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Rough viscoelastic sliding contact: Theory and experiments
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In this paper, we show how the numerical theory introduced by the authors [Carbone and Putignano,
J. Mech. Phys. Solids 61, 1822 (2013)] can be effectively employed to study the contact between viscoelastic
rough solids. The huge numerical complexity is successfully faced up by employing the adaptive nonuniform mesh
developed by the authors in Putignano et al. [J. Mech. Phys. Solids 60, 973 (2012)]. Results mark the importance
of accounting for viscoelastic effects to correctly simulate the sliding rough contact. In detail, attention is, first,
paid to evaluate the viscoelastic dissipation, i.e., the viscoelastic friction. Fixed the sliding speed and the normal
load, friction is completely determined. Furthermore, since the methodology employed in the work allows to
study contact between real materials, a comparison between experimental outcomes and numerical prediction in
terms of viscoelastic friction is shown. The good agreement seems to validate—at least partially—the presented
methodology. Finally, it is shown that viscoelasticity entails not only the dissipative effects previously outlined,
but is also strictly related to the anisotropy of the contact solution. Indeed, a marked anisotropy is present in
the contact region, which results stretched in the direction perpendicular to the sliding speed. In the paper, the
anisotropy of the deformed surface and of the contact area is investigated and quantified.
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I. INTRODUCTION

In a countless number of rubber engineering components,
including, inter alia, tires, belts, and seals, the viscoelastic
mechanical response and the consequent dissipation have
to be accurately accounted for. Indeed, the smart design of
such elements is a key point in current applied mechanics
research: a more efficient design of automotive tires or an
improved sealing action for mechanical seals could have a
prominent impact in everyday life by providing significant
energy savings and improved wear resistance. However, these
optimization efforts strictly require an accurate comprehension
of the viscoelastic properties of contact problems. As a
matter of fact, many scientific contributions have been ded-
icated to develop theories [1–5] and numerical methodologies
[6–15] to investigate rolling, sliding, and lubricated contacts
of viscoelastic materials. The huge number of different
approaches marks the difficulty of the problem, whose solution
is characterized by strongly dissipative effects [13]. A further
element boosting this complexity is the roughness between
the contacting surfaces. Indeed, the sliding or rolling contact
between rough surfaces involves a very large number of length
and time scales (covering more than 6 orders of magnitude),
which provoke a huge increase of computational complexity
and make conventional numerical techniques, including finite
element solvers, unfeasible for these types of investigations.
On the other side, in the past decade, Persson [2,4,5] has
proposed an innovative analytic approach to account for the
role played by the roughness and to calculate, among the other
quantities, the contact area and the viscoelastic dissipation.
In comparison with other rough contact theories and, in
particular, with multiasperity models [16–19], one of the main
breakthroughs entailed in Persson’s model is related to the
ability of accounting for the interactions between the different
asperities. In detail, Persson’s theory shows that the contact
pressure probability distribution is governed by a diffusive
process as the magnification at which we observe the interface

is increased. By means of this result, it is possible to take
into account the interaction between the contact spots and to
obtain the exact solution in full-contact conditions. In the case
of partial contact, the theory is approximate but still provides
qualitatively good results. For a more detailed discussion, the
reader is also referred to Refs. [20–27].

In this paper, our aim is to show a numerical methodology
that could accurately describe the viscoelastic contact of
rough surfaces, thus being a powerful tool to validate the
analytical models and to study possible practical problems.
In detail, by relying on the theory presented by the authors
in Ref. [13] and experimentally validated in Ref. [15], we
employ a boundary element methodology to study the contact
of a rough surface sliding over a viscoelastic half space.
Indeed, the computation complexity of the contact domain
is conducted by formulating the problem in such a way that
only contact spots need to be discretized [20,21] and by
employing the adaptive nonuniform mesh developed by the
authors in Refs. [24,25]. This scheme allows us to strongly
decrease the number of elements needed to solve the problem,
thus significantly reducing the computation time. By means
of this approach, we are able to elucidate the main aspects
marking the viscoelastic sliding motion. Indeed, we start our
analysis by calculating the viscoelastic friction due to the
sliding of a rigid rough punch over a viscoelastic layer; hence,
we compare numerical results with experimental outcomes
obtained by studying the sliding of a rubber block over a
sandblasted steel plate. Afterwards, we pay attention to the
second peculiar aspect of viscoelastic contact mechanics, that
is, the contact area anisotropy which occurs during sliding
because of viscoelastic effects. Indeed, the contact domain not
only reduces due to the material stiffening but also shows the
marked anisotropy quantified in the paper.

II. FORMULATION

As shown in detail in Ref. [13], by recalling the transla-
tional invariance and the elastic-viscoelastic correspondence
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principle [28], we may formulate the general linear-
viscoelastic contact problem between a rigid indenter and a
viscoelastic slab as follows:

u (x,t) =
∫ t

−∞
dτ

∫
d2x ′J (t − τ )G(x − x′)σ̇ (x′,τ ), (1)

where x is the in-plane position vector, t is the time, u (x,t)
is the normal surface displacement of the viscoelastic solid,
σ (x,t) is the normal interfacial stress, and G (x) and J (t) are
respectively the Green’s function and the creep function. The
latter quantity satisfies causality, i.e., J (t < 0) = 0, and, for
a generic viscoelastic material [28], can be written as follows:

J (t) = H (t)

[
1

E0
−

∫ +∞

0
dτC (τ ) exp (−t/τ )

]
, (2)

where H (t) is the Heaviside step function, the real quantity E0

is the rubber elastic modulus of the material at zero frequency,
C (τ ) is a strictly positive function usually defined as the creep
(or retardation) spectrum [28,29], and τ is the relaxation time,
continuously distributed on the real axis.

Now, assuming that sliding occurs at constant velocity and
neglecting nonuniform temperature effects, one can show that
Eq. (1), with the substitution x → x + vt , can be rewritten in
the following form:

u (x) =
∫

d2x ′G(x − x′,v)σ (x′). (3)

The authors have shown in Refs. [13,14] that the kernel
G(x,v), which depends parametrically on the sliding speed v,
has the following form:

G (x,v) = − 1 − ν2

π

{
1

E∞

1

|x|�
( |x|

h

)
+

∫ +∞

0
dτC (τ )

×
∫ +∞

0+
dz

1

|x + vτz|�
( |x + vτz|

h

)
exp (−z)

}
,

(4)

where � (|x| /h) is a corrective parameter introduced to
account for the viscoelastic slab thickness h,

� (r/h) =
∫ +∞

0
dwS (wh/r) J0 (w) , (5)

with S (wh/r) a correction term which accounts for different
constraint or boundary conditions (see Refs. [13,14] for more
details) and J0 (w) the zeroth-order Bessel function. We stress
that, as should be expected, � (r/h) approaches the unit value
at relatively low values of r/h. For further details regarding the
mathematical procedure to obtain G(x,v), the reader is referred
to Ref. [13]. Finally, we observe that, in order to be closer to
the experimental setup employed in the following section to
validate the methodology, the formulation proposed for the
Green’s function is nonperiodic: indeed, the sliding contact of
a rough finite pad will be studied. However, if it should be
required, periodic conditions could be applied by following
the approach suggested by the authors in Ref. [24] for elastic
materials, in order to obtain a periodic Green’s function.

Interestingly, once the Green’s function G(x,v) is explicitly
given, the viscoelastic problem can be solved by following
the same approach already employed by the authors for

elastic contact mechanics [24,25]. This strategy consists in
discretizing the contact domain in N square cells and then
employing the usual solution scheme for boundary element
methodologies. In detail, assuming that in each square cell the
normal stress σ is constant and equal to σk = σ (xk), where
xk is the position vector of the center of the square cell Dk ,
the normal displacement ui = u (xi) at the center of the i-th
square cell can be expressed as

ui = − 1 − ν2

π

N∑
k=1

σk

{
�

( |xi − x′
k|

h

)
1

E∞

∫
Dk

d2x ′ 1

|xi − x′|

+
∫ +∞

0
dτC (τ )

∫ +∞

0+
dz exp (−z) �

( |xi + vτz − x′
k|

h

)

×
∫

Dk

d2x ′ 1

|xi + vτz − x′|
}

, (6)

where the terms
∫
Dk

d2x ′|xi − x′|−1 and
∫
Dk

d2x ′|xi + vτz −
x′|−1 can be easily calculated by exploiting Love’s solution for
elastic materials [30], as shown in Ref. [24]. In such a way,
the problem is reduced to a system of linear equations of the
following type:

ui = Lik (v) σk, (7)

where the response matrix Lik (v) parametrically depends on
the velocity v. Equation (7) can be easily solved, together
with the determination of the real contact area, by employing
the iterative scheme based on a nonuniform adaptive mesh
already presented by the authors for the case of elastic ma-
terials [24,25]. Such a discretization technique entails strong
computational savings and allows us to handle surfaces with
a roughness spectrum covering several orders of magnitude of
spatial frequencies [24]. It is noteworthy to observe that, in
the proposed formulation, we are neglecting any effect related
to wave propagation in the viscoelastic solid since, as widely
suggested in the literature (see, for example, Refs. [24,25]) we
assume we are dealing with velocities much lower than the
sound propagation speed.

The tangential friction force FT needed to slide, at constant
velocity v = |v|, the viscoelastic block against the rough rigid
substrate can be calculated considering that the energy per
unit time W provided by the external tangential applied force
FT must balance the energy per unit time dissipated as a
consequence of viscoelastic response of the material. The
friction force is, therefore, easily determined as

W = FT v =
∫

�

d2xσ (x)v · ∇u (x) , (8)

where � is the contact domain. For isotropic surfaces, we can
assume, without any loss of generality, v = vi, where i is the
unit vector of the x axis, and write the final relation as follows:

FT =
∫

�

d2xσ (x)
∂u

∂x
. (9)

The friction coefficient is then calculated as μ = FT /FN ,
where FN is the external applied load.
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FIG. 1. The viscoelastic friction coefficient as a function of the
dimensionless sliding speed ξ for a constant normal load P = 0.30 N.

III. VISCOELASTIC FRICTION

As previously outlined, one of the parameters of major
importance in viscoelastic contact mechanics is the viscoelas-
tic friction. In this section, we show how the presented
methodology can be employed to estimate the viscoelastic
friction in the case of viscoelastic rough contact.

Our analysis starts from the paradigmatic case of the contact
of a rigid rough fractal surface sliding over a viscoelastic
half space (h → +∞) characterized by only one relaxation
time. In particular, we employ for the viscoelastic material
the values of E∞ = 107 Pa, E∞/E0 = 3, and τ = 0.01 s. As
for the rough surface, in this paper, we employ self-affine
fractal surfaces numerically generated by means of the spectral
method described in Ref. [24]. These surfaces have spectral
components in the range qL < q < q1, where qL = 2π/L,
the side of the square computational cell is L = 0.01 m,
q1 = NqL, and N is the number of scales (or wavelengths).
In particular, results shown in this section are obtained with
N = 64.

In Fig. 1, we analyze the viscoelastic friction as a function
of the dimensionless speed ξ = (vτ )/L for a fixed normal load
FN = 0.30 N. As expected, we have a bell-shaped curve that
vanishes for very low and very high speeds, i.e., when the solid
behaves as an elastic material.

Indeed, one of the main advantages of the proposed
numerical methodology is the possibility to handle real
viscoelastic materials characterized by a very large number
of relaxation times. As a matter of fact, our approach
allows us to compare numerical predictions and experimental
outcomes. In our experiments, we use a rubber sample made
of styrene-butadiene rubber copolymer (SBR), provided by
Pirelli Tyre S.p.A. Its viscoelastic response spectrum has
been characterized by dynamical mechanical analysis (DMA)
carried out on the instrumentation EPLEXOR by Gabo. The
real part E1(ω) = Re[E(ω)] and the imaginary part E2(ω) =
Im[E(ω)] of the measured viscoelastic modulus E(ω) at room
temperature of 12 ◦C are shown in Fig. 2 (see points in
the figure). The solid line is the fit obtained adopting the
generalized viscoelastic model with 34 relaxation times in
geometric progression with Euler’s number as common ratio,
i.e., τk+1/τk = e.

As for the experimental setup (Fig. 3), we employ a
very simple scheme already successfully used in Ref. [31].
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FIG. 2. (Color online) The real part E1 = Re[E(ω)] (red line)
and the imaginary part E2 = Im (green line) of the viscoelastic
modulus E(ω) of the SBR rubber samples at a room temperature
of 12 ◦C. Squares represent the measured values, and the solid lines
denote the fit obtained according to the generalized viscoelastic
models [28].

Basically, the experiment consists in sliding a rubber block,
with a cross section equal to A = 1 cm × 1 cm, and a
thickness h = 0.75 cm, against a sandblasted randomly rough
steel surface. A normal load is applied to the rubber block by
means of a dead weight glued on the sample. The rubber block
is pulled by a constant applied load to slide over the rough rigid
substrate. Since inertia effects are negligible, the coefficient of
friction can be easily calculated as the ratio between the pulling
force and the normal applied force. By changing the pulling
force we change the sliding velocity and therefore the friction
coefficient. The sliding speed is measured as the ratio between
the distance traveled by the rubber block divided by the time
needed to cover the distance. The experimental procedure is
here described. The rubber sample and the sandblasted plate
are cleaned up by employing isopropanol. Afterwards, the
normal load and the pulling force, previously weighed with a
precision scale, are applied in succession. The rubber sample
is allowed to slide for a certain distance and the time employed
to carry out the run is measured by means of a chronometer.
This procedure allows us to measure the friction coefficient as
a function of the sliding speed v in a range of velocities from
a few μm/s to 1 mm/s. During the experiments, the nominal
contact pressure is kept constant at p0 = 94 KPa, with the
room temperature equal to T = 17 ◦C. We employ the time-
temperature superposition principle for viscoelastic materials

FIG. 3. (Color online) The test bench (schematic) used to mea-
sure the sliding friction of rubber. The sliding speed is controlled by
pulling the sample with a weight (tangential load in the figure).
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FIG. 4. (Color online) Rough contact surface obtained by use
of the confocal microscope in the wave vector range 4.46 ×
103 m−1 � q � 7.94 × 105 m−1 (top) and by use of the atomic force
microscope in the range 1.26 × 105 m−1 � q � 3.16 × 107 m−1

(bottom).

[29] to calculate the viscoelastic spectrum of the material at
17 ◦C. The rough rigid substrate is made of steel, whose surface
is made rough by means of sandblasting and then characterized
either by the confocal microscope (CSM instruments) or the
atomic force microscope (NTEGRA by NT-MDT). By use
of the confocal microscope, it is possible to measure the
roughness on a range of wave vectors 4.46 × 103 m−1 �
q � 7.94 × 105 m−1, whereas the atomic force microscopy
(AFM) measurements cover the interval 1.26 × 105 m−1 �
q � 3.16 × 107 m−1. In Fig. 4, we can observe measurements
obtained with the two scanning techniques.

It is worth noticing that the power spectral density (PSD)
C(q) of the rough surface shows a fractal self-affine behavior
in the range 2.51 × 104 m−1 � q � 3.16 × 107 m−1 and, as
clearly shown in Fig. 5, confocal microscopy measurements
and atomic force microscopy measurements provide perfectly
coherent measures: the AFM-measured PSD (blue color) is just
the extension of the confocal microscopy-measured PSD (red
color). The slope of the curve allows us to calculate the fractal
dimension of the surface which is close to Df = 2.18, corre-
sponding to a Hurst coefficient H = 0.82. In order to carry
out a comparison between predictions and experiments, we
have numerically generated different realizations of a surface
with H = 0.82 and wave-vector values covering the interval
2.51 × 104 m−1 � q � 6.31 × 106 m−1 (corresponding to
wavelengths in the range from 1 μm to 2.6 mm). The resulting
PSD is shown in Fig. 5 in yellow; the overlapping with the
measured one is perfect. Observe that the short-length cut-off
vector q1 of the numerically generated surface is smaller than
the one obtained with AFM measurements. This is because
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FIG. 5. (Color online) Power spectral density C(q) of the rough
surface. Red dots refer to confocal measures, blue crosses to AFM
measures, and yellow dots to the numerically generated surface
employed for the theoretical predictions.

we expect that dust particles of size of order ∼1 μm filter
out the shorter-wavelength component of the roughness PSD.
However, we note that determining the cut-off vector q1 needed
to carry out friction calculations, i.e., determining how many
scales N contribute to the viscoelastic friction, is an open
question in modern tribology (see, for example, Ref. [4]).
The viscoelastic friction is, indeed, significantly dependent
on the short-length cut-off wave vector q1 = 2πN/L0 and,
in particular, monotonically increases with q1 [4]. As a
consequence, in theoretical predictions, q1 appears as a free
parameter. To close the problem, a criterion should be proposed
to determine the proper value of q1. As an example, in the case
of a tire sliding on a asphalt road, the quantity q1 may be related
to the micrometer size of the small dirt particles covering the
contacting surfaces or, alternatively, can be related to the size
of rubber wear particles. However, the definition of the proper
criterion is beyond the purpose of the present study. In order to
compare numerical predictions and experiments, we need to
observe that, during the tests, the measured friction coefficient
μ is the sum of two contributions: one term is almost constant
and equal to the interfacial Coulomb friction μC (and therefore
independent on the sliding speed), the second contribution

10
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0.12

v [mm/s]

μ v

FIG. 6. (Color online) The viscoelastic friction μV for different
sliding speeds v, given a normal constant pressure p0 = 94 KPa. The
numerical calculated values (blue rhomboids) are compared to the
measured ones (red squares). Red lines are referred to the standard
deviation of the experimental outcomes. Notice that the x axis is in a
logarithmic scale.

032408-4



ROUGH VISCOELASTIC SLIDING CONTACT: THEORY . . . PHYSICAL REVIEW E 89, 032408 (2014)

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.6

0.8

1

ξ

A
/A

V 0

FIG. 7. Dimensionless contact area A/Av0 as a function of the
dimensionless sliding speed ξ for a constant normal load P = 0.30 N.

is instead related to viscoelastic energy dissipation in the
bulk of the material and clearly influenced by the sliding
speed. In order to extract the contribution of the viscoelastic
friction we simply subtract the constant term μC , measured
at extremely small sliding velocity, from the total coefficient
of friction μ; therefore the quantity μV = μ − μC should
be representative of the viscoelastic friction contribution. In

Fig. 6, the term μV is plotted as a function of the sliding
speed v. The agreement between experimental outcomes and
numerical results is relatively good and supports the proposed
methodology. Incidentally, we observe that, since the thickness
of the viscoelastic slab, is much greater than the roughness
wavelengths (h � 2π/qL being qL the roll-off wave vector
equal to qL = 4.46 × 103 m−1), no corrective factor has been
necessary to account for the finite thickness of the rubber
sample.

IV. CONTACT ANISOTROPY INDUCED
BY VISCOELASTICITY

Once the numerical model has been validated, it is possible
to focus on the second effect marking the strong peculiarity
of viscoelastic sliding contact: This is the contact anisotropy.
In order to enlighten paradigmatically such a phenomenon,
we employ the one-relaxation-time material defined in the
previous section.

Our analysis starts from a quantitative analysis of the real
contact area A. In Fig. 7, for a nominal contact pressure σ0 =
FN/L2 = 3 kPa, we study, as a function of the dimensionless
quantity ξ = vτ0/L, the ratio A/Av0 between the real contact

FIG. 8. Real contact area for ξ = 0 (left) and ξ = 4.5 × 10−3 (right), given a constant normal load P = 0.30 N. The same region is
extracted to enlighten anisotropic effects.
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area A and the real contact area in stationary conditions
Av0 = A(ξ = 0), when the material is completely relaxed.
As expected, due to the viscoelastic stiffening, the contact
area decreases as the dimensionless sliding velocity ξ is
increased. Interestingly, if we focus our attention on the ratio
A (ξ ) /Av0 , we expect that this quantity must approach the
value E0/E∞ = 1/3 at large sliding velocity, since in this case
the behavior of the material is elastic. This is clearly shown
in Fig. 7 and is a consequence of the direct proportionality
of the intimate contact area on the ratio between the nominal
applied pressure and the composite elastic modulus (for elastic
contacts, see Refs. [4,16,25]), i.e.,

A

A0
= κ√

〈∇h〉2

σ0

E∗ , (10)

where A0 is the nominal contact area, E∗ is the composite
Young’s modulus E∗ = E/(1 − ν2), and κ is a constant
proportionality coefficient proved to be very close to 2 [25].

Figure 8 shows that, in addition to the decrease of contact
area, increasing ξ leads a marked shrinkage of the contact
area at the trailing edge. This is particularly evident in the
magnified views of Fig. 8. Therefore, despite the isotropy of
the rigid randomly rough surface, the interfacial displacement
field of the viscoelastic solid (i.e., the shape of the deformed
surfaces) will show a certain degree of anisotropy.

To quantify the degree of anisotropy of the deformed surface
in a certain range of wave vectors ζ1q0 < |q| < ζ2q0, one can
use the (symmetric) anisotropy tensor defined as

M (ζ1,ζ2) =
∫

ζ1q0<|q|<ζ2q0

d2qq ⊗ qC (q) , (11)

where C(q) = (2π )−2
∫

d2x〈u(0; ζ1,ζ2)u(x; ζ1,ζ2)〉 exp
(−iq · x) is the power spectral density of the filtered
deformed surface u(x; ζ1,ζ2) (the symbol 〈〉 stands
for the ensemble average). Observe that the quantity
Mij = ∫

ζ1q0<|q|<ζ2q0
d2qqiqjC(q), with i and j = 1,2,

corresponds to the second-order moments of the power
spectral density of the filtered surface, i.e., M11 = m20 = 〈u2

x〉,
M22 = m20 = 〈u2

y〉, and M12 = m11 = 〈uxuy〉, where
ux = ∂u/∂x, uy = ∂u/∂y (see also Ref. [32]). Incidentally,
we observe that if the range [ζ1,ζ2] is too wide, in order to
balance the dominant contribution of large wave vectors, it
would be preferable to define the anisotropic tensor as [33]

M (ζ1,ζ2) =
∫

ζ1q0<|q|<ζ2q0

d2q
q ⊗ q
|q|2 C (q) . (12)

However, in our case, the two definitions do not lead to signifi-
cantly qualitative differences and we will use formulation (11).
Furthermore, associated to the symmetric tensor M, one can
conveniently use the quadratic form Q (x) = Mijxixj . Letting
x = r cos θ and y = r sin θ , one easily obtains the following:

Q (x) = r2 |∇h · e (θ )|2 = r2m2 (θ ) ,

where e (θ ) is the unit vector (cos θ, sin θ ) and

m2(θ ) = m20 cos2(θ ) + 2m11 sin(θ ) cos(θ ) + m02 sin2(θ )

(13)

is simply the average square slope of the a profile obtained by
cutting the deformed surface u (x; ζ1,ζ2) along the direction θ

[34]. The quantity m2(θ ) can be represented in a polar diagram:
A circumference means isotropy, otherwise the surface is
anisotropic.

To characterize the anisotropy of the deformed surface,
one can define the degree of isotropy as the ratio γ =
m2 min/m2 max between the minimum m2 min and the maximum
m2 max eigenvalues of the tensor M, and the principal directions
of anisotropy through the eigenvectors of the tensor M,
e.g., by the value of the angle θP which maximizes m2 (θ ),
i.e., m2 (θP ) = m2 max. In this analysis, we use ζ1 = 1 and
ζ2 = N = 64 to obtain the polar diagram shown in Fig. 9. We
notice that, unlike what happens at zero sliding speed, where
the deformed surface is almost perfectly isotropic (a circular
polar diagram is shown in Fig. 9 with γ = 0.93, very close to
1), at nonzero sliding velocity, e.g., for ξ equal to 1.17 × 10−2,
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FIG. 9. (Color online) Polar plots of m2(θ ) for ξ = 0 and ξ =
1.17 × 10−2 given a constant normal load P = 0.30 N.
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FIG. 10. (Color online) Contours of C(q) for stationaty conditions (left) and for a dimensionless speed ξ = 1.17 × 10−2 (right). Red dots
refers to punctual values of C(q); black lines are elliptical fits.

which correspond to the maximum degree of anisotropy, γ =
0.70. Interestingly, the speed ξ = 1.17 × 10−2, for which we
find the greatest anisotropy, is the value where the maximum
viscoelastic friction is found. This confirms that anisotropy
and friction are strictly connected and both related to the
loss modulus Im[(E(ω)], i.e., to the parameter governing the
viscoelastic friction. Furthermore, the principal direction θP

is almost perfectly parallel to the sliding speed (i.e., to the
x axis). This is fully consistent with results shown in Fig. 8,
where the contact area looks stretched along the y axis.

We notice that the methodology just employed to quantify
the anisotropy is based on the analysis of the deformed surface
and, although it has the important advantage of dealing with
quantities familiar to the scientific community, like m2, it
could become less effective when considering very small
contact areas. Indeed, in this last case, since the analysis is
carried out on the total computational domain, the very large

noncontact regions tend to blur the anisotropic contributions.
An alternative way to quantify the anisotropy can rely directly
on the contact area. Indeed, given the contact area, we can
define the characteristic function χ (x) equal to 1 if x belongs
to the contact region or, otherwise, to 0. Now, if we calculate
the power spectral density Cχ (q) of χ (x), in the case of
an anisotropic contact area, Cχ (q) will be itself anisotropic.
Indeed, in Fig. 10, for two fixed values of the dimensionless
ratio Cχ (q)/Cχ (0), we observe on the left the contours in
stationary conditions and on the right those for the speed
corresponding to the greatest anisotropy. In the first case,
the contours lines are circumferences, whereas in the latter
we have ellipselike shapes stretched in the speed direction.
This is perfectly coherent with the contact area shrinkage in
the direction of speed, since the spatial frequency are clearly
related to the inverse of the spatial vectors. In this case, the
degree of anisotropy can be quantified by the ratio λ between
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the smallest and the greatest ellipses axis. In the specific case
here considered, we find λ  0.8, which is quite close to the
value of γ in the same conditions.

V. CONCLUSION

In this paper, we employ the numerical theory developed by
the authors in Ref. [13] to study the sliding contact mechanics
between a viscoelastic solid and a rigid randomly rough
surface. Numerical calculations show that, in comparison
with the elastic contact problem, viscoelasticity has a very
strong influence on the solution. We carry out numerical
calculations to estimate the viscoelastic friction as a function
of the sliding speed. The theoretical predictions are then
compared to experimental observation. A good agreement
between numerical simulations and the measured friction
coefficient supports the validity of the proposed numerical
approach.

Finally, we focus on the contact area and on its anisotropy.
Indeed, given the applied load, one observes a significant
reduction of the contact area due to the viscoelastic stiffening
which occurs as the sliding velocity increases. The real contact
area shrinking is associated to a marked increase of anisotropy
of the contact areas, which are stretched along the direction
perpendicular to the sliding speed. Two different methodolo-
gies are proposed to quantify the degree of anisotropy; the first
relies on the analysis of the slope distribution of the viscoelastic
deformed surface, and the second, instead, analyses the power
spectral density of characteristic function of the contact area.
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APPENDIX: SOME COMMENTS ON FFT APPROACH
TO VISCOELASTIC CONTACT PROBLEMS

By relying on the viscoelastic correspondence principle,
Eq. (1) can be simply rewritten in the Fourier space as follows:

σ (q,ω) = M−1 (q,ω) u (q,ω) , (A1)

with M(q,ω) being the correction response function (see
Ref. [14] for more details). Now considering that in our case
the sliding velocity v is constant and the system is in steady-
state conditions, one has where σ (q,ω) = σ (q)δ(ω − q · v),
u(q,ω) = u(q)δ(ω − q · v), which, together with Eq. (A1),
gives

σ (q) = M−1 (q,q · v) u (q) . (A2)

In principle, employing Eq. (A1) together with fast Fourier
transform (FFT) methods could be a powerful tool to solve
viscoelastic contact problems, since Eq. (A1), unlike Eq. (1),
does not require solving a linear system but simply to carry
out a multiplication. Moreover, the viscoelastic friction force
can be easily determined considering that viscoelastic energy
loss per unit time, P = FT v = ∫

d2x u̇σ , can be rephrased in
Fourier space as

P = (2π )2
∫

d2q (iq · v) M−1 (q,q · v) |u (q)|2 , (A3)

from which we obtain the following:

FT = (2π )2
∫

d2q(iq · ev)M−1 (q,q · v) |u (q)|2 , (A4)

where ev = v/v. However, we observe that, in addition to these
computational advantages, there are also possible drawbacks
when dealing with a nonperiodic domain. Indeed, the solution
scheme in the Fourier space needs to solve the problem not
only in the contact areas (as we do in the case of the real
space formulation proposed in the previous sections) but in all
the nominal computational domain. The crucial question is,
therefore, how to choose the computational cell since it will
influence the contact solution. The best choice would be to have
a computational domain that extends far beyond the relaxation
length l = vτ , where τ is the relaxation time of the material.
However, real viscoelastic materials possess relaxation times
spanning more than 8–10 orders of magnitude, thus making
the length l of the computation domain hugely large. This
of course requires the use of an extremely large number of
grid points and has to be taken in proper consideration when
FFT-based approaches are employed to analyze these types of
contacts.
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