose domain switching by kickback
amplification as a tool for self-insertion of shell-like inhomogeneities into an otherwise perfectly uniform director
field configuration.
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I. INTRODUCTION

A. Background

Problems involving hydrodynamic motion of the nematic
liquid crystal as a result of director reorientation (“backflow”)
have been modeled mainly in terms of the Ericksen-Leslie
continuum theory of the nematic liquid crystal [1–3]. In
retrospective, for one-dimensional (1D) geometry, Clark and
Leslie [4] gave a thorough approximative analysis of nematic
relaxation upon removal of the electric or magnetic field; a
complete numerical treatment of the problem was contributed
by van Doorn [5]. 1D backflow dynamics in the twist
cell was studied by Berreman [6,7]. Pieranski, Brochard
and Guyon [8,9] studied, both theoretically and experi-
mentally, one-dimensional dynamic behavior in a magnetic
field for three geometries (twisted, planar to homeotropic,
and homeotropic to planar), limited to near-critical fields.
They gave the distortion wave vector and effective viscosity
dependence on the magnetic-field strength. The instability
against periodic distortion in the case of the Freedericksz
transition (first observed by Carr [10]) was studied by Guyon
et al. [11] for the 2D case, and by Hurd et al. [12] for three
dimensions. The pattern formation in a rotating magnetic field
was observed experimentally and accounted for by a numerical
study based on the Ericksen-Leslie equations [13,14]. The
increasing interest in the hydrodynamic description of pattern
formation in fluids enriched also the studies of nematic and
nematic polymer fluids in this aspect [15–20].

The interest in backflow effects reached its climax in the
past decade, when the asymmetry of the nematic point defect
annihilation process was observed experimentally [21]. The
annihilation of the disclination pair was studied numerically
in two dimensions. It was shown by two groups independently
and with complementary numerical methods that the speed
of the 1/2 disclination is indeed larger than that of the
−1/2 disclination due to the backflow [22–24]. This was then
cleanly demonstrated by a joint experimental and theoretical
study in a quasi-2D geometry [25]. The pair-annihilation
asymmetry of various types of nematic defects was addressed
subsequently [26–28].

The competing numerical methods used to approach the
hydrodynamic part of the problems have been mainly the
discretization of the generalized continuum Navier-Stokes
equation [13,14,23–25,29–31] and the lattice-Boltzmann

method (LBM) [22,32–36]. Alternative methods include
smoothed particle hydrodynamics, radial basis function collo-
cation methods, and other hybrid or semianalytic approaches
[26,37–40].

B. The kickback effect

It is known that when switching off the external electric
or magnetic field in a liquid-crystal (LC) cell or pixel, the
transmission intensity bounces momentarily due to a backflow-
generated kickback effect [5,6,30,31]. During this transient
process, the central part of the external-field-aligned director
field initially undergoes a reverse rotation caused by the
hydrodynamic flow, which itself is generated by the gradients
of the director rotation, Fig. 1. By reverse, we mean that the
sense of the director rotation is opposite to the one that would
occur due to the elastic forces, without the action of the flow.

A direct optical quantification of the kickback effect in
the twist cell was presented in Ref. [41]. In practical LC
cell operation, the kickback is undesirable and possibly
minimized [42,43]. Its use for estimating the nematic viscosity
coefficients is reported in Ref. [44].

C. Kickback amplification

In the present work, we exploit the kickback effect to
generate spatial director structures dynamically. We demon-
strate numerically that by applying a secondary perpendicular
electric field (i.e., horizontal in Fig. 1) at moment when the
primary electric field of comparable strength is removed,
the originally weak kickback can be amplified to create a
reverse domain. Moreover, we show that although the backflow
generation depends on the director field boundary condition
(anchoring direction with respect to the boundary normal),
the kickback amplification is not at all restricted to a regular
monodomain case such as the one presented in Fig. 1, but rather
surprisingly turns out to be a robust phenomenon that takes
place in each individual Freedericksz domain of an irregular
multidomain sample. Furthermore, adopting the geometry of
a LC cell and performing a full 3D numerical calculation,
we confirm that the kickback amplification effect persists also
in actual realistic circumstances and could thus be observed
experimentally.
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(c) vmax = 1.17 t = 0.02

(b) vmax = 1.49 t = 0.006

(a) vmax = 7.34 t = 0.001

FIG. 1. Kickback in a 2D square cell (in-plane switching) upon
removal of the in-plane vertical electric field [30]: subsequent
snapshots [(a)–(c)] of the velocity fields (left column), director fields,
and director angular velocity fields (schematically represented by
levels of gray: darker levels represent faster clockwise rotation).
Rigid anchoring in the horizontal direction is assumed at all four
edges. The strength of the initial electric field is E = 10. The units
are defined in Sec. II C. In the kickback phase (a) the director in the
central region rotates reversely (counterclockwise in this example)
due to the strong reverse backflow, which is generated predominantly
by the horizontal boundaries. The region of the reverse rotation is
depicted brightest and is encircled by the dashed contour line of the
stationary director field. Note the weak reverse director deformation
in the center (b), when the kickback transient has almost ceased and
the backflow and the director rotation in the center are about to change
direction (c).

II. THEORY AND METHOD

In our case, the nematodynamic variables are the unit
nematic director n(r), n2 = 1, and the velocity field v(r).
As usual, incompressibility is assumed for the latter. Both
fields are dynamically coupled. The electric field is con-
sidered homogeneous. In the following, we recapitulate the
rather extensive but closed system of nematodynamic equa-
tions [30,31,45,46] that has to be solved numerically.

The orientational elastic and dielectric free-energy density
reads

f = 1
2K11(∇ · n)2 (1)

+ 1
2K22[n · (∇ × n)]2 (2)

+ 1
2K33[n × (∇ × n)]2 (3)

− 1
2εaε0(E · n)2, (4)

where K11, K22, and K33 are the splay, twist, and bend
elastic constants, respectively, E is the electric field, and εa

is the dielectric anisotropy, assuming εa > 0. In one elastic
constant (K) approximation, the bulk elastic free-energy
density, Eqs. (1)–(3), reduces to

f = 1
2K(∇n)2. (5)

Flexoelectricity is omitted from Eqs. (1)–(4). It can be shown
that for typical values [47,48] of the thermotropic nematic flex-
oelectric coefficients ∼10−11 As/m, in the strongly deformed
regions of the sample—the domain walls—it is actually
comparable in magnitude with the dielectricity. Elsewhere,
however, it is completely negligible. For strong electric fields
used in this study, the domain walls represent only a small
fraction of the system. Moreover, the relevant electric coupling
takes place in the quasihomogeneous regions between the
domain walls where the director is reoriented by the electric
field, but not in the domain walls where it is left unchanged.
One can therefore expect that the inclusion of flexoelectricity
would affect the width of the domain walls and slightly modify
the director gradients of nearby regions, which might result in
small rescaling of the electric fields required for switching.
Apart from this minor correction, the flexoelectricity can be
safely discarded.

We define the “molecular field”

hi = − ∂f

∂ni

+ ∂j

(
∂f

∂(∂jni)

)
. (6)

The governing equations are then

∂n
∂t

=
[

1

γ1
h − γ2

γ1
A · n − W · n − (v · ∇)n

]
⊥n

, (7)

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇p + ∇ · (σv + σ e), (8)

∇ · v = 0, (9)

where

σ e
ij = − ∂f

∂(∂ink)
∂jnk (10)

is the elastic stress tensor,

σv = α1n ⊗ n(n · A · n) + α2n ⊗ N + α3N ⊗ n

+α4A + α5n ⊗ (A · n) + α6(A · n) ⊗ n (11)

is the reaction-viscous stress tensor,

Aij = 1
2 (∂ivj + ∂jvi), Wij = 1

2 (∂ivj − ∂jvi), (12)
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N is the director rotation with respect to the background fluid,

N = ṅ + W · n, ṅ = dn
dt

, (13)

ρ is the density, αi are Leslie “viscosity” coefficients linked
with the relation α6 − α5 = α3 + α2 ≡ γ2, and γ1 = α3 − α2

is the rotational viscosity; γ2/γ1 is known as the reaction
parameter [49]. Equation (7) is projected normal to n due
to n2 = 1.

In the case of backflow, the left-hand side of Eq. (8) is
usually set to zero, assuming a low Reynolds number and a
quasistationary flow field to an excellent approximation. We
nevertheless keep both terms as the regime may change for
very strong electric fields (as explained in Sec. II B).

A. Material parameters

Elastic constants and viscosities of the thermotropic LC
representative MBBA are used throughout this study because
they are relatively well known [45]. The dielectric anisotropy
is, however, assumed positive.

Approximate ratios of the elastic constants [45] at 22 ◦C are
K22/K11 =0.42 and K33/K11 =1.4, where K11 = 5 × 10−12

N. Such elastic anisotropy is characteristic of thermotropic
LCs, i.e., bend is typically the most expensive while twist
is the cheapest. In our numerical calculations, we used both
these ratios as well as the one elastic constant approximation.
However, all the results presented in this paper are calculated
with a single elastic constant in order to separate the backflow
effects from possible influences of the elastic anisotropy.

For the Leslie coefficients, we take the ratios [45]

α1/α4 = 0.08,

α2/α4 = −0.93,

α3/α4 = −0.014,

α5/α4 = 0.56,

α6/α4 = −0.41,

which can be considered generic for flow-aligning ther-
motropic nematics consisting of rod-like molecules; α4 =
0.08 Pa s.

B. Scales

The time scale of the director field, Eq. (7), is

τn = γ1ξ
2
E

K
, (14)

where ξE = √
K/εaε0/E is the electric coherence length. The

time scale of the velocity field, Eq. (8), is

τv = ρL2

γ1
, (15)

where L is a typical system size and the effective fluid viscosity
∼γ1. The ratio of the two time scales defines the unsteadiness
parameter of the velocity field (Strouhal number Sr for periodic
flows),

Sr = τv/τn = L2

ξ 2
E

ρK

γ 2
1

∼ L2

ξ 2
E

× 10−6. (16)

The characteristic magnitude of the velocity is estimated by
equating the magnitudes of representative active (γ1ṅ) and
passive (α4A) terms of the viscous stress tensor, Eq. (11),

v0 = KL

γ1ξ
2
E

. (17)

The Reynolds number Re = ρv0L/γ1 is then

Re = L2

ξ 2
E

ρK

γ 2
1

∼ L2

ξ 2
E

× 10−6. (18)

In backflow dynamics, we are thus normally in the regime of
very low Re and Sr. At high electric fields (small ξE), however,
both dimensionless numbers will increase and may come
closer to unity. For L/ξE = 200, which we will use in some
examples, Re = Sr ∼ 0.04. This is particularly important for
short but critical transients, and the kickback is a good example
of just such delicacy.

C. Units

Lengths are measured relative to the shortest geometrical
dimension of the system, which we denote L. In the 2D
examples, it is the side of the square, whereas in the 3D case it
is the thickness of the LC cell. The corresponding time unit is

τ = γ1L
2

K
. (19)

The unit for the electric field is

E0 = 1

L

√
K

εaε0
, (20)

which is the electric field strength with the coherence length
that equals L.

D. Method of solution

The system of nematodynamic equations (7)–(9) is solved
by an open-source finite volume solver [51] for transient
flows, which was substantially adapted and augmented for
the specific nematodynamic situation. The advection term of
Eq. (8) is included. A homogeneous rectilinear mesh was used,
sufficiently fine to describe the domain walls. The mesh size
is given with each example.

III. 2D MONODOMAIN SWITCHING

We use this minimal but clean example, Fig. 2, to
demonstrate the basic mechanism of domain creation by
kickback amplification that was pointed out in Sec. I C. In
one elastic constant approximation, the critical field of the
Freedericksz transition in the square geometry is Ec = √

2π ≈
4.44. Assuming rigid anchoring, the middle part of the sample
is aligned by the in-plane vertical electric field E1 = 35. At
the moment when this primary field is turned off, an in-plane
horizontal electric field E2 = 35 is applied, which amplifies
the backflow-generated kickback distortion and results in a
domain of reverse director orientation.

The reverse domain is then shrinking by a curvature-driven
process [50], where the speed of a part of the domain wall is
proportional to the local curvature. The radius R of a circular
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vmax = 19.96 t = 0.)a( 200

vmax = 7.18 t = 0.)b( 10

vmax = 5.02 t = 0.)c( 40

FIG. 2. Kickback in a 2D square cell, amplified by a horizontal
field, leading to the formation of a reverse domain followed by its
slow shrinking. Subsequent snapshots [(a)–(c)] of the velocity (left
column) and director fields are shown. The velocity scales are larger
than in Fig. 1 due to the presence of the electric field. E1 = E2 = 35.

domain is thus decreasing with a rate ∝1/R. For a general
shape, it follows by integration that the area of the domain
decreases at a rate that is constant in time [50]. The formation
of the reverse domain is a fast process, accomplished in time
τn, whereas its shrinking gets slow with increasing domain
size. The domain is thus typically long-lived in comparison
with other time scales of the system.

A numerical diagram for the required primary and sec-
ondary field strengths E1 and E2 required for switching in the
2D square geometry of Fig. 2 is presented in Fig. 3. In units
of E0, the fields are empirically related by

1

E2
1

+ 1

E2
2

� 1

(5Ec)2
, (21)

or in other words

ξ 2
E1

+ ξ 2
E2

� 1

500
(22)

(a circle), where ξE1 and ξE2 are the corresponding electric
coherence lengths (in units of L).

0
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switching

FIG. 3. Primary and secondary field strengths, E1 and E2,
required for switching.

There exist several issues regarding the extrapolation of
this 2D monodomain switching to more general and realistic
circumstances. In the presented example, the role of the
anchoring at the boundaries is crucial for the generation of
the backflow as a response to the director reorientation. In a
larger sample, the domains of the Freedericksz transition are
scattered all over the system and are of irregular shapes. In
particular, if one applies strong electric fields in order to get
a good amplification of the kickback and well-defined reverse
domains, the original Freedericksz domains are numerous.
Thus, the situation is quite different from the monodomain
example of Fig. 2—there are no boundaries with anchoring
that would encircle the domains, and hence the generation
of the backflow is in question. The situation gets still more
complex in 3D geometry, which is not just a straightforward
extension of the 2D case.

IV. 2D MULTIDOMAIN SWITCHING

Increasing the system size or, equivalently, increasing the
electric field strength, increases the number of Freedericksz
domains. Starting with a tiny random perturbation of a uniform
director field and applying a strong primary electric field, one
gets a large number of small random domains with size ∼ξE ,
Fig. 5 at t = 0.0001 (see Fig. 4 for an illustration of the color
and grayscale legend for the selected director component). For
a well-pronounced kickback, however, one requires domains
with diameters large compared to the width of the domain
walls, Fig. 2, so that the interior of the domain is well
aligned with the electric field and thus the elastic forces are
weak.

Therefore, one first applies the primary electric field and
then waits for the small domains to coalesce, Fig. 5, before

−1 −0.8 −0.4 0 0.4 0.8 1

ni

FIG. 4. (Color online) Color and grayscale legend for the se-
lected director component applies to all subsequent figures. In
grayscale, black domains are darker than red domains (cf. Fig. 6).
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t = 5 × 10−5 t = 0.0001 t = 0.0005

FIG. 5. (Color online) Coalescence of Freedericksz domains
over the course of time. E1 = 200, mesh size is 300 × 300. The
color and grayscale coding, Fig. 4, represents the vertical component
ny of the director.

switching the fields. To be switched, a domain must reach at
least a switchable size ξs . It can be estimated on the basis
of Eq. (21) as follows. Equation (21) gives the electric-field
strengths required to switch the system of size L, which can
also be interpreted as switching a domain of this size. The
nematodynamic system, Eqs. (7)–(9), is invariant with respect
to rescaling the length, provided that time and the electric
field are rescaled according to Eqs. (19) and (20). Hence,
downscaling the domain size from L to ξs , Eq. (21) remains
valid if E1 and E2 are rescaled accordingly:

1

E2
1

+ 1

E2
2

�
(

ξs

5Ec

)2

, (23)

which thus serves as the estimate of the domain switchable
size ξs for given E1 and E2.

The numeric results show, rather surprisingly, that the
switching of the coalesced configuration of several irregular
domains works perfectly, Fig. 6. The kickback mechanism
described for the regular case of Sec. III thus applies also to
the general case of multiple domains. Instead of the anchoring
at the cell boundaries as in Fig. 2, in this case the director
in domain walls is immobilized by the secondary electric
field and the neighboring domains. Hence, the kickback
amplification takes place individually in each domain if only
it is large enough, irrespective of the irregularity of domain
shapes and positions.

Apart from the global ny → nx transformation, the
switched state [Fig. 6(b)] is actually quite similar to the
original configuration of Freedericksz domains [Fig. 6(a)],
with one important distinction. The switched director field
is aligned with the electric field everywhere except at the
domain walls—it is thus perfectly homogeneous but with
ringlike inclusions. Turning off the secondary electric field
will alter the shrinking dynamics of the reverse domains but
will not affect the global director configuration. The original
Freedericksz configuration, in contrast, is frustrated by the
anchoring and the primary electric field and would disintegrate
from the boundary and from the domain walls if this field were
removed. The domain switching by kickback amplification is
thus a mechanism for self-insertion of ringlike deformation
objects into an otherwise perfectly uniform director field
configuration.

t = 4 × 10−4 vmax = 90

t = 8 × 10−6 vmax(a) 18=

(b)

FIG. 6. (Color online) Multiple domain switching in two dimen-
sions. E1 = E2 = 200, mesh size is 300 × 300, ny is coded according
to Fig. 4. Initially, shortly after the application of the secondary
electric field, the backflow is concentrated at the domain walls (a).
As a contrast, when the switched domains are slowly shrinking (b),
the flow is global.

V. SWITCHING IN THREE DIMENSIONS

A. Monodomain in a cube

Let us first inspect the switching of a cubic Freedericksz
monodomain—a situation analogous to the 2D monodomain
case of Fig. 2. The anchoring is along x on all faces of the cell,
while the primary and secondary electric fields point along z

and x, respectively. The monodomain configuration exhibits
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x

z

y

(a)
(b)

FIG. 7. (Color online) A cubic monodomain in an electric field
along z exhibits three types of domain walls at its boundaries (a).
Reverse domains of the switched configuration (the secondary electric
field is along x) are presented by the enclosing contour surfaces; the
flow field is represented by the stream lines (b). E1 = E2 = 70, mesh
size is 80 × 80 × 80. A 2D cross section shown in Fig. 8 is indicated
by the frame (b).

three types of domain walls at its boundaries, Fig. 7(a). As in
the 2D monodomain case, the predominant generator of the
backflow upon removal of the electric field is the horizontal
boundary, whereas the twist deformation (xz faces) generates
no flow at all. The flow-generating forces are thus similar
to those in the 2D case, Fig. 2, with the square lying in the
xz plane. Due to the extra dimension, however, the velocity
field is now viscously screened by the velocity gradient in the
y direction and is thus substantial only in the region where
the body force is actually exerted on the fluid, Fig. 8(a), to
be compared with the unscreened 2D flow in Fig. 2. As a
result, the domain is not switched as a whole, but only in
the neighborhood of the horizontal faces, Fig. 7(b). It turns
out that for lower field strengths, the two reverse domains are
not completely detached but remain connected by a narrower
reverse region in the middle to form an anvil-like switched
domain [such domains can be seen in Fig. 10(b)]. In Fig. 8, the
switching sequence is demonstrated for the 2D cross section
indicated in Fig. 7(b).

Shrinking the extra dimension, i.e., flattening the cube in
the y direction in order to arrive at the geometry of a usual
LC planar cell, makes the screening obviously even severer.
Therefore, the in-plane domain switching in the planar cell
would not work. The 2D examples in Figs. 2 and 6 are thus
nicely illustrating the switching mechanism, but they cannot
be directly extrapolated to the in-plane switching in the planar
cell.

B. Random domains in a planar LC cell

Finally, we present the practical example—switching of
many irregular random domains in the geometry of a usual
planar LC cell. This example should be readily accessible
to experiments. The thickness of the LC cell (z axis) is
L (the length unit according to Sec. II C), whereas the
lateral dimensions are 10L for demonstration purposes, which
is already in the large limit. All directions are the same
as in Sec. V A. Neglecting the insignificant lateral faces,
the anchoring is thus planar with an easy axis in the x

direction. The primary electric field E1 is normal to the cell.

t = 0.0011 vmax = 15

t = 0.0022 vmax = 12

t = 0.0038 vmax = 9

(a)

(b)

(c)

FIG. 8. (Color online) The xz cross section through the center
of the cube indicated in Fig. 7(b): subsequent snapshots [(a)–(c)] of
director fields (left) (with nz coded according to Fig. 4) and velocity
fields. Note the screened flow (a).

The secondary electric field E2 is in-plane, parallel to the
anchoring direction, and is thus in practice realized by in-plane
electrodes.

The strength of both electric fields will be E1 = E2 = 35.
The size of the Freedericksz domains before the switching
should be at least L, so that there is only a single layer of
domains sandwiched in the cell for the sake of simplicity
(in principle, there is no such restriction, as we learned
in Fig. 6). The formation of sufficiently large domains by
coalescence is illustrated in Fig. 9. The configuration of
domains ready for switching is shown in Fig. 10(a), whereas

t = 0.005 t = 0.04 t = 0.1

FIG. 9. Coalescence of Freedericksz domains created by a pri-
mary electric field E1 = 35 normal to the cell plane.
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(a)

(b)

(c)

FIG. 10. (Color online) (a) Freedericksz domains just before the
switching. The director points, e.g., up outside the contour surface and
down inside it. The rectangle indicates the 2D cross section shown in
Fig. 11. (b) Snapshot of the switched state. The reverse domains lie
inside the contour surfaces; nz is coded according to Fig. 4. Note their
anvil-like vertical shape. Velocity streamlines (c) of the switched state
in the same moment, showing the localization of the flow to individual
domains. E1 = E2 = 35, mesh size: 300 × 300 × 30.

the switched configuration is depicted in Figs. 10(b) and 10(c).
The omnipresent anvil-like vertical shape of the reverse
domains is a sign of viscous screening of the backflow—
compare Fig. 7(b). Unlike in that case, the velocity gradients
responsible for the screening are not due to the no-slip
cell boundaries but to adjacent domains in the y direction
exhibiting opposite flow. In Fig. 11, the switching sequence
is demonstrated for the rectangular cross section indicated in
Fig. 10(a). In Fig. 11(a), we see the initial (screened) backflow
generated by the decaying Freedericksz domains, which drives
the director kickback in the interior of these domains. In
Fig. 11(d), the switching is complete and the backflow is
driven by the shrinking of reverse domains analogous to
Fig. 8(c).

C. Connection with experimental scales

Let us also give an example of concrete length, time, and
electric-field scales for the case of Sec. V B. Assuming a
LC cell thickness of L = 20 μm, the characteristic domain
switching time is τn ≈ 5 ms. The maximum flow velocities
of Fig. 11 are ∼35 μm/s. The width of the domain walls
is ∼0.2 μm, which should be compared with the anchoring
extrapolation length to ensure rigid anchoring conditions.

t = 0.0075 vmax = 7.2

t = 0.005 vmax = 11.5

t = 0.002 vmax = 10.3

t = 0.0002 vmax = 9.)a( 5

(b)

(c)

(d)

FIG. 11. (Color online) The xz cross section indicated by the
rectangle in Fig. 10(a): subsequent snapshots [(a)–(d)] of superim-
posed director fields (with nz coded according to Fig. 4) and velocity
fields.

Assuming a dielectric anisotropy ε ∼ 10, the corresponding
strength of the primary and secondary electric fields is E1 =
E2 ∼ 2 V/μm.

VI. CONCLUSIONS

We have presented a backflow-mediated domain switching
dynamics in nematic liquid crystals, starting with a simple
system in a simple geometry to illustrate the essence of the
mechanism, eventually arriving at the realistic 3D example
that works in practice and should be accessible to experiments.
It is one of the rare processes in liquid crystals in which the
hydrodynamic flow generated by the director reorientation—
the backflow—does not introduce just minor corrections but
is of decisive importance. The presented domain switching
mechanism relies critically on the backflow and could there-
fore be used to determine some of the dynamic material
parameters of the nematic liquid crystal with great accuracy.

The domain switching by kickback amplification appears
as a sophisticated dynamic mechanism for self-insertion of
shell-like director inhomogeneities into a uniform director field
configuration via the intermediate structural (Freedericksz)
transition. The switched state is completely decoupled from
this intermediate Freedericksz state, which is merely transient.
After switching, the system undergoes a slow shrinking
dynamics, driven solely by the curvature of the domain walls.
Depending on the type of liquid crystal (low-molecular-mass
thermotropic, lyotropic, polymeric), the shrinking can proceed
in a wide span of time scales. The different dynamic stages
could be potentially arrested and frozen in by a comparatively
quick polymerization and gelation process, e.g., to be inspected
offline one by one, or to yield a fixed structure with spatially
modulated optical properties. The profiles can be controlled,
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e.g., by tuning the waiting time before the switching, the
strength of the electric field, the shrinking time before the
gelation, etc.

Let us conclude with a speculation. If ξE1,2 are much smaller
than the thickness of the LC cell, would it be possible to
generate a second kickback of the already switched domain
by turning off the secondary electric field and restoring the
primary electric field? Would it even be possible to generate
a cascade of sequential switching processes? These would
be interesting as they would yield a quasiperiodic dynamics,

spontaneously localized to reorientation and flow cells. Such
spontaneous dynamic patterning is one of the possible aspects
one should address in a potential experiment.
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[25] C. Blanc, D. Svenšek, S. Žumer, and M. Nobili, Phys. Rev. Lett.

95, 097802 (2005).
[26] A. M. Sonnet and E. G. Virga, Liq. Cryst. 37, 785 (2010).
[27] I. Dierking, M. Ravnik, E. Lark, J. Healey, G. P. Alexander, and

J. M. Yeomans, Phys. Rev. E 85, 021703 (2012).
[28] P. Biscari and T. J. Sluckin, Eur. J. Appl. Math. 23, 181

(2012).
[29] J. Bajc, G. Hillig, and A. Saupe, J. Chem. Phys. 106, 7372

(1997).
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