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Electrokinetic model for electric-field-induced interfacial instabilities
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Technology based on electric-field-induced instabilities on thin polymer film surfaces has emerged as a
promising candidate for soft lithography. Typically, the instability is modeled using the perfect dielectric (PD)
or the leaky dielectric (LD) model. These assume the electric diffuse layer to be infinitesimally large or small,
respectively. In the present work we conduct stability analysis assuming a PD-electrolyte solution interface. The
concentration of ions and, hence, the diffuse layer thickness is in general assumed to be of the same order as the
electrolyte film thickness. The PD-LD models are then realized as limiting cases of the ratio of the double layer
thickness to the film thickness.
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I. INTRODUCTION

An interface between two fluids destabilizes under electric
fields in the presence of a contrast in the electrical properties
of the two fluids such as dielectric constant and electrical
conductivity. This phenomenon has been termed electrohy-
drodynamic instability (EHDI) [1] and finds applications
in techniques such as electrospraying (drops under electric
field) [2,3], electrospinning (cylindrical jets under electric
field) [4], electropatterning (or soft lithography, planar fluid
interfaces under electric fields) [5], and so on. Pioneering
work in this field was conducted in the 1960s with con-
tributions from G. I. Taylor and J. R. Melcher [6–9], who
studied various aspects of EHD such as drops and planar
fluid deformation under electric field. While dealing with
instabilities in dielectric materials, the leaky dielectric (LD)
model was proposed [1,5,10–13]. It overcame the fallacies in
the instability predictions obtained assuming either perfectly
dielectric (PD) or perfectly conducting (PC) fluids. According
to the leaky dielectric theory, the fluids are assumed to
have an infinitesimal amount of free charge confined to the
interface while the bulk fluid is free of charge. Moreover, the
thermal motion of ions is neglected. This model can explain
deformation patterns which are beyond the scope of the perfect
dielectric or the perfect conductor theory, increasing its utility
in the field of electrohydrodynamics.

In 2000, following the work by Schaffer et al. [5] wherein
a submicron thin polymer film is observed to deform into
ordered patterns under electric field, the leaky dielectric model
is modified to suit these thin-film systems (negligible gravity).
The leaky dielectric model combined with a linear stability
analysis yields a wavelength of the instability which is in good
agreement with the literature. However, it has been recently
shown that in certain parametric regimes, the assumptions
made in the leaky dielectric model may be invalid [14]. The
wavelength of the instability depends on parameters such as
conductivity, applied electric field, and frequency which alter
the inherent time scales in the system. Nonlinear analysis is
used to seamlessly obtain wavelengths at all the ratios of time
scales under both dc and ac fields.
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Although general in approach, the above studies neglect the
thermal motion of the free charge present in the system. In a
real system, free ions, albeit infinitesimal, will still exhibit
diffusion leading to a diffuse layer of counterions around
charged surfaces or interfaces. This layer is characterized by
its thickness, called the Debye length, κ−1.

The Poisson-Nernst-Planck equation governs the dynamics
of the charges within electrolytic materials. This equation
leads to the Boltzmann distribution at equilibrium when
charge dynamics is unimportant. For the case of the potential
being very less than kBT , the Debye-Huckel approximation is
appropriate and has been used quite extensively in the field of
electrokinetics to study membrane or fluid interfaces [15].

The coupling of the curvature of a bilayer membrane to its
surface charges where the charges can flip to the other side and
where they can diffuse on the same side of an interface results
in a curvature-surface charge density coupling that leads to
instabilities [16]. The Poisson-Boltzmann equation with the
Debye-Huckel approximation is used to obtain an expression
for the electrostatic energy of the system and different modes
of instabilities are analyzed.

A linear stability analysis of the electrokinetic model [17]
of a floating bilayer with surface charges on either side exhibits
an instability. The presence of the bilayer membrane adds a
dielectric layer between two conducting layers of fluid. A
diffusion equation for the surface charges enables a coupling
between the surface undulations of the membrane and the
charges on the surface which beyond a threshold lead to an
instability.

In another set of studies, the effect of the Debye layers
on the electrostatic properties of an artificial cell membrane
have been investigated [18]. In the limit of vanishing thickness
and dielectric constant and in the absence of inherent charges
on the membrane, the system reduces to that of a fluid-fluid
interface. The system differs from the present one in that ion
channels are assumed and a discontinuity is imposed on the
electric field at the interface. The authors study the effect of a
perturbation on this system in order to obtain the corrections to
the elastic modulii. They also characterize the induced-charge
electro-osmotic flow around the perturbed membrane.

In a follow-up study [19], the authors proposed an improved
zero-thickness electrokinetic model under dc fields. Using
the Poisson-Boltzmann equation with the Debye-Huckel
approximation in conjunction with Robin-type of boundary
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conditions, they obtain a dispersion relation for the perturbed
membrane along with expressions for the threshold voltages
for the instability in the case of a conductive and a nonconduc-
tive membrane. They present this model as a basis for further
development to systems of various sizes and charge densities.

The zero-thickness membrane model discussed above
differs from the present work in a couple of aspects. The
membrane is conducting while its distance from the electrodes
is quite large compared to the Debye layer thickness. Thereby
a quasineutral environment is assumed. The bending modulus
is suppressed if the electrode spacing is decreased to the order
of microns.

The objective of the present work is to study the instability
at a fluid-liquid interface as a function of the thickness of
the liquid film. As the thickness changes, the assumption of
electroneutrality in the bulk of the fluid (that is, the fluid away
from the Debye layers) becomes invalid. Therefore, the main
objective of this work is to study the scenarios of overlapped
Debye layers.

A detailed study of system with overlapped Debye layers
is reported by Qu and Li [20]. They study a fluid confined
between two flat plates such that the double layers formed
on the plates overlap. They argue that the Boltzmann approx-
imation cannot be used for a system with overlapped Debye
layers as this violates the assumption of electroneutrality in the
bulk liquid. Using suitable boundary conditions they develop
governing equations for this case. They show that at low
plate distances the predictions from the classical theory differ
substantially from those predicted by their model.

Although they study the system of overlapped Debye layers,
the system consists of a single fluid under a field. A study of
the limits where the electrokinetic model might match the
predictions from the electrohydrodynamic model is absent.

Electrokinetic models vis-à-vis electrohydrodynamic mod-
els have been analyzed in the study of drop deformation.
Hua et al. [21] use the electrokinetic model in the context
of conducting drops suspended in a dielectric medium. They
argue that these systems hitherto studied via a conductor
model can be approached using an electrokinetic model. They
motivate the use of this model in systems with high curvature
such as small droplets. They show in this system the conductor
model results as a limiting case (for thin double layers) to the
electrokinetic model.

Zholkovskij et al. [22] studied the deformation of drops
under electric field taking into account the presence of
the double layers. In this generalized model, termed the
electrokinetic (EK) model, the thickness of the Debye layers
occurs as a parameter which affects the deformation of the
drops. They show that at very low Debye layer thicknesses,
the drop deformation matches that predicted by the electrohy-
drodynamic theory assuming perfectly conducting materials
while at very high Debye thicknesses it matches that of the
perfect dielectric theory.

In the present work, the system under study is that of
two stratified planar fluids. Under the action of an applied
electric field, the free charges in the system migrate and
accumulate at the interface and on the electrode surfaces.
Under the combined action of the electric field and thermal
motion, these charges are assumed to form diffuse layers at
these surfaces. The field and the instability in such a system is

studied using the “electrokinetic model.” The objective of the
present work is to study the effect of confinement of the fluid
films to thicknesses as those practically used in experiments
such as by Schaffer et al. [5]. The confinement of the liquid
films result in the overlapping of the Debye layers formed
within the fluid. This in turn violates the electroneutrality
condition. The concentration and the potential within the bulk
solution are not considered zero but are derived consistently
(refer Appendix). To our knowledge, a thorough study of
how the EK model predicts various regimes resulting from
the steadily increasing confinement for a simple fluid-fluid
interface has not been carried out. Apart from carrying out the
above, a systematic evidence of how the EK model matches the
predictions made by the leaky dielectric model in the limiting
cases gives universality to the model studied.

II. THE MODEL

A. System description

The system consists of two fluid layers held between planar
electrodes (Fig. 1). The longitudinal direction is denoted by
x while the voltage is applied along the transverse direction,
i.e., the y direction. Variations in the third direction (z) are not
considered. The upper fluid is referred to as 1 and the lower
fluid as 2. The viscosity, density, conductivity, and dielectric
constant of the upper fluid are denoted by μ1, ρ1, σ1, and ε1,
respectively, and those of the lower fluid by μ2, ρ2, σ2, and ε2.
The position of the interface is denoted by y∗ = 0 while the
electrodes are held at y∗ = βh0 and y∗ = −h0. The superscript
∗ denotes dimensional quantities.

B. Governing equations

The continuity and the momentum balance equations are
used to model the hydrodynamics in the system. In the
dimensional form, in the presence of an applied electric field
they can be written as

∇∗ · V ∗
i = 0, (1)

ρ(∂∗
t V ∗

i + V ∗
i · ∇∗V ∗

i ) = −∇∗p∗
i + μi∇∗2V ∗

i − ρ∗
fi
∇∗φ∗

i ,

(2)

FIG. 1. A schematic of the interface between two dielectric fluids
subjected to a normal electric field. The dashed line is a schematic
representation of the potential distribution in the two fluids.
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where the subscript i = 1,2 refers to fluid 1 and fluid 2,
respectively; pi is the pressure; Vi = uêx + v êy is the velocity
vector; and ρ and μ are the density and the viscosity of the
fluids, respectively. The final term on the right-hand side of
the momentum balance equation gives the contribution of
the applied electric field to fluid flow. ρfi

and φi are the
free charge density and the electric potential in the fluid,
respectively. When electroneutrality is assumed to be valid
in the bulk solution, this term becomes negligible and the
electrohydrodynamic coupling comes only through interfacial
conditions.

To derive the equation governing the charges in the system,
the species conservation equation can be written as

∂n∗
±

∂t∗
= −∇∗ · (∓em±n∗

±∇∗φ∗ − m±kBT ∇∗n∗
±), (3)

where e is the elementary charge; n∗
+,n∗

− are the number
concentrations of the free charges in the fluid; and m± is the
mobility.

Subtracting the positive and negative number concentra-
tions, and using

ρ∗
f = e(n∗

+ − n∗
−),σ = e(m∗

+n∗
+ + m∗

−n∗
−), (4)

results in the following equation:

∂∗ρ∗
f

∂t∗
= −∇∗ · (σ∇∗φ∗ − D∇∗ρ∗

f ). (5)

Upon scaling, the equation reduces to

τc

τp

∂ρf

∂t
= −∇ ·

(
∇φ − ε0D

σh2
0

∇ρf

)
, (6)

where the charge relaxation time scale τc = ε0
σ

and the

process time scale τp = μ2h
2
0

ε0φ
2
0

. For a typical air-silicone oil

system, σ = 10−12 C2/Nm2 s, ε0 = 8.85 × 10−12 C2/Nm2,

h0 = 100 × 10−6 m, μ2 = 30 Pa s, and φ0 = 30 V. Using
these values τc ∼ 1 s and τp ∼ 37.6 s. For an air-water
system, with the typical values of σ = 5 × 10−6 C2/Nm2 s,
ε0 = 8.85 × 10−12 C2/Nm2, h0 = 100 × 10−6 m, μ2 = 10−3

Pa s, and φ0 = 30 V, the values of τc and τp are 1.7 × 10−6 s
and 1.26 × 10−3, respectively. Therefore, the left-hand sides
of Eqs. (3) and (6) are equivalent to zero and the electrostatic
equation therefore reduces to the Poisson equation [23],

ε0εi∇∗2φ∗
i = −ρ∗

fi
, (7)

where ε0 is the permittivity of vacuum and εi is the dielectric
constant of the two fluid layers i = 1,2, respectively. For the
case of an air-liquid interface, ρfi

, the free charge density
in the top fluid is 0 while that in the lower liquid is given
by ρf2 = e(n∗

+ − n∗
−). This equation under the Debye-Huckel

(DH) approximation reduces to

∇∗2φ∗
i = κ∗2

i (φ∗
i − φ∗

b ), (8)

where κ∗
i is the Debye length. For fluid 1, κ∗

1 = 0, while for

fluid 2, κ∗
2 =

√
2e2no

ε0ε2kBT
, n0, and φb are the uniform number

concentration of the ions (in the absence of field) and the

potential, at a reference position in the fluid y = b, and kB and
T are the Boltzmann constant and temperature, respectively.
The details of the derivation of Eq. (8) are given in the
Supplementary Material [23]. It also shows that for viscous
time scales, the dynamics of the charges can be ignored,
and, hence, the Poisson Boltzmann equation for potential
is decoupled. For the DH approximation to be valid, the
term eφ∗/(kBT ) needs typically φ = 25 mV for it to be
O(1). The voltages applied in EHD-based soft lithography
are typically much higher, and ideally the Poisson-Boltzmann
(PB) equations should be used. However, in the past, the DH
model has been used as a substitute to the more complicated,
nonlinear PB model to understand the physics analytically,
which is also the endeavor in the present study. For further
reading on the DH approximation and solving the nonlinear
PB equation the authors cite the work by Lekkerkerker [24],
Goldstein et al. [25], Vlahovska et al. [26].

C. Boundary conditions

The following set of boundary conditions are used to solve
the governing equations. At the interface, the velocities are
continuous in the normal and tangential directions,

(V1
∗ · n̂∗) = (V2

∗ · n̂∗), (9)

(V1
∗ · t̂∗) = (V2

∗ · t̂∗), (10)

where n̂∗ and t̂∗ are the unit normal and the unit tangen-
tial vectors, respectively, as indicated in Fig. 1, given by
n̂∗ = −∂∗

x h∗ êx+êy√
1+∂∗

x h∗2
and t̂∗ = êx+∂∗

x h∗ êy√
1+∂∗

x h∗2
. The operator ∂ with the

subscripts x, y, or t denotes differentiation with respect to
that variable, h∗(x,t) denotes the position of the interface, and
V1

∗ and V2
∗ are the velocity vectors for the two fluids. For an

unperturbed interface n̂ = êy and t̂ = êx .
The stresses are balanced in the normal and tangential

directions. In the normal direction the stresses satisfy

[[n̂∗ · τ ∗
i · n̂∗]] = γC∗, (11)

where the operator [[Xi]] denotes the jump X1–X2 across the
interface h(x,t). C∗ is the curvature given by C∗ = ∇∗ · n̂∗ =
−∂∗2

x h∗/(1 + ∂∗
x h∗2)3/2. The term on the right-hand side in

Eq. (11) represents the stabilizing force due to surface tension.
The balance of stresses in the tangential direction is given by

[[ t̂∗ · τi
∗ · n̂∗]] = 0, (12)

where τi
∗, the total stress, i.e., the sum of the hydrodynamic

and the electrical stresses, for the fluid i, is given by

τi
∗ = −pi

∗I + μi(∇∗Vi
∗ + ∇∗Vi

∗T ) + Mi
∗. (13)

The superscript T indicates transpose, i = 1,2 denotes the two
fluid layers and Mi is the Maxwell stress tensor [27],

Mi
∗ = εiε0

[
E∗

i E∗
i − 1

2 (E∗
i · E∗

i )I
]
. (14)

A balance of the tangential component of the field gives the
continuity of the potentials across the interface

φ∗
1 = φ∗

2 (15)
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and the balance of the normal component of electric field gives
the electric displacement continuity equation

[[ε0εi(−∇∗φ∗
i · n̂∗)]] = 0. (16)

The boundary condition assumes no adsorbed charges at the
interface. It should be noted that although the bulk charge is
nonzero the surface charge is zero. In fact, the net bulk charge
integrated over the double layer (in the electrokinetic model) is
really the surface charge integrated over the area (in the perfect
dielectric-leaky dielectric model). This clearly differs from
the free charge BC in PD-LD systems, where [[ε0εi(−∇∗φ∗

i ·
n̂∗)]] = q aided by the equation ∂q

∂t
= [[σ ∗

i ∇∗φ∗
i · n̂∗]]. The

dynamics of the position of the interface is given by the
kinematic condition

∂th
∗ + V1

∗ · ∇∗
sh

∗ = v∗
2 = v∗

1 . (17)

D. Scalings

The parameters in the above equations are scaled using
their characteristic values in the system. That is, length, in
both the x and y directions, is scaled using the thickness of the
thin film h0. Potential is scaled by φ0, the applied potential.
Velocity is scaled using the term ε0φ

2
0/(μ2h0) and pressure is

scaled using ε0φ
2
0/h2

0 while the scaling for time is obtained to
be μ2h

2
0/(ε0φ

2
0).

E. Governing equations

The equations, after incorporating the dimensionless vari-
ables listed in Sec. II D are as follows:

∇ · V i = 0, (18)

Rei(∂t V i + V i · ∇V i) = −∇pi + μr∇2V i + εi∇2φi∇φi,

(19)

where μr = μ1/μ2 (note: the nondimensional variables are
denoted without the superscript ∗). The Reynold’s number
(Re) is given by Rei = ρiε0φ

2
0/μ

2
2 for dc fields. For a typical

system of air (fluid 1) and silicone oil (fluid 2) the properties
are ρ1 ∼ 1 kg/m3, ρ2 ∼ 970 kg/m3, μ2 ∼ 0.97 Pa s, and
h0 ∼ 100 × 10−9 m and, using φ0 ∼ 30 V, the Reynolds
number for the dc case is of the order of 10−8–10−5. Hence,
in the ensuing analysis, we consider the case where Rei are
approximately zero. The momentum equations with the above
parameter values are simplified to

−∇pi + μr∇2V i + εi∇2φi∇φi = 0. (20)

The nondimensional Poisson equation is

∇2φi = κ2(φi − φb), (21)

where κ is the nondimensional inverse Debye layer thickness
κ = κ∗h0.

III. LINEAR STABILITY ANALYSIS

The linear stability analysis (LSA) is an important tool to
study the response of a system to random disturbances. The
basic principle of this theory is that any system always un-
dergoes infinitesimal perturbations in its steady or equilibrium
state. A system can be called linearly stable if it returns to its

steady state from the perturbed state. Any random function
can be simply expressed as a sum of Fourier modes. As in the
linear limit only O(1) terms need to be considered, LSA gives
a neat, simplified mathematical formalism to study the stability
of any system. In the following sections the methodology of
LSA applied to the present system is described.

A. Addition of perturbations

The system is subjected to an infinitesimal arbitrary
perturbation. The system variables are therefore expressed as
a sum of a mean value (denoted by an overbar on the variable)
and a perturbation term (denoted by the superscript tilde).
Thus,

m(x,y,t) = m̄(x,y,t) + ηm̃, (22)

where η is a small variable which gives the deviation from the
base state.

The perturbations are incorporated in the governing equa-
tions. The leading-order terms give the base state of the system
while order η variables are considered in the linear stability
analysis.

1. Base state

In the present case, in the base state the interface is flat with
no perturbations and, hence, the mean velocities are zero,

umi = 0, vmi = 0. (23)

The base-state pressure is obtained from the (y-direction)
momentum balance equation in both fluids,

pm1 = 0, (24)

pm2 = 1

2
ε2

(
∂φ

∂y

)2

+ Pc. (25)

The constant Pc is calculated from a stress balance such that

pm2 = 1

2

[
ε2

(
∂φm2

∂y

)2

− ε1

(
∂φm1

∂y

)2
]

. (26)

Note that the hydrostatic equations for PD and LD cases is
∂ypi = 0 while for the EK model it is ∂yp = ρf E = κ2φ∇φ.

The mean potential or the base-state potential is calculated
by solving the following equation (see the Appendix for
derivation) for fluids 1 and 2:

∂2
yφmi = κ2

i (φmi − φb). (27)

The following (scaled) boundary conditions, which include
the potential at the electrodes and the continuity of potential
and electric displacement at the interface, are used to solve the
above equation:

φm1|y=β = 0, (28)

φm2|y=−1 = 1, (29)

φm1 = φm2|y=0, (30)

[[−εi∂yφmi]] = 0. (31)
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The reference potential φb is determined using the
condition ∫ 0

−1
ρ2dy =

∫ 0

−1
ε2κ

2
2 (φm2 − φb)dy = 0.

The base state values of the potential in the two fluids assuming
κ1 = 0 and κ2 = κ are given by

φm1 = − (1 + eκ )(y − β)ε2κ

2(−1 + eκ )ε1 + (1 + eκ )βε2κ
, (32)

φm2 = βε2κcosh(κ/2) + ε1
[
sinh(κ/2) − sinh

((
1
2 + y

)
κ
)]

βε2κcosh(κ/2) + 2ε1sinh(κ/2)
.

(33)

In Fig. 2, the potential distribution in the fluids in the base
state is plotted along the normal direction y. The top fluid is
bounded at y = 1 and y = 0 to −1 denotes the lower fluid.
The top fluid is assumed to be air (a perfect dielectric) while
the potential in the lower fluid is studied as a function of the
concentration of ions through the parameter, inverse Debye
length κ . The origin of the Debye layer in this case is due to
the charge separation under electric field. Ions are attracted to
respective electrodes while the counterions are repelled and
accumulate at the interface. In the presence of thermal forces,
these charges do not exist in a thin layer at the interface but
form a diffuse layer with the concentration of ions decaying
away from the interface or electrode. This leads to a Debye
layer formation at both the interface and the electrode in
the lower fluid layer giving rise to a potential distribution
that is dependent upon the concentration of ions in the
layer.

As discussed earlier, increase in the concentration of ions
leads to the formation of thinner, mroe compact Debye layers
while lower concentration of ions leads to thicker, more diffuse
Debye layers. In Fig. 2, the potential distribution for κ = 10−3

(solid line), κ = 5 (dashed line), κ = 10 (dotted line), and
κ = 103 (dash-dot line) progressively representing thinner

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

φ
m

y

FIG. 2. Potential distribution (φm) in the two fluid layers [y = 1
to 0 indicates the top fluid (1) and y = 0 to −1 indicates the lower
fluid (2)] in the base state at different values of κ . The solid line
indicates κ = 10−3, the dashed line indicates κ = 5, the dotted line
indicates κ = 10 and the dash-dot line indicates κ = 1000. The
potential distributions obtained from the PD-PD and the PD-PC
theories coincide exactly with the κ = 10−3 and κ = 1000 curves,
respectively, and, hence, cannot be distinguished. The values of
parameters used are ε1 = 1, ε2 = 3, σ1 = 0 (implies κ1 = 0), μr = 0,
and β = 1.

bilayers, in the bottom fluid, is plotted along y. In the top fluid
(y = 0 − 1), the potential distribution is always linear 32, a
characteristic of the potential drop across a dielectric medium
which is governed by the Laplacian of the potential being zero,
while in the lower fluid (y = 0 to −1), the potential drop is
given by Eq. (33) which shows the characteristic exponential
drop within the Debye layers at the interface (y = 0) and the
electrode surface (y = −1).

The value κ = 1 denotes Debye layers that are as thick
as the film thickness. In such a situation, the Debye layers
below the interface and the layer above the electrode surface
overlap. At low concentrations of ions, the overlap of potentials
from the two Debye layers is significant to the extent that the
potential drop becomes linear and the system behaves like a
dielectric material until the concentration is so low that the
potential drop in the system is equivalent to that in a PD
material [refer Fig. 3].

As κ increases beyond 1, Debye layers become thinner,
the overlap decreases, and the field at midplane of the fluid
layer becomes zero. With increase in the concentration of
ions (conductivity) or κ the Debye layers asymptote to zero
thicknesses and, correspondingly, show perfect conductor-like
behavior. The intricate physics of compact Debye layers which
are referred to as Stern layers is beyond the scope of this paper
and more details can be found in Refs. [19,28].

To get a perspective of the practicality of the κ values used
in the study consider if the film thickness of 100 μm is a
fixed parameter also typically encountered in experiments,
the range of κ studied in the present work corresponds
to the Debye layer thicknesses of 0.1 μm to 0.1 m. Although
the value of 0.1 m appears unrealistic from an electrokinetics
point-of-view the high thickness of the Debye layer means that
the fluid has a very low concentration of charge spread over a
large distance and the characteristics tend to that of a perfect
dielectric material. A Debye layer thickness of 0.1 μm, on the
other hand, is quite realistic.

To add another perspective to the term κ . For a fixed
fluid-fluid system, say, air-silicone oil, having thinner fluid film
changes the wavelength of the EHD instability [5]. The silicone

0.75 0.8 0.85 0.9 0.95 1
−1

−0.8

−0.6

−0.4

−0.2

0

φ
m2

y

FIG. 3. Potential distribution (φm2) in the lower fluid layer, in the
base state, at different values of κ . The dashed line indicates κ = 10−4,
the dotted line indicates κ = 1, the dash-dot line curve indicates
κ = 5, the curve with ◦ legends indicates κ = 10, the solid line curve
indicates κ = 102, and the curve with the + legends indicates κ =
103. The potential distributions obtained from the PD-PD and the
PD-PC theories coincide exactly with the κ = 10−4 and κ = 1000
curves, respectively, and, hence, have not be plotted. The values of
parameters used are ε1 = 1, ε2 = 3, μr = 0, and β = 1.
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oil with an approximate conductivity of ∼10−12 S/m has a
Debye layer of ∼10−6 m. The value κ = 103 corresponds to a
4-mm-thick film which will show a conductor-like behavior
because the κ−1 � h0, while κ = 10−2 corresponds to an
approximately O(10)-nm film. For the same fluids (silicone
oil), this system would now behave as a perfect dielectric.
Thus for a given fluid with a κ∗, the relative thickness of the
film determines the extent of bulk charges.

The gradual variation in the mean potential distribution
φm2 with changing inverse Debye length κ in the lower fluid
is shown in the Fig. 3. The infinitesimal exponential potential
drops at the surfaces for κ = 102 and increases with decreasing
κ until they merge (dash-dot line κ = 5 in Fig. 3) and become
linear at κ � 1.

Initially behaving like two PD fluids, a PD-LD interface
actually behaves like a PD-PC (under dc fields and at long
times) interface as the potential drop in the lower fluid is
balanced by the charge separation across it and the effective
field becomes zero. The high κ limit of the EK theory exactly
matches the results from the PD-PC theory.

The free charge at the interface between the two fluids, given
by

∫ 0
−1/2 ε2κ

2(φm2 − φb), can be used to confirm the limiting
behavior of the EK model. In Fig. 4(a), the free charge is
plotted as a function of κ denoted by the solid line. At very
low κ , the free charge is almost zero. But as κ increases, the
free charge in the Debye layer increases until, at high-enough
κ , it matches the accumulated interfacial charge calculated
using a perfect conductor model [denoted by the dashed line
in Fig. 4(a)].

In Fig. 4(b), the Maxwell’s stress in the top fluid in the
base state is plotted as a function of κ . In the top fluid, the
Maxwell’s stress shows a similar trend as the free charge at
the interface. It asymptotes to the value given by the PD-PD
theory at low κ and that of a PD-PC theory at high κ . But
in the lower fluid, the presence of the Debye layer leads to
a different scenario [see Fig. 4(c)]. The base-state pressure
given by Eq. (26) balances the Maxwell’s stress such that
the total stress [Eq. (13)] follows a similar trend as that of
the Maxwell’s stress in the top fluid. That is, the total stress
from the EK theory [curve (b) in Fig. 4(c)] asymptotes to the
limiting cases of PD-PD and PD-PC theories at low and high
κ , respectively.

IV. STABILITY ANALYSIS

The equations governing the perturbation variables [ob-
tained by collecting the order η terms from Eqs. (18), (20),
and (21)] after substituting the normal mode form for the
variables are

∂xũi + ∂yṽi = 0, (34)

−∂xp̃i + Ci

(
∂2
x ũi + ∂2

y ũi

) + εi

(
∂2
yφmi∂xφ̃i

) = 0, (35)

−∂yp̃i + Ci

(
∂2
x ṽi + ∂2

y ṽi

) + εi

(
∂2
x φ̃i + ∂2

y φ̃i

)
∂yφmi

+ ∂2
yφmi∂yφ̃i = 0, (36)

∂2
x φ̃i + ∂2

y φ̃i = κ2
i φ̃i . (37)
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FIG. 4. (a) A comparison of charge (q) accumulated at the
interface obtained using the PD-PC model (indicated by the dashed
line) and the free charge present in the Debye layer near the interface,
in the lower fluid (ρ) obtained using the electrokinetic model
(indicated by the solid line) varying as a function of the inverse Debye
length κ . (b) Variation of Maxwell’s stress in the top fluid (τyy1 ), at
the interface (y = 0), in the base state, as a function of the inverse
Debye length κ . The dotted line indicates results from the PD-PD
theory, the dashed line indicates results from the PD-PC theory and
the solid lined curve indicates results from the electrokinetic model.
(c) Variation of mean pressure [pm2, curves (d), (e), and (f)], the
electric stress [τe curves (g), (h), and (i)], and the total stress [τyy2 ,
curves (a), (b), and (c)] in the lower fluid, in the base state, as a
function of the inverse Debye length κ . The dotted lines indicate
results from the PD-PD theory, the dashed lines indicate results from
the PD-PC theory, and the solid lined curve indicates results from
the electrokinetic model. The values of parameters used are ε1 = 1,
ε2 = 3, μr = 0, and β = 1.

The perturbation variables are now expressed in the normal
mode form. Thus, if m̃ is the perturbation variable

m̃(x,y,t) =
∫

m̂(y,t)exp(ikx)dk, (38)

where m̂(y,t) is the amplitude of the perturbation and k is
the wave number of the perturbation. Substituting this form
of the perturbation term in the Eqs. (34)–(37) and simplifying
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Eq. (37) can be written as[[
∂2
y − (

k2 − κ2
i

)]]
φ̂i = 0. (39)

Similarly, upon eliminating p̂ from Eqs. (35) and (36), we get
a fourth-order differential equation in v which is given by(

∂2
y − k2

)2
v̂i = 0. (40)

Equations (39) and (40) are the governing equations of the
system. The solutions to these are sought with appropriate
boundary conditions in terms of perturbation variables. Ex-
pressing the boundary conditions listed in Sec. (II C) in terms
of perturbations in the normal mode form, the no slip boundary
condition at the interface becomes

v̂1 = v̂2, (41)

û1 = û2. (42)

The normal stress balance and the tangential stress balance
upon substituting the stress definitions from Eqs. (13) and (14)
become

[[−p̂i + 2Ci∂yv̂i + εi∂yφmi∂yφ̂i]] = −Bk2ĥ[[
Ci(ikv̂i + ∂yûi) + εiikφ̂i∂yφmi + εiikĥ∂yφ

2
mi

]] = 0, (43)

where B is a nondimensional number given by B = γ h0

ε0φ
2
0
. The

continuity of potential is given by

[[φ̂i + ĥ∂yφmi]] = 0, (44)

where the second term indicates contribution because of the
gradient in the mean potential. The normal component of the
electric field, balanced across the interface, is written as

[[−εi∂yφ̂i]] = 0. (45)

The dynamics of the position of the interface and the interfacial
charge is given by the kinematic condition and the charge
conservation equation, respectively. The kinematic condition
becomes

∂t ĥ = v̂2. (46)

A. Dispersion equation

For the case of time-invariant fields, the time dependence
of the perturbation amplitude is assumed to be of the form est ,
where s is the growth rate of the perturbation. The sign of s

decides the stability of the system. A negative s indicates a
stable system, whereas the system is rendered unstable if s is
positive.

The second- and fourth-order ordinary differential equa-
tions (ODEs) in terms of φ̂i [Eq. (39)] and v̂i [Eq. (40)] are
solved using the following boundary conditions: y → β or −1
v̂i = 0, ∂yv̂i = 0, and φ̂i = 0, respectively. The expressions
obtained for v̂i and φ̂i are

v̂1 = e−ky[e2ky(c1 + yc2) + e2kβ((−1 − 2ky + 2kβ)c1

− (y + 2kyβ − 2kβ2)c2)], (47)

v̂2 = e−k(2+y)[(−1 + e2k(1+y) − 2k(1 + y)]c3

+ [(−1 + e2k(1+y))y + 2k(1 + y)c4], (48)

φ̂1 = (e−ky − ek(y−2β))c5, (49)

φ̂2 = −e−y
√

k2+κ2
(−1 + e2(1+y)

√
k2+κ2

)c6, (50)

ûi and p̂i are obtained in terms of v̂i from Eqs. (34), (35),
and (36). These expressions for v̂i , ûi , p̂i , and φ̂i , in terms
of the constants c1–c6 are substituted in the eight boundary
conditions to get a system of homogeneous linear equations
in terms of the constants and the unknown ĥ. These equations
can be represented by the matrix equation

AC = 0,

where C is the column matrix of the constants c1–c6 and ĥ.
This system of linear equations can have a nontrivial

solution only when the coefficient matrix is singular. There-
fore, equating the determinant of matrix A to zero we get a
characteristic equation in terms of s and k and other system
parameters like B, β, μr , ε1, ε2, σ1, and σ2. This equation is
then solved using MATHEMATICA 7.0 for s, the growth rate of
the perturbation.

V. RESULTS AND DISCUSSION

The objective of the present work is to overcome the
limitation of electroneutrality of the bulk fluid imposed in
the EHD models by accounting for the thermal motion of
ions in the bulk. The electrokinetic model (EK) where the
electric potential is modeled using the Debye-Huckel theory
is used to overcome this limitation. Thereby, we assume that
the dynamics of the ions is quite fast and the ion distribution
is Boltzmann and the voltage or potential is low. The results
from the EK theory are compared to those from the EHD
model.

The dynamics of the system when subjected to infinites-
imal random perturbations can be gauged by determining
the growth rate or the growth exponent s. The dispersion
relation obtained from the linear stability analysis discussed
in Sec. IV A is solved to obtain an expression for s the growth
rate of the perturbation. This expression is plotted for different
values of κ in Fig. 5. It can be seen from the figure that the
growth rate of the perturbation depends on its wave number
and the inverse Debye layer thickness κ and exhibits a maxima
(smax) for a particular value of wave number kmax which is
the signature of the instability. An increase in κ results in
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FIG. 5. Variation of the growth rate s as a function of the wave
number k at different values of κ . The values of parameters used are
ε1 = 1, ε2 = 3, μr = 0, β = 1, and B = 1.
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FIG. 6. Variation of kmax as a function of the inverse Debye length
κ . The dotted line indicates results obtained from the PD-PD theory,
the dashed line indicated those from the PD-PC, while the solid
line indicates results from the electrokinetic theory. The values of
parameters used are ε1 = 1, ε2 = 3, μr = 0, β = 1, and B = 1.

an increase in the growth rate due to a dominance of free
charge.

In Figs. 6 and 7, kmax and smax have been plotted as a function
of κ . A similar trend as seen with the base state variables is
seen with the instability parameters. The values of kmax and
smax plateau to limiting values of PD-PD and PD-PC theories
at low and high values of κ , respectively.

For the case of an air-water system, where the conductivity
of pure deionized water is taken to be 5.5 × 10−6 Sm−1, the
Debye length is obtained using the relationship σ = εε0 Dκ2,
where the diffusion coefficient D = 2.8 × 10−9 m2 s−1 is
λD = κ−1∗ =∼9 × 10−7 m. Typical electrode spacing in
EHD-based soft lithography processes vary from 100 to
1000 nm [5,29,30] with a few groups reporting use of 80
and 100 μm [31]. Under these conditions, the thickness
of the Debye layer is almost of the order of the electrode
spacing. For other fluids like silicone oil and polymer melts
with very low conductivities ranging from 10−9 to 10−12

S/m, the Debye length will further increase, although a low
diffusion coefficient characteristic of these fluids ensures that
it ranges from the submicron range to being of the order of
electrode spacing. Therefore, an EK model is very necessary to
describe the dynamics of the diffuse layers in these fluid-fluid
systems.
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FIG. 7. Variation of smax as a function of the inverse Debye length
κ . The dotted line indicates results obtained from the PD-PD theory,
the dashed line indicates those from the PD-PC, while the solid
line indicates results from the electrokinetic theory. The values of
parameters used are ε1 = 1, ε2 = 3, μr = 0, β = 1, and B = 1.

TABLE I. Debye layer thicknesses for a given conductivity of the
fluid.

S. no Conductivity (H2O) S/m Debye length (H2O) m

1 1.0225×10−2 8.69293 × 10−9

2 1.0225×10−3 2.748 × 10−8

3 1.0225×10−4 8.69293 × 10−8

4 1.0225×10−5 2.74894 × 10−7

5 1.0225×10−6 8.69293 × 10−7

S. no Conductivity (PDMS) S/m Debye length (PDMS) m

1 1.0225×10−8 4.364 × 10−8

2 1.0225×10−9 1.374 × 10−7

3 1.0225×10−10 4.364 × 10−7

4 1.0225×10−11 1.374 × 10−6

5 1.0225×10−12 4.364 × 10−6

VI. CONCLUSIONS

As one goes to lower thicknesses, the interfacial instability
in thin fluid films under an electric field can be best described
by an electrokinetic model which takes into account the
dynamics of diffuse layers formed at the surfaces in the system.
It is shown that the wavelength of the instability depends
significantly on the Debye length, which is comparable to the
fluid thickness for the low-conductivity fluids used in these
studies. The PD-PD and PD-PC models are only limiting
cases when the Debye length is very large and very small,
respectively, when compared to film thickness.

Thus it can be summarized that, in a perfect PD-PD
system, free charges are absent and, hence, the electric body
force term in the momentum balance equation is negligible.
Even at the interface, free charges are absent, hence, the
electric displacement continuity equation is used as a boundary
condition. For a PD-PC system, with a large conductivity
of the PC fluid, under a dc field the charges present in the
conducting fluid move instantaneously to the surface of the
fluid and reorganize into small Debye layers whose thickness
is of the order of nanometers. The field within the fluid is
nullified and the surface becomes an isopotential. The bulk of
the fluid therefore can be considered as electroneutral.

In case of leaky dielectrics, for conductivities of the order
of 10−11 S/m, the Debye layer thickness is of the order of
1 to 5 μm, especially for viscous oils. When the thickness
of the fluid film is much larger than a micron, the system is
essentially a charged Debye layer separated by a core layer
which is electrically neutral.

An estimate of Debye layer thicknesses is given in Table I
for typical aqueous and nonaqueous systems. Thus one can
determine when such a system would behave as a perfect or a
leaky dielectric (conductor) if the confinement is known.
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APPENDIX: RELATIONSHIP BETWEEN THE INVERSE
DEBYE LENGTH κ AND CONDUCTIVITY σ2

To be able to compare the electrokinetic model to the
electrohydrodynamic model a relationship between the con-
centration of ions in the liquid and the conductivity of the
liquid has to be determined. The electric conductivity (σ ) is
related to the cationic and anionic molar concentrations c± by
the following relation [22]:

σ = F 2(m̂+c+ + m̂−c−), (A1)

where F is the Faraday’s constant given by F = eNa , where
e is the elementary charge and Na is Avagadro’s number. m̂±
are the mobilities of ions (units: mol N−1 ms−1) and c± are the
molar concentrations, respectively,

σ = e2N2
a (m̂+c+ + m̂−c−),

= e2Na(m̂+n+ + m̂−n−),

= e(m+n+ + m−n−), (A2)

where m± are the ionic mobilities and n± are the number con-
centration of charges, respectively. Substituting the expression
for charge concentration from the equation below,

n± = n0e
∓e[φ(y)−φb ]

kB T ,

⇒ σ = e
{
μ+n0e

−e[φ(y)−φb ]
kB T + μ−n0e

e[φ(y)−φb ]
kB T

}
. (A3)

Using the DH approximation,

σ = e

{
m+n0

[
1 − −e[φ(y) − φb]

kBT

]

+m−n0

[
1 + e[φ(y) − φb]

kBT

]}
,

Assuming m+ = m− = m,

= emn0

{
1 − −e[φ(y) − φb]

kBT
+ 1

+ e[φ(y) − φb]

kBT

}
,

= 2emn0. (A4)

Using the expression for inverse Debye length κ2 = 2e2n0

εε0kBT
and the Einstein’s relation D = mkBT/e, where D is the
diffusivity (m2 s−1),

σ = Dεε0κ
2. (A5)

Therefore, the conductivity σ depends on the diffusivity, the
dielectric constant, and the square of the Debye length.
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