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Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields
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When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the
nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of
the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions
and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present
work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic
field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a
mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter
of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using
an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases
with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by
enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field,
the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the
clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud
surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the
flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the
cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions
considered in the present work (dipolar coupling parameter α � 2), the Brownian motion seems not to affect the
cloud behavior.
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I. INTRODUCTION

A colloidal mixture of bimodal charged particles may
exhibit a haloing phenomenon characterized by the formation
of thin clouds of small nanoparticles accumulated around
bigger micron-sized particles. This phenomenon is attributed
to the interplay between electrostatic and van der Waals
interactions between the particles and ensures colloidal sta-
bility of the suspension [1–4]. However, in such systems, the
cloud thickness is only a few nanometers [5], which allows
maintaining a good dispersion state of the suspension only
within a narrow range of concentrations of both species.

Much thicker clouds appear in magnetic bimodal sus-
pensions. An external magnetic field magnetizes large
micron-sized particles, which attract small superparamagnetic
nanoparticles, and the latter form thick anisotropic clouds
extended at a distance of a few microparticle diameters
in the direction of the applied field. At strong enough
magnetic interactions, the ensemble of nanoparticles may
undergo a gas-liquid or gas-solid phase transition and condense
into highly concentrated domains (clouds) adhered to the
microparticle surface [6,7]. Such a phase transition has been
proved to significantly enhance the capture efficiency of
nanoparticles by magnetic microparticles. On the other hand,
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the nanoparticle clouds may completely screen dipole-dipole
attraction between two micron-sized particles (with dipole
moments oriented along the line connecting their centers) and
even result in their effective repulsion. This effect has been
explained by the interplay between local field modification
due to the cloud formation around a pair of microparticles and
the osmotic pressure induced by the nanoparticles [8].

Such a field-induced haloing accompanied with a con-
densation phase transition has at least two potential ap-
plications. First, it significantly improves colloidal stability
of magnetorheological fluids based on bimodal magnetic
particles [9]. Second, in the domain of magnetic filtration,
it is expected to broaden the size range of captured particles
from micron-sized particles to nanoparticles. This could be an
important breakthrough for biotechnology and magnetically
assisted water purification [10–12]. Both applications require
detailed study of the behavior of nanoparticle clouds around a
magnetized microsphere both under flow and in the presence
of a magnetic field.

Up to now, theoretical investigations of the magnetic
particle capture have been principally motivated by the
development of magnetic separation technology. Usually
accumulation of magnetic particles around a single magnetized
wire or an ordered array of wires was considered. The capture
cross section along with the size and shape of magnetic particle
deposits around a magnetized collector were determined.
Two distinct approaches were used depending on the size of
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magnetic particles, or rather on the Péclet number (defined
as a ratio of the hydrodynamic-to-Brownian forces). For
large enough non-Brownian particles at large Péclet numbers,
the mechanistic approach was employed on the basis of the
balance of forces and torques acting on the particles. The
capture cross section was determined via the particle trajectory
analysis, while the size and the shape of the particle deposits
were found from the mechanical equilibrium of the particles on
the deposit surface, helpful reviews being given by Gerber and
Birss [13] and Svoboda [14]. For smaller Brownian particles at
low-to-intermediate Péclet numbers, a statistical approach was
used on the basis of either the convection-diffusion equation or
the Langevin equation of particle motion. The former equation
gave concentration profiles of the magnetic particles [15–17].
The latter equation was integrated at fixed small time steps
to obtain stochastic particle trajectories [18]. Both methods
allowed calculation of the capture cross section as function of
the suspension speed and magnetic field strength. However,
the steady-state size and shape of the nanoparticle clouds
were only found in the limits of flow-dominated (infinite
Péclet number) and diffusion-dominated (zero Péclet number)
regimes [13,19–21]. Recently, a quite rigorous approach has
been proposed by Chen et al. [22] who have considered
the dynamic growth of the nanoparticle clouds as a moving
boundary problem, with the field and the flow fields computed
numerically. However, this model as well as most existing
theories, did not take into account interactions between
magnetic nanoparticles that might lead to underestimation
of the capture efficiency and even to unphysical results such
as particle concentrations above the limit of the maximum
packing fraction. A few attempts [19,23,24] to account for
interparticle interactions in the problem of magnetic separation
were restricted to non-Brownian particles and did not predict
condensation phase transition, which is often observed in
magnetic colloids [25–29].

Experimental investigations of the magnetic separation
were mostly focused on visualization of the particle trajectories
around a magnetized collector (see the review by Gerber and
Birss [13]). On the other hand, the size and morphology of par-
ticle deposits (or clouds) were scarcely studied. Some results
were briefly reported for the limits of diffusion-dominated
and flow-dominated regimes, for which condensation phase
transitions were not observed [15,30,31]. Furthermore, the
studies of particle deposits were restricted to some limited
set of experimental parameters and general relationships
in terms of dimensionless numbers were not established.
Recently, Ivanov and Pshenichnikov [32] have studied a rapid
dynamics of accumulation of ferrofluid nanoparticles around a
magnetized collector. The authors claim that the nanoparticles
undergo the condensation phase transition around a collector
and demonstrate a strong recirculation flow induced by the
nanoparticle migration toward the collector. However, these
studies have been carried out in the absence of the external flow,
so the flow effect on the behavior of the condensed magnetic
phase is still unknown.

In view of the lack of information on this topic and
its practical and fundamental interest, we have performed
a detailed experimental study of the steady-state behavior
of nanoparticle clouds accumulated on the single spherical
microspheres in the presence of an external flow and an

external magnetic field either aligned or transverse to the flow.
To this purpose, we pushed a dilute suspension of magnetic
nanoclusters through a microfluidic slit channel, and visualized
nanocluster condensation and formation of dense solidlike
clouds around a microsphere rigidly attached to one of the
channel walls. Experiments have been done in a wide range
of suspension velocities. The cloud size and shape have been
analyzed as functions of the Mason number defined as a ratio of
hydrodynamic-to-magnetic forces. For a better understanding
of the Mason number effect on the steady-state cloud behavior,
we have developed a theoretical model based on the stress
balance and particle flux balance on the cloud surface. In the
limit of small filtration speeds, phase equilibrium between a
solidlike particle cloud and a surrounding medium has been
assumed and the nanoparticle concentration inside the clouds
has been estimated from the condition of homogeneity of the
chemical potential of nanoparticles.

The present article is organized as follows. In Sec. II,
we present experimental techniques. An overview of the
visualization results is presented in Sec. III. The size and shape
of nanoparticle clouds is analyzed in Sec. IV in comparison
with theoretical estimations. Finally the conclusions and
perspectives are outlined in Sec. V.

II. EXPERIMENT

The experimental cell used for visualization of nanoparticle
clouds around a magnetized microsphere is shown in Fig. 1.
A dilute aqueous suspension of iron oxide nanoparticles
(at volume fraction equal to 0.32%) was pushed through
a slit channel by a syringe pump (KD Scientific KDS 100
Series) at imposed flow rates varying from Q = 7 × 10−3 to
0.14 mL/min. This flow rate corresponds to the flow speeds,
v0 = Q/S, varying in the range 1.67 × 10−4 � v0 � 1.79 ×
10−3 m/s, with S being the cross-section area of the channel.

FIG. 1. (Color online) Sketch of the experimental setup.
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These speeds correspond to the Reynolds number Re � 1
at the microsphere scale that implies a laminar flow in this
scale.

The flow channel was fabricated by squeezing of a silicon
joint (GEB Silicone) between a flat Plexiglas substrate and a
microscopic glass plate. Before manufacturing of the channel,
spherical nickel microparticles (Alfa Aesar, 300 mesh, 99.8%,
sieved to obtain the size ranging from 40 to 50 μm) were
attached to the glass plate by heating at 700 °C in an oven
during a period of 2 h. Such a treatment did not cause a
significant immersion of the microparticles into the glass plate
but ensured a strong enough adhesion so that the particles
did not move under suspension flux. The channel dimensions
in the direction of the flow (length), fluid vorticity (width),
and velocity gradient (height) were 60 mm × 10 mm × 70 ±
5 μm, respectively. The channel height was measured by
an optical microscope and its constancy along the channel
walls was approximately adjusted by screws squeezing the
glass plate to the Plexiglas substrate through the silicon
joint. The flow channel was placed in the transmitted light
microscope (Carl Zeiss Photomicroscope III) equipped with
a PixelInk PL-B742U camera having a complementary metal
oxide semiconductor color image sensor. A 20-fold objective
(Olympus IC 20) was used for observations. A stationary
magnetic field of intensity H0 = 12 kA/m was applied by
a pair of Helmholtz coils placed around a microscope and
bearing iron yokes, as shown in Fig. 1. Measurements showed
that the magnetic field was homogeneous within a few percent
tolerance in the location of the flow channel. The flow channel
was put either along or perpendicularly to the coil axis; so,
the magnetic field was either parallel to the flow (longitudinal
field) or perpendicular to the flow and parallel to the fluid
vorticity (transverse field).

The following experimental protocol was adapted. First,
the suspension of magnetic nanoparticles was introduced into
the syringe pump, which was then connected to the flow
channel. The latter was filled with the suspension by pushing
the syringe at a speed small enough to avoid entrapment of
air bubbles. Once the channel was placed in the microscope,
an external magnetic field of a chosen intensity was applied
and the system was left at rest for 10 min. During this
time, some magnetic nanoparticles were attracted to nickel
microparticles and formed clouds extended along the magnetic
field direction. Then, the syringe pump was switched on
and the suspension was pushed through the channel at a
constant imposed flow rate during a period of 2 h. During
this time, snapshots of the microparticle with nanoparticle
clouds accumulated around were taken in 1-min intervals, and
three videos of a few-minute duration were recorded in the
beginning, in the middle, and at the end of the observation
process. After the flow onset, we observed a rapid partial
destruction of the clouds under hydrodynamic forces followed
by their reconstruction on a time scale of about 1 h. After
this time, a quasi-steady-state regime was achieved so that the
cloud size, shape, and morphology did not evolve significantly.
At the end of the observation period, the field was switched
off, the flow was stopped, the syringe pump was filled with a
new portion of the magnetic suspension, and the experience
was repeated at another flow rate. To check the reproducibility,
all the measurements were conducted two times for the same

set of experimental parameters. The steady-state shape of the
clouds (at an elapsed time equal to 2 h from the flow onset)
was analyzed and quantified using IMAGEJ software. We also
checked an eventual difference between the cases when the
magnetic field was applied before and after the flow onset. The
steady-state size and shape of the clouds were not affected by
the sequence of field and flow switching on.

Aqueous solutions of iron oxide nanoparticles (ferrofluids)
were synthesized by a coprecipitation of ferrous and ferric
salts in an alkali medium and subsequently stabilized by an
appropriate amount of oleic acid and sodium oleate using
the method described in detail by Wooding et al. [33] and
Bica et al. [34]. Magnetic nanoparticles were characterized by
the transmission electron microscopy (TEM), dynamic light
scattering (DLS), ζ -potential measurements, and vibrating
sample magnetometry. The characterization results are de-
scribed in detail in Ref. [7]. Briefly, TEM pictures and DLS
measurements reveal that the iron oxide nanoparticles (of a
volume mean diameter of 13 nm) were gathered into irregularly
shaped nanoclusters of a mean sphericity close to the unity
and of a volume mean diameter equal to 62 nm. Aggregation
of nanoparticles occurred during the synthesis likely because
of an uncontrolled kinetics of the second surfactant layer
adsorption. The first surfactant layer (oleic acid deprotonated
in alkali medium) was chemically adsorbed by its COO− group
on the external surface of iron oxide nanoclusters, and the
second layer (sodium oleate) was physically adsorbed onto
the first one such that its polar COO− groups pointed outside
the nanocluster toward the aqueous solvent. Such a steric
double layer, bearing a quite strong negative charge (ζ potential
about −60 mV at a pH = 8–9 and ionic strength ranging
from 4 to 7 mM), ensured a rather good colloidal stability of
synthesized ferrofluids: nanoclusters did not sediment during
at least half a year. However, their relatively big size allowed
a significant amplification of magnetic interactions and sub-
stantially improved their capture efficiency, as compared to
single nanoparticles. The initial aqueous suspension contained
4.2 vol% of nanoclusters and was diluted by a distilled water
(milli-Q, 18.2 M� cm) in order to obtain dilute suspensions
of the solid phase volume fraction φ0 = 0.32 vol%.

Since the nanocluster behavior is principally governed by
magnetic interactions, their magnetization properties are of
particular importance. They are inspected in more detail in
Fig. 2 where we plot the magnetization curve of the dry powder
of iron oxide nanoclusters. This curve has a shape reminiscent
for Langevin magnetization law. Saturation magnetization and
initial magnetic susceptibility (slope at the origin) are found to
be equal to MS = 290 ± 10 kA/m and χi = 9.0 ± 0.5. The latter
value allows us to estimate the initial magnetic permeability
of the individual nanoclusters, μn ≈ 30—the value given by
the model of multipole interactions between nanoclusters
[see Sec. IV A, Eq. (4)]. As inferred from the inset of
Fig. 2, the magnetization curve of the iron oxide powder is
nearly linear in the range of the magnetic field intensities
H0 = 0–12 kA/m, used in our experiments. This allows us to
suppose that, within the experimental field range, nanocluster
magnetic permeability is independent of the applied magnetic
field and equal to μn ≈ 30.

We have also checked by magnetization measurements
that nickel microparticles preserved their strong magnetic
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FIG. 2. Magnetization curve of the dry powder of iron oxide
nanoclusters.

properties after having been heated in the oven following
the protocol similar to that used for their adhesion on the
glass plate. The initial magnetic permeability and saturation
magnetization of thermally treated nickel particles is estimated
to be equal to μm ∼ 102 and MS,m ≈ 450 kA/m, respectively.

III. OVERVIEW OF OBSERVATION RESULTS

A sequence of pictures of the nanocluster clouds accu-
mulated around a nickel microparticle in the presence of a
magnetic field (of an intensity H0 = 12 kA/m) longitudinal
to the flow is shown in Fig. 3 for the suspension of the
solid phase volume fraction φ0 = 3.2 × 10−3 for different
suspension flow rates Q, corresponding to the superficial
velocities v0 = Q/S ranging from 0 to 1.79 × 10−3 m/s, with
S being the flow channel cross section. As a reference, a
bare nickel microparticle in the absence of a magnetic field
is shown in Fig. 3(a). A picture of the microparticle bearing
two nanocluster clouds in the presence of the external field
but in the absence of flow is shown in Fig. 3(b). The applied
magnetic field magnetizes the microparticle, and the latter
attracts the iron oxide nanoclusters. We were unable to see
single nanoclusters because of the optical resolution limit,
but observed a change of the suspension optical contrast
in the vicinity of the nickel microparticle because of the
redistribution of nanocluster concentration. In more detail,
the nanoclusters accumulate near magnetic poles of the
nickel microparticle and are repelled from the equatorial
circumference of the microparticle. Such anisotropy of the
nanocluster clouds in the absence of flow have been recently
observed by Magnet et al. [7] and explained by anisotropy
of magnetic interactions favoring attraction within the region
where the local magnetic field H is higher than the external
field H0 and repulsion within the region where H < H0.

Figures 3(c)–3(i) show the cloud shape under flow, 2 h
after the flow onset, when the steady-state regime was
achieved. The flow is from the left to the right of the
pictures in the same direction as the external magnetic field.
We see that the flow induces an asymmetry of the clouds.
The front cloud (facing toward the arriving suspension flux)
appears to be somewhat larger than the back cloud (situating

FIG. 3. (Color online) Visualization of nanocluster clouds
around a nickel microparticle in the longitudinal magnetic field
H0 = 12 kA/m at the volume fraction of solids in the suspension equal
to φ0 = 0.32%. Snapshot (a) shows a bare microparticle. Snapshot (b)
illustrates nanocluster clouds formed in the absence of flow, but in the
presence of an external horizontal magnetic field at the elapsed time
equal to 10 min after the field application. Snapshots (c)–(i) show
the nanocluster clouds in the presence a magnetic field and in the
presence of the flow oriented from the left to the right of the figure,
parallel to the magnetic field direction. These snapshots were taken
2 h after the moment of the flow onset. The superficial velocity
v0 of the flow is equal to 1.67 × 10−4 m/s (c), 2.38 × 10−4 m/s
(d), 3.10 × 10−4 m/s (e), 4.05 × 10−4 m/s (f), 5.95 × 10−4 m/s (g),
1.19 × 10−3 m/s (h), and 1.79 × 10−3 m/s (i).

behind the nickel microparticle) and this difference depends
on the suspension velocity. First, at low speeds, v0 � 3.10 ×
10−4 m/s, the cloud size seems to be almost constant, then
it exhibits an abrupt increase at 3.10 × 10−4 � v0 � 4.05 ×
10−4 m/s followed by a regular monotonic decrease at higher
speeds. A relatively small cloud size at small speeds could
be explained as follows. The external magnetic field induces
a phase separation in the bulk of the magnetic suspension
independently of the presence of nickel microparticles. This
phase separation is manifested through the formation of
the rodlike aggregates composed of magnetic nanoclusters.
The aggregates grow rather quickly thanks to shear-induced
collisions and quite strong magnetic interactions between
nanoclusters. So, they become visible in an optical microcope
a few minutes after the field application. On the other hand,
they are subjected to gravitational sedimentation because of the
density difference with the aqueous solvent. At low suspension
speeds their travel time from the channel inlet to the nickel
microparticle appears to be longer than the time required
for their settling across the channel thickness h ≈ 70 μm.
Because of friction with the channel bottom, the aggregates
cannot move once they have been settled. Therefore, the
clouds are principally built by the aggregates formed in the
vicinity of the microparticle a few moments after the flow
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onset. At higher speeds, the settling time is longer than the
travel time, and the aggregates continuously arrive to the
microparticle and form relatively large clouds. Their size and
shape achieve steady state at much longer elapsed times (about
1 h) and are defined by the interplay between magnetic and
hydrodynamic interactions and, eventually, Brownian motion
of nanoclusters, as will be shown in Sec. IV. With increasing
velocity [Figs. 3(f)–3(i)], hydrodynamic forces become more
important, so that a stronger magnetic field is needed to
maintain the nanoclusters on the cloud surface. Therefore
the part of the cloud situating far from the microparticle is
washed away and the cloud surface becomes closer to the
microparticle where the magnetic field is high enough to
maintain the nanoclusters.

At all suspension velocities, including zero, the nanoclouds
are completely opaque. This does not allow us to estimate the
nanocluster concentration inside the clouds by the measure-
ments of the transmitted light intensity. Theoretical analysis
[7] (see also Sec. IV A-B) shows that this concentration
is high enough, so that the nanoclusters likely undergo a
condensation phase transition at the magnetic field, H0 =
12 kA/m, used in our experiments. They form solidlike clouds
around a microparticle and a dilute fluidlike phase around
the clouds. A diffuse border of the clouds at zero and small
speeds, v0 � 3.10 × 10−4 m/s [Figs. 3(b)–3(e)], could be
attributed to the polydispersity of the nanocluster suspension.
Larger nanoclusters possess a higher magnetic energy and
are accumulated in the vicinity of the microparticle forming
a dense solidlike phase, while smaller nanoclusters form a
diffuse layer around the solid region.

At higher speeds, v0 � 4.05 × 10−4 m/s, the diffuse layer
seems to disappear and a smooth shape of the cloud is
replaced by a sharp pattern with conical spikes on its surface
[Figs. 3(f)–3(i)]. Similar spikes have been observed in the
vicinity of the magnetic poles of concentrated ferrofluid
microdroplets formed in the bulk ferrofluid because of the
phase separation [35,36]. Such a surface instability has been
explained in terms of the surface energy anisotropy that favors
some surface directions over others. Simulations, assuming ar-
rangement of magnetic particles in a body-centered-tetragonal
(bct) lattice, have revealed negative surface energies when the
angle, δ, between the surface and the field direction becomes
larger than 31° [37]. The flat surfaces with δ > 31° are therefore
absolutely unstable, while the appearance of spikes with
apex angles δ < 31° is energetically favorable. More recently,
Cebers [38] has carried out rigorous numerical simulations of
the kinetics of the magnetic colloid phase transition and found
a multispike shape of the droplets of the concentrated colloid
phase attributing it to the surface tension anisotropy.

Formation of spikes is expected at any applied magnetic
field strong enough to induce a solid-fluid phase separation.
However, in our case, it is not observed in the absence
of flow, or at low speeds [Figs. 3(b)–3(e)], provided that
the flow should not significantly affect the balance of the
surface stresses, according to the estimations presented in
Sec. IV B. The absence of peaks is likely connected to the
diffuse boundary layer, which probably destroys the source
of the surface instability—the negative surface energy. On the
contrary, disappearance of the diffuse layer at speeds v0 �
4.05 × 10−4 m/s leads to a sharp interface of the clouds with

an appropriate surface energy and may induce instabilities.
Disappearance of this layer likely comes from hydrodynamic
forces, which squeeze small nanoclusters to the solidlike
phase of the clouds or wash them away from clouds. Finally
note that the above considered surface instability appears in
the case when the surface energy is principally governed by
the magnetic interactions between the particles belonging to
the surface layer—the case of the interface between two differ-
ent phases of the same magnetic suspension. This instability
should not be confused with the Rosensweig instability [39]
of the interface between two distinct magnetic suspensions
(ferrofluids) subjected to an orthogonal magnetic field and
whose surface energy is governed by molecular interactions
and considered to be field independent.

A video of the flow around the microparticle with attached
nanocluster clouds corresponding to the picture shown in
Fig. 3(i) (at H0 = 12 kA/m and v0 = 1.79 × 10−3 m/s) is
presented in the Supplemental Material [40]. As inferred from
this video, the water flux arriving on the front cloud makes
the spikes move along the surface in the direction of the
streamlines. The rear part of the back cloud has a tapered
shape favorable to the flow. Such a shape likely induces only
minor perturbations of the flow so that the spikes on the
rear cloud seem to be quasi-immobile. We also observe some
recirculation of nanocluster aggregates in the vicinity of the
points where the cloud surface joins the microparticle. This
recirculation is more pronounced on the lower side likely be-
cause of an imperfect alignment between the field and the flow.

Another point revealed in visualization experiments is
the appearance of bright white regions near the equatorial
circumference of the microparticle. These regions correspond
to aggregates of micelles of nonadsorbed oleic acid. As already
stated, strongly magnetic nanoclusters are expelled from the
equatorial region, while nonmagnetic oleic acid aggregates are
forced to move there because of the volume conservation of
the whole suspension. The quantity of the captured oleic acid
decreases with increasing flow speed, because hydrodynamic
forces become more important as compared to the effective
attraction.

We should also mention that the accumulation of nanoclus-
ter clouds around a magnetized microparticle is a completely
reversible process: Once the magnetic field is switched off,
the cloud is completely dissolved by Brownian motion and by
the water flux streaming the microparticle. Destruction of the
clouds after switching off of the magnetic field, of intensity
H0 = 12 kA/m, is demonstrated in the second video posted in
the Supplemental Material [40]. The reversibility of the cloud
formation and dissociation could be explained by the absence
of remnant magnetization of the nanoclusters (Fig. 2) and
by a presumably low solid friction between the nanoclusters
covered by a surfactant double layer.

A sequence of pictures showing a steady-state shape and
size of nanocluster clouds in the presence of a magnetic field
perpendicular to the flow is shown in Fig. 4 for H0 = 12 kA/m,
the suspension volume fraction φ0 = 0.32%, and flow ve-
locities ranging from v0 = 1.67 × 10−4 to 2.38 × 10−3 m/s.
The shape of the clouds appears to be quite similar to that
in the longitudinal field. The clouds are extended along the
applied magnetic field and conical spikes appear on their
extremities because of the surface energy anisotropy. Both
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FIG. 4. (Color online) Visualization of the nanocluster clouds
in the transverse magnetic field H0 = 12 kA/m at different flow
speeds v0, equal to 1.67 × 10−4 m/s (b), 2.38 × 10−4 m/s (c), 5.95 ×
10−4 m/s (d), 1.19 × 10−3 m/s (e), and 2.38 × 10−3 m/s. The snapshot
(a) shows a bare nickel microparticle.

clouds attached to the microparticle have the same size
and shape because of the symmetry of the streamlines with
respect to the plane perpendicular to the applied magnetic
field and passing through the microparticle center. The clouds
seem, however, to be slightly asymmetric with respect to the
microparticle axis aligned with the field. Such an asymmetry
is caused by the hydrodynamic drag pushing the clouds in
the direction of the flow. As inferred from Fig. 4, the cloud
size decreases progressively with an increasing flow speed v0

that is explained in terms of increasing hydrodynamic forces
washing the nanoclusters away from the clouds.

The mechanisms defining the cloud size and shape will be
inspected in the next section where experimental results will
be compared with predictions of our model.

IV. THEORY AND DISCUSSION

The field-induced condensation phase transition is a distin-
guishing feature of our system having a strong impact on the
nanocluster accumulation around a magnetized microparticle.
Therefore, we begin with a thermodynamic description of this
phase transition in the absence of flow (Sec. IV A). In the
presence of flow, the cloud behavior, size, and shape depend
on Brownian motion, and magnetic and hydrodynamic forces
acting on nanoclusters. Simultaneous consideration of these
three effects along with the condensation phase transition
would substantially complicate the theoretical description.
Fortunately, the thermodynamics governing the phase tran-
sition and the hydrodynamics defining the cloud size can be
decoupled for relatively low suspension speeds, considered in
our experiments. The validity of such decoupling is proved
in Sec. IV B where we estimate the relative importance of
hydrodynamic and magnetic forces, or rather their ratio, called

the Mason number. Based on this estimation, we calculate the
cloud shape (Sec. IV C) and size (Sec. IV D) under the field
and the flow in the steady-state regime. We consider the case of
the field parallel to the flow. Finally, we compare the calculated
cloud size to the one observed in experiments (Sec. IV E).

A. Phase transition

The appropriate parameter describing the relative impor-
tance of magnetic interactions is the so-called dipolar coupling
parameter. It is defined as the ratio of magnetic-to-thermal
energy (kT) of the nanocluster, and scales as

α = μ0β
2
nH

2
0 Vn

2kT
, (1)

where μ0 = 4π × 10−7 H/m is the magnetic permeability
of vacuum, Vn is the nanocluster volume, βn = (μn − 1)/
(μn + 2) is the magnetic contract factor of the nanocluster, and
μn is the nanocluster magnetic permeability. The factor β2

n in
Eq. (1) comes from the energy of the dipole-dipole interaction
between magnetic nanoclusters proportional to the square of
their magnetic moment.

The dipolar coupling parameter α is estimated to be of the
order of 2 for the experimental value of the magnetic field
intensity H0 = 12 kA/m. However, such relatively modest
value of this parameter appears to be sufficient to induce a
phase separation in the suspension of magnetic nanoclusters
of the magnetic permeability as high as μn ≈ 30. Since
the magnetic field and the nanocluster concentration are not
homogeneous around the microparticle, we should check the
phase behavior of the ensemble of nanoclusters at different
concentrations and applied magnetic fields. To this purpose,
we shall construct a phase diagram α-
, where different
phases will be identified. A similar phase diagram has already
been developed via Monte Carlo simulations or analytical
calculations for the magnetic particles exhibiting dipole-dipole
interactions [41,42]. In our case of magnetic nanoclusters
with a strong magnetic permeability μn ≈ 30 we should take
into account short-range multipolar interactions, which are
especially important at moderate-to-high concentrations, since
the dipolar interactions strongly underestimate the strength of
the interactions between particles [43].

To proceed, we assume that all the nanoclusters are identical
and only two phases of the nanocluster ensemble may exist: a
disordered fluid and an ordered solid having a face-centered-
cubic (fcc) structure. Even though the bct lattice has the least
energy in the presence of reasonably high magnetic fields
[44], our choice for the fcc lattice is motivated by the desire
to capture the disorder-order phase transition at zero field
keeping in mind that the energy of both structures differs
insignificantly. Neglect of other possible ordered states should
not cause substantial errors in determination of the nanocluster
concentration profile around a magnetized microparticle. The
equilibrium between the two considered phases is found by the
equilibrium of nanocluster chemical potentials ζ and osmotic
pressures p in each phase [45]:

ζ (
s,α) = ζ (
f ,α), (2a)

p(
s,α) = p(
f ,α), (2b)
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where 
 is the nanocluster concentration in the suspension
and the subscripts “s” and “f ” stand for the solid and fluid
phases, respectively. Taking into account the porous nature of
the nanoclusters, their concentration is related to the “true”
volume fraction of solids, φ, by the following relation: 
 =
φ/
n, with 
n ∼ 0.5 being the internal volume fraction of the
nanoclusters.

The chemical potential ζ (
,α) and the osmotic pressure
p(
,α), both contain the contributions coming from magnetic
interactions (considered in detail in Ref. [7]) and hard-sphere
repulsion. The appropriate expressions for the latter interaction
have been developed by Zubarev and Iskakova [46] on the
basis of osmotic compressibility calculations carried out by
Carnahan and Starling [47] and Hall [48] for semidilute
and concentrated hard-sphere suspensions. Assuming that
the steric interactions between our nanoclusters respect the
Carnahan-Starling law in the fluid phase and the Hall law in
the solid phase, we arrive at the following expressions for
quantities ζ and p in both phases:

ζ (
f ,α) = (ζhard-sphere)f + (ζmagn)f

= kT

(
ln 
f + 
f

8 − 9
f + 3
2
f

(1 − 
f )3

)
− kT

α

β2
n

∂μ

∂
f

,

(3a)

p(
f ,α) = (phard-sphere)f + (pmagn)f

= kT

Vn


f

1 + 
f + 
2
f + 
3

f

(1 − 
f )3

− kT

Vn

α

β2
n

(

f

∂μ

∂
f

− μ + 1

)
, (3b)

ζ (
s,α) = (ζhard-sphere)s + (ζmagn)s

= kT

(
A


m

ln

s


m − 
s

+ A


m − 
s

+ C

)

− kT
α

β2
n

∂μ

∂
s

, (3c)

p(
s,α) = (phard-sphere)s + (pmagn)s

= kT

Vn


s

A


m − 
s

− kT

Vn

α

β2
n

(

s

∂μ

∂
s

− μ + 1

)
,

(3d)

where 
m = π/(3
√

2) ≈ 0.74 is the maximum packing frac-
tion of the fcc structure, and A ≈ 2.2 and C ≈ 1.255 are
the constants ensuring order-disorder phase transition at zero
field in the concentration range 0.495 < 
 < 0.545 [49].
The magnetic permeability of the nanocluster suspension,
μ, intervening into the last equations is found assuming
multipolar interactions between magnetic nanoclusters ar-
ranged in the fcc lattice. The interparticle distance in the
three directions of the lattice is imposed by the suspension
volume fraction. Performing numerical simulations using the
numerical code developed by Clercx and Bossis [43], we
obtain the following interpolating function for the magnetic
permeability as a function of the nanocluster concentration 


FIG. 5. Phase diagram of the suspension of magnetic nanoclusters
having a constant magnetic permeability equal to μn = 30.

and the nanocluster magnetic permeability μn:

μ(
,μn) = (μMG)exp[(c1 log2 μn+c2 log μn)
6], (4)

where μMG = (1 + 2βn
)/(1 − βn
) is the dilute-limit ex-
pression of the suspension magnetic permeability given by the
Maxwell-Garnett mean field approach [50]; c1 ≈ 0.408 and
c2 ≈ 0.12 are numerical constants.

The magnetic permeability of the nanoclusters, μn, can be
found from the experimental magnetization curve of the dry
powder of nanoclusters (Fig. 2). The slope at the origin of this
curve gives the initial magnetic susceptibility of the powder,
χp ≈ 9, which corresponds to the magnetic permeability μp =
χp + 1 ≈ 10. Assuming that the concentration dependency of
the powder magnetic permeability is similar to that of the liquid
suspension, i.e., defined by Eq. (4), we solve this equation
with respect to μn having replaced μ(
,μn) by μp ≈ 10 and

 by 
m ≈ 0.74. In this way, we obtain an estimation for
the nanocluster magnetic permeability, μn ≈ 30, at relatively
low magnetic fields, H � 12 kA/m, considered in the present
work.

Having defined all the terms intervening into Eqs. (2a) and
(2b), we obtain a system of two transcendental equations,
which is solved with respect to 
s and 
f for given values
of the dipolar coupling parameter α. So obtained functions

s(α) and 
f (α) correspond to the binodal curves of the
α-
 diagram plotted in Fig. 5. These two curves separate
the phase diagram into the three regions, as follows: the
disordered fluid situating below the left binodal curve; the fcc
solid situating below the right binodal curve, and the fluid-solid
mixture occupying the space between the two binodals. As
expected, at zero applied field (α = 0) we recover the order-
disorder transition in the well-known concentration range
0.495 <
< 0.545 [49]. At the field parameter α > 2, the solid
phase exists only in a narrow range of concentrations, whose
values are very close to the maximum packing fraction of the
fcc lattice, 
m ≈ 0.74, at least in thermodynamic equilibrium,
i.e., in the absence of flow and at a long elapsed time after the
moment of the field application.
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B. Mason number

In what follows, we shall demonstrate that the cloud internal
structure should not change drastically in the presence of flow
at the flow speeds used in our experiments. To this purpose,
we estimate the characteristic ratio σh/σm of hydrodynamic-
to-magnetic stresses acting inside the solidlike cloud. Both
stresses scale as σh ∼ ηivi/rm ∼ η0v0/rm and σm ∼ μ0H

2
0 .

Here η0 and ηi are the viscosities of the suspending liquid
(water) and of the particle suspension inside the cloud; v0

and vi are the suspension velocities far upstream from the
microparticle and inside the cloud, respectively; and rm is the
microparticle radius. It is easy to show that the product ηivi of
the suspension viscosity by its characteristic speed inside the
clouds appears to be of the same order of magnitude as η0v0 if
one assumes a recirculation flow inside the clouds in the limit
of high particle concentration (
 ∼ 
m ≈ 0.74 resulting in
ηi � η0). The ratio of stresses therefore reads

σh

σm

∼ η0v0

μ0H
2
0 rm

. (5)

Estimations show that this ratio is quite low in our
experimental conditions: 10−5 < σh/σm < 10−3. Small values
of σh/σm (responsible for the internal flow and for the cloud
surface behavior) allow us to conclude that the flow should
have a minor effect on the cloud internal structure and on the
shape of its surface. This will make it possible to determine
the internal volume fraction and the shape of the clouds in
the limit of zero Mason number, in a similar way as in the
absence of flow.

On the other hand, the cloud volume is governed by
the flux of nanoclusters arriving on the clouds and leaving
the clouds. The key parameter is the ratio of the convective
to the magnetic migration flux, or rather the ratio of the
hydrodynamic-to-magnetic forces acting on the nanoclusters
in the vicinity of the cloud surface, the so-called Mason
number: Ma = Fh/Fm ∼ (η0vrn)/(μ0m |∇H |). Here rn is the
nanocluster radius, m ∼ βnH0r

3
n is the nanocluster magnetic

moment, |∇H | ∼ βmH0/rm is the magnetic field gradient
induced by the microparticle, βm = (μm − 1)/(μm + 2) is the
magnetic contract factor of the microparticle, and μm ∼ 102

is the microparticle magnetic permeability. The flow speed,
v, outside the cloud (at a distance of the order of one
nanocluster radius, rn, from the cloud surface) scales as
v ∼ γ̇ rn ∼ v0(rn/rm), with γ̇ ∼ v0/rm being the shear rate
at the cloud surface. Thus, the Mason number scales as

Ma = η0v0

μ0βmβnH
2
0 rn

. (6)

Note that this definition of the Mason number is somewhat
more general than the one conventionally used in electro- and
magnetorheology [51], where the attraction force between
two identical particles is considered. In this particular case,
βm = βn = β and β2 would appear in Eq. (6) instead of the
product βmβn of magnetic contrast factors of both particles.
Estimations give moderate values of the Mason number for our
experimental parameters: 10−2 < Ma < 1. This suggests that
the nanocluster motion outside the clouds should be affected
by the flow. Thus, the nanoclusters may be washed away from
the cloud, which would limit the cloud growth; the cloud size
is therefore expected to be governed by the Mason number Ma.

FIG. 6. (Color online) Sketch of the problem geometry.

C. Cloud shape

Now, we are ready to calculate the cloud shape and
size in the longitudinal magnetic field taking into account
the above estimations. First, based on the phase diagram
(Fig. 5) and neglecting small hydrodynamic stresses [Eq. (5)],
we shall consider that the nanocluster concentration is homo-
geneous inside the cloud and equal to the maximum packing
fraction of the fcc lattice, 
m ≈ 0.74. The magnetic perme-
ability of the quasisolid cloud is calculated by Eq. (4) and is
equal to μ ≈ 10. The nanocluster concentration and magnetic
permeability outside the cloud will be neglected. Secondly, we
remark that the magnetic permeability of nickel microparticles,
μm ∼ 102, is an order of magnitude higher than that of the
cloud. We assume therefore that the magnetic field distribution
inside the cloud is the same as that around an isolated
magnetized sphere of an infinite magnetic permeability placed
into a nonmagnetic medium. This approximation is not really
justified; nevertheless, it allows one to obtain a correct shape of
the clouds avoiding substantial numerical efforts. Note that this
approximation does not introduce the field distribution outside
the cloud. Thus, it does not contradict to the discontinuity of
the magnetic field and of the pressure at the cloud surface. This
discontinuity will be taken into account. Thirdly, introduce the
polar coordinate system (r ,θ ), as shown in Fig. 6 with the
origin (point O) at the microparticle center, and the polar
angle θ counted in the clockwise direction from the axis
Oz parallel to the lines of the external field. Let all the dis-
tances be dimensionless and normalized by the microparticle
radius rm.

At this stage we do not intend to describe precise mor-
phology of the cloud surface with eventual appearance of the
conical spikes. Instead of this, we try to capture a global shape
of the cloud, which will allow us to correctly estimate its size.
Therefore, the cloud surface is supposed to be axisymmetric
and smooth. The cloud surface is described by a geometric
locus [R(θ ),θ ] in polar coordinates. The function R(θ ) is
found from the balance of normal stresses on the cloud
surface, where we may neglect the viscous stress, σh, because
it is a few orders of magnitude smaller than the magnetic
stress, σm [cf. Eq. (5)]. Under this condition, the continuity
of the normal stresses on the cloud surface will give us the
discontinuity of the pressure on the cloud surface, which
reads po − pi = μ0M

2
n/2, where the subscripts “o” and “i”

stand for the outer and inner faces of the cloud surface and
the right-hand side of this equation represents the magnetic
pressure jump proportional to the square of the component Mn

of the suspension magnetization normal to the cloud surface.
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Neglecting the capillary pressure jump, in our previous work,
we have shown that the pressure balance on the cloud surface
reduces to the following differential equation with respect to
the desired function R(θ ) [7]:

h2
0 − h2 = (μ − 1)

(hr − hθR
′/R)2

1 + (R′/R)2
, (7)

where R′ = dR/dθ ; hr = (1 + 2βm/R3) cos θ and hθ =
−(1 − βm/R3) sin θ are, respectively, the radial and the polar
components of the magnetic field intensity, both normalized by
the applied field H0; h = √

h2
r + h2

θ is the absolute value of the
normalized magnetic field at a given point (R,θ ) of the cloud;
and h0 ≈ 3 cos θ0 (with βm ≈ 1 at μm ∼ 102) stands for the
value of h at the point (R = 1 and θ = θ0), where the cloud
surface joins the microparticle; this point will be hereinafter
referred to as the anchoring point (point A in Fig. 6) and
the angle θ0 will be called the anchoring angle. The ordinary
differential equation (7) is solved numerically at the initial
condition R(θ0) = 1.

In the present model, the anchoring angle defines the cloud
volume. Varying this angle in an artificial manner from 0 to a
critical value θ0 ≈ 1.2 (or 69°), we see that the cloud volume
progressively increases. At the angles θ0 > 69°, Eq. (7) does
not have a solution in the domain of real numbers because its
left-hand side becomes negative, while the right-hand side
is always positive. This means that the above considered
assumptions (two-dimensional-axisymmetric shape without
spikes and capillary effects) cannot ensure the existence of
clouds with anchoring angles above 69°. At the same time,
image processing of the experimental snapshots reveal angles
lower than or equal to 69 ± 2° for all experimental parameters
considered in the present work. This allows us to apply the
present model with confidence for estimations of the cloud
shape.

According to the arguments presented in the Sec. IV B, the
cloud volume is affected by the flow and should depend on
the Mason number Ma. It is therefore indispensable to find
the influence of the flow on the anchoring angle related to the
cloud size.

D. Anchoring angle: Effect of the flow

The starting point is that the amount of nanoclusters inside
the clouds does not change during time in the steady-state
regime. This implies that the total flux of nanoclusters across
the cloud surface, S, is zero for both clouds attached to
the microparticle: J = ∫∫

S
j · n dS = 0, with j being the flux

density vector and n the outward normal unit vector at the
cloud surface.

For better understanding, let us consider the cloud behavior
in more detail. Under Brownian motion, the nanoclusters
situated at the cloud surface are subjected to the diffusion:
they tend to “evaporate” from the surface and to displace
toward the regions of weak concentration. In the absence of
flow, the diffusive flux density jd is totally counterbalanced
by the so-called magnetophoretic flux density jm (responsible
for particle migration along the magnetic field gradient). This
latter flux causes the evaporated nanoclusters to go back to the

clouds, such that the total flux density is zero:

jeq = jd,eq + jm,eq = 0, (8a)

where the subscript “eq” stands for the flux magnitudes
at the thermodynamic equilibrium. The flow modifies this
equilibrium of fluxes adding a convective flux associated with
the fluid velocity v:

j = jd + jm + 
v, (8b)

where 
 is the volume fraction of nanoclusters on the outer
side of the cloud surface.

The magnetic force acting on nanoclusters at the cloud
surface increases when the cloud volume decreases and its
surface becomes closer to the microsphere. Thus, at small
cloud volumes, the magnetic force is relatively large, and the
hydrodynamic force is insufficient to wash the nanoclusters
away from the cloud. The cloud grows during time. The
situation becomes opposite at large cloud volumes when the
cloud size is forced to decrease under erosive hydrodynamic
forces. In both cases of large or small clouds, their volume
tends to the same final value, corresponding to the steady
state. This clearly shows that the cloud size is governed by the
particle flux balance (8b), as well as by the interplay between
the hydrodynamic and the magnetic forces, which is described
by the Mason number Ma [Eq. (6)].

Precise determination of the flux density j requires solution
of the free surface boundary value problem connected with
coupled convective-diffusion, Stokes and Maxwell equations.
To obtain a reasonable estimation of the cloud size avoiding
substantial numerical efforts, we shall introduce some simpli-
fying assumptions.

First, our experiments reveal some parts of the cloud surface
where the nanoclusters seem to neither arrive, nor detach from
these parts, implying a zero normal component of the flux
density: jn ≈ 0. In the longitudinal magnetic field, such zero-
flux zone appears on the front cloud in the vicinity of the
microparticle, while it seems to extend over the whole surface
of the rear cloud [cf. Figs. 3(f)–3(i)]. These zones were more
easily observed in videos [40].

Secondly, we shall impose the above zero-flux condition,
jn ≈ 0, at the points of the cloud surface where the tensile
hydrodynamic force acting on nanoclusters (and eroding them
from the cloud surface) is the highest. These points are the
anchoring point A of the front cloud and the rear point B of
the back cloud (cf. Fig. 6).

Thirdly, we consider a relatively slow flow (Ma < 1), and
suppose that the diffusive flux density jd in both considered
points A and B is not very different from the one in equilibrium,
jd,eq, i.e., in the absence of flow. Strictly speaking, the neglect
of the difference of the diffusive fluxes cannot be justified.
In theory, this difference can appear to be of the same order
of magnitude as the difference of the magnetophoretic fluxes.
Nevertheless, quite reasonable agreement of the theoretical
results, based on this approximation, with the experimental
ones (Sec. IV E) could justify the used simplification jd ≈
jd,eq, which avoids numerical complexities related to the
solution of the free boundary convective-diffusion problem.
Thus, by eliminating the diffusive fluxes from Eqs. (8a)
and (8b), we obtain the normal component of the total flux

032310-9



C. MAGNET et al. PHYSICAL REVIEW E 89, 032310 (2014)

density in the characteristic points A and B:

jn ∼ (jm)n − (jm,eq)n + 
vn

= 

(Fm)n − (Fm,eq)n

6πη0rn

+ 
vn ≈ 0, (9)

where vn is the component of the suspending liquid velocity
normal to the cloud surface and calculated in the vicinity
of the outer face of the cloud surface (cf. Appendix). This
equation shows that in points A and B, the normal component
of the flux density is proportional to the difference of the
normal components of the magnetic forces (Fm)n − (Fm,eq)n
exerted on the nanoclusters under flow and in the absence of
flow, respectively. The denominator of the first term in the
right-hand side of Eq. (9) corresponds to the hydrodynamic
friction coefficient of spherical nanoclusters. At the considered
approximation, the concentration 
 works out from Eq. (9),
and this equation reduces to the following force balance at the
characteristic points A and B:

(Fm)n − (Fm,eq)n ≈ −6πη0rnvn. (10)

This equation shows that the hydrodynamic force com-
pensates the increment of the magnetic force acting on
nanoclusters at points A and B of the cloud surface when
this surface is displaced by the flow at some distance from its
equilibrium position. It should be stressed that this equation
applies separately to points A and B and defines the size of
the front cloud when applied to point A and the size of the
back cloud when applied to point B. More precisely, Eq. (10)
allows an estimation of the anchoring angle θ0 as a function
of the flow velocity. The calculations are developed in detail
in the Appendix. The following transcendental equations are
obtained for the anchoring angle of the front [Eq. 11(a)] and
the back [Eq. 11(b)] clouds:

cos θ0 sin θ0 − cos θeq sin θeq

sin θ0
≈ 3

4(2 + βm)
Ma, (11a)

(
1 + 2βm

R3
B(θ0)

)2

−
(

1 + 2βm

R3
B(θeq)

)2

= 1

4
c × Ma (11b)

where θeq is the anchoring angle in the absence of flow. It
is taken to be equal to the value θ eq ≈ 69° of the critical
angle above which our model [Eq. (7)] does not provide a
stable solution for the cloud shape at equilibrium. RB(θ0) and
RB(θeq) are the distances between the microsphere center and
point B on the extremity of the back cloud under flow (Ma > 0)
and in the absence of flow (Ma = 0), respectively (Fig. 6).
The distances RB(θeq) and RB(θ0) are obtained by numerical
solution of Eq. (7) at the initial conditions R(θ = θeq) = 1
and R(θ = θ0) = 1, respectively. A numerical factor c has
been introduced in Eq. (11b) as an adjustable parameter
keeping in mind that we got expressions for the magnetic
and hydrodynamic forces, intervening into Eq. (10) up to a
dimensionless multiplier (cf. Appendix).

Equations (11a) and (11b) are solved with respect to
the angle θ0 at different values of the Mason number in
the range 0 < Ma < 0.5, covered in experiments. Theoretical
dependencies of the anchoring angle θ0 on the Mason number
are shown in Fig. 7 for both the front and the rear clouds.
As expected, the anchoring angle of both clouds decreases

FIG. 7. Theoretical dependencies of the anchoring angle on the
Mason number [cf. Eqs. 11(a) and 11(b) for the front and the back
clouds, respectively]. The free parameter c in Eq. (11b) is taken to be
c = 1.6, the value providing the best fit of the theory to the
experimental cloud size presented below in Fig. 9.

with the increasing Mason number. This corresponds to a
decrease of the cloud volume because of the increase of
the convective flux blowing the nanoclusters away from the
clouds.

E. Numerical results and comparison with experiments

The cloud shape, described by the function R(θ ), is found
from the solution of the differential equation (7) using the
appropriate anchoring angle θ0(Ma) at the initial condition
R(θ0) = 1. The calculated cloud shape is compared to the
experimentally observed one (taken from the snapshots in
Fig. 3) in Fig. 8. The cloud shape in the absence of flow
is shown in Fig. 8(a). As already mentioned, settling of
particle aggregates does not allow them to reach the clouds
and to establish thermodynamic equilibrium. In experiments,
this leads to a much smaller cloud volume than the one
calculated by our theory neglecting the settling problem
(red solid line). A better agreement (blue dashed line) with
experiments is obtained if the calculations are made at the
anchoring angle equal to the experimental one, θ0 ≈ 57°
instead of the equilibrium value θeq ≈ 69°. Figures 8(b) and
8(c) illustrate the clouds in the longitudinal magnetic field
at Mason numbers equal to 0.08 and 0.35, respectively, with
the corresponding anchoring angle found from Eqs. (11a) and
(11b). As inferred from these figures, our model reproduces
qualitatively the elongated shape of the clouds. It correctly
predicts an asymmetry of the front and rear clouds in the
longitudinal field, as observed in experiments. This asymmetry
could come from stronger hydrodynamic forces acting on
nanoclusters on the surface of the back cloud (near its rear point
B) as compared to the forces near the anchoring point A of the
front cloud. Because of the simplifying input hypotheses, the
model is unable to predict conical spikes on the cloud surface.
Neglecting the capillary pressure, it gives the tapered cloud
extremities with singular end points, which is inconsistent with
the globally rounded shape with numerous spikes observed in
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FIG. 8. (Color online) Comparison between the calculated (red
solid line) and the experimental (black wavy line) shapes of the
nanocluster clouds attached to a microparticle in the presence of an
external magnetic field oriented horizontally. (a) shows the clouds
in the absence of flow, at Ma = 0. The blue dashed line in (a)
corresponds to the calculated shape at the same anchoring angle θ0 as
that observed in experiments at Ma = 0. (b) and (c) show the clouds
under the flow realized from the left to the right in the direction of
the applied magnetic field at Mason numbers Ma equal to 0.08 and
0.35, respectively. The free parameter c, intervening into Eq. (11b) is
equal to c = 1.6 and provides the best fit with experimental results on
the size of the back cloud (cf. Fig. 9). The experimental shape of the
clouds has been taken from the snapshots of Fig. 3: Fig. 3(b) for (a),
Fig. 3(f) for (b), and Fig. 3(i) for (c).

experiments. Recall that this surface instability appears as a
result of the surface energy anisotropy, as discussed in detail
in Sec. III.

To analyze the effect of the flow on the cloud size, we
introduce the dimensionless cloud length, L = R(θ = 0) − 1,
corresponding to a distance between the microparticle surface
and the cloud extremity normalized by the microparticle radius
rm (Fig. 6). Theoretical and experimental dependencies of the
cloud length on the Mason number are shown in Fig. 9 for
both orientations of the magnetic field. Experimental data
at low Mason numbers Ma < 0.06, at which the nanoclus-
ter aggregates settled before arriving at the microparticles
[cf. Figs. 3(c)–3(e)], have been excluded from this figure. Thus,
at the considered range of Mason numbers, 0.06 < Ma < 0.5,
the length of the front cloud monotonically decreases with the
Mason number, which is explained by increasing hydrody-
namic forces washing away the nanoclusters from the cloud
surface. On the contrary, the length of the back cloud is much

FIG. 9. Theoretical and experimental dependencies of the nor-
malized cloud length on the nanocluster Mason number. The upper
solid line stands for the theoretical prediction (without adjustable
parameters) for the front cloud in the longitudinal field [cf. Eqs. (7)
and (11a)]. The lower solid line stands for the prediction for the back
cloud in the longitudinal field; the best fit to the experimental data
for the back cloud corresponds to the adjustable parameter c ≈ 1.6
[cf. Eqs. (7) and (11b)].

less affected by the flow and remains almost constant within the
considered range of Mason numbers. Our simple model qual-
itatively reproduces the decreasing trend for the front cloud
and gives a quantitative correspondence with experiments
for the longitudinal magnetic field with a maximum of 35%
discrepancy. The model predicts a slight decrease of the back
cloud size which is not really distinguishable in experiments. It
is likely that the rough estimations of the back cloud size, based
on the scaling arguments, overestimate the role of the Mason
number while, in reality, the back clouds are less sensitive
to the flow variations. Recall that the theory does not have
adjustable parameters for the predictions of the front cloud
size and has one adjustable parameter for the back cloud. This
parameter, c, intervenes into Eq. (11b) and gives the best fit to
experimental data at c ≈ 1.6. The experimental cloud length
in the transverse field appears to be somewhat smaller than
that of the front cloud likely because stronger hydrodynamic
forces are exerted on the clouds oriented perpendicularly to
the flow.

Finally, our theory reveals that the magnetic interactions
between nanoclusters dominate over the Brownian motion
at the field parameters α � 2 and the nanocluster magnetic
permeability μn � 30. At this range of both parameters, the
Brownian motion seems to not significantly alter the size,
the shape, or the internal volume fraction of the clouds.
The single dimensionless parameter affecting the clouds is
therefore the Mason number Ma = η0v0/(μ0βmβnH

2
0 rn). The

ratio of the hydrodynamic-to-magnetic stresses, σh/σm =
η0v0/(μ0H

2
0 rm), might govern the cloud shape. However, it

appears to be smaller by a factor of rm/rn ∼ 103 than the
Mason number (at βm ≈ βn ≈ 1) and does not seem to affect
the cloud behavior at the considered range of the flow speeds.
These conclusions hold true for nanoclusters or nanoparticles
with μn � 30. A separate study should be carried out to check
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the role of the parameter μn on the phase transition and cloud
behavior under flow.

V. CONCLUSIONS

In the present work, the size and shape of the clouds of
magnetic nanoparticles (or nanoclusters) around a magnetized
microparticle in the presence of an external uniform magnetic
field and in the presence of flow have been studied in detail.
In experiments, we have used nanoclusters composed of
numerous iron oxide nanoparticles and having a mean size
of about 60 nm and the initial magnetic permeability μn ≈ 30.
These nanoclusters were accumulated around a spherical
nickel microparticle of a mean diameter of 50 μm. The main
results of this study can be summarized as follows:

(1) Even in the absence of microparticles, the external mag-
netic field induces rather strong interactions between magnetic
nanoclusters, such that the whole nanocluster suspension may
undergo a phase separation, which is manifested by the appear-
ance of needlelike aggregates composed of nanoclusters. In our
experimental case, this phase separation has been observed in
the suspension bulk at volume fraction of solids as low as φ =
0.32% (corresponding to the concentration of nanoclusters,

 = φ/
n ≈ 0.64%) and at a magnetic field H0 = 12 kA/m.
Such a phase separation is expected to be a signature of a
“disordered-fluid–ordered-solid” phase transition. Assuming
fcc lattice of the solid phase and multipolar magnetic in-
teractions between the nanoclusters, we have constructed a
phase diagram of the magnetic suspension and shown that
the considered phase transition is governed by the dipolar
coupling parameter α = μ0β

2
nH

2
0 Vn/(2kT ), the nanocluster

concentration 
, and the nanocluster magnetic permeability
μn. The theory confirms the phase separation at the considered
experimental parameters (α > 2, 
 ≈ 0.64%, and μn ≈ 30).

(2) The above stated phase separation appears to be ex-
tremely important for the efficiency of capture of nanoclusters
by a magnetized microparticle. In the absence of flow and in
the presence of an external magnetic field, the nanoclusters
are attracted to the microparticle and form two equal-sized
clouds attached to both magnetic poles of the microparticle
and aligned with the applied field. Phase equilibrium analysis
reveals a solid state of the matter in the clouds with nanocluster
volume fraction close to the maximum packing fraction of the
fcc lattice, 
m ≈ 0.74. To achieve the equilibrium, the clouds
are expected to absorb the major amount of nanoclusters (and
their aggregates) from the suspension bulk that would result in
extremely large cloud size. In practice, the cloud growth is lim-
ited by inevitable settling of the nanocluster aggregates, which
adhere to the wall of the experimental cell and cannot move.

(3) In the presence of strong enough flow, the settling
problem may be overcome so that the nanoclusters (and their
aggregates) continuously arrive to the microparticle. Starting
from some speed, at which the travel time becomes smaller
than the settling time, the size of the clouds monotonically
decreases with increasing flow speed in both longitudinal and
transverse fields. This is qualitatively explained by enhance-
ment of hydrodynamic forces washing the nanoclusters away
from the clouds. In the longitudinal field, the flow induces
asymmetry of the front and the back clouds, which likely
comes from stronger hydrodynamic forces acting on the nan-

oclusters on the surface of the back cloud (near its rear point) as
compared to those acting on the front cloud (near the anchoring
point).

(4) In the transverse field, both clouds are of equal size but
seem to be slightly misaligned with the field direction in the di-
rection of flow. Conical spikes appear on the cloud extremities
at both field orientations. This phenomenon is interpreted in
terms of the surface energy anisotropy, which induces surface
instabilities in magnetic fields making the angles δ > 31° with
the surface. Finally, the cloud formation and destruction is
a completely reversible process: When the magnetic field
is switched off, the clouds are rapidly destroyed by the
suspension flux and by Brownian motion of nanoclusters.

(5) To explain the flow and the field effects on the clouds,
we have developed a simple model ignoring the appearance
of spikes and based on the balance of the stresses and particle
fluxes on the cloud surface. This model, applied to the case
of the magnetic field parallel to the flow, captures reasonably
well the elongated shape of the cloud and reveals that the
only dimensionless parameter governing the cloud size is
the Mason number, Ma = η0v0/(μ0βmβnH

2
0 rn). At strong

magnetic interactions considered in the present work (α � 2
and μn � 30), the Brownian motion seems not to affect the
cloud behavior. The model correctly predicts a decreasing
Mason number dependency of the cloud size and allows one to
obtain a satisfactory (within maximum 35% error) agreement
with experiments without adjustable parameters for the front
cloud and with a single fitting parameter for the back cloud.

In summary, the present theory captures the main physics
of the cloud behavior and provides tractable semianalytical
results at relatively low computational expense. For better
agreement between theory and experiments, more precise
calculations of magnetic field, concentration, and velocity
distribution are needed. New experiments should be carried
out to analyze the effect of the initial nanocluster concen-
tration on the cloud size and shape. Unsteady state of the
nanocluster accumulation should also be studied in order to
estimate characteristic times of the cloud formation. From an
application perspective, we intend to realize a microseparation
device composed of a microfluidic flow channel containing a
regular array of magnetizable microplots. Such a channel has
already been used by Deng et al. [52] as an on-chip cell sorting
device with the cells bound to the magnetic micron-sized beads
captured by magnetized microplots. We intend to study the
separation of smaller nanosized particles in such a device and
visualize the nanoparticle fluxes by fluorescence microscopy.
The interference between the flow fields as well as between
magnetic fields generated around neighboring microplots is ex-
pected to considerably change the physics of the nanoparticle
capture.
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APPENDIX: ESTIMATION OF THE ANCHORING
ANGLE [EQS. (11A), (11B)]

The anchoring angle of both clouds is found from the force
balance (10) applied to the characteristic points A and B on
the cloud surface (cf. Fig. 6). We proceed to these estimations
separately for point A on the front cloud and point B on the
back cloud.

1. Front cloud

The normal component of the magnetic force (Fm)n, inter-
vening into Eq. (10), is related to the normal component, ∇nH ,
of the magnetic field gradient by the following expression:

(Fm)n = μ0m∇nH = 3
2μ0βnVn∇nH

2. (A1)

The magnetic field and its gradient at point A are estimated
using the well-known expressions for the magnetic field dis-
tribution around an isolated sphere placed into a nonmagnetic
medium [cf. expressions for hr and hθ below Eq. (7)]. This
gives the following estimate of the force (Fm)n:

(Fm)n = −12πμ0βmβn(2 + βm)
H 2

0

rm

r3
n cos θ0 sin θ0. (A2)

The normal component (Fm,eq)n of the magnetic force in
equilibrium, i.e., in the absence of flow, is calculated at the
anchoring point A for the same position of the cloud surface
as in the absence of flow. This position corresponds to the
anchoring angle θ0 = θeq ≈ 69°, as explained below Eqs. (11).
The expression for (Fm,eq)n reads

(Fm,eq)n = −12πμ0βmβn(2 + βm)
H 2

0

rm

r3
n cos θeq sin θeq.

(A3)

At the anchoring point A, the normal component vn of the
fluid velocity at the cloud surface appears to be the tangential
component vθ at the microparticle surface. It is estimated
at a distance equal to the nanocluster radius rn from the
cloud surface, so as a product of the shear rate γ̇ at the
microparticle surface and the nanocluster radius. The shear
rate is roughly estimated using the well-known result for the
velocity distribution around an isolated sphere in the absence
of cloud [53]. The final expression for the velocity vn reads

vn = vθ ∼ γ̇ rn ∼ 3

2

v0

rm

rn sin θ0. (A4)

Replacing Eqs. (A2)–(A4) in the force balance (10),
we arrive, after some algebra, at Eq. (11a) describing the
anchoring angle of the front cloud.

2. Back cloud

Point B is situated at the extremity of the back cloud. As
explained in Sec. III, the negative surface energy forbids the
existence of smooth surfaces perpendicular to the magnetic
field, therefore the cloud extremity B is a singular point of the
cloud surface. The radius of curvature of the cloud surface at
this point is expected to be of the order of magnitude of a few
nanocluster radii, rn. This implies strong magnetic field gradi-
ents at this point. At the present time we are only able to esti-
mate the order of magnitude of the field gradient at this point:

∇nH
2 ∼ βmH 2

B

rn

, (A5)

where HB is the magnetic field intensity at point B. An order
of magnitude of the field HB is given by its value at point B

in the absence of cloud:

HB ∼ H0

(
1 + 2βm

R3
B(θ0)

)
(A6)

with RB(θ0) being a distance between the microsphere center
and point B on the extremity of the back cloud. Combining
Eqs. (A1), (A5), and (A6), we obtain an estimation of the
magnetic force acing on nanoclusters at point B under flow,
(Fm)n, and in equilibrium, (Fm,eq)n:

(Fm)n ∼ μ0βmβnH
2
0

(
1 + 2βm

R3
B(θ0)

)2

r2
n, (A7)

(Fm,eq)n ∼ μ0βmβnH
2
0

(
1 + 2βm

R3
B(θeq)

)2

r2
n. (A8)

The magnetic forces under flow [Eq. (A7)] and in the
absence of flow [Eq. (A8)] are calculated using the appropriate
values θ0(Ma) and θeq ≈ 69◦ of the anchoring angle. The strain
rate |∇v| of the fluid in the vicinity of point B is governed by
the radius of curvature of the surface at this point. This allows
estimation of the order of magnitude of the speed vn near the
extremity of the back cloud, at a distance rn from point B:

vn ≈ |∇v|rn ∼
(

v0

rn

)
rn ∼ v0. (A9)

Replacing Eqs. (A7)–(A9) in Eq. (10), we arrive, after some
algebra, at Eq. (11b) describing the anchoring angle of the back
cloud.
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