
PHYSICAL REVIEW E 89, 032309 (2014)

Magnetic particles confined in a modulated channel:
Structural transitions tunable by tilting a magnetic field
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The ground state of colloidal magnetic particles in a modulated channel are investigated as a function of the
tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal
direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo simulations,
we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation,
strength of the modulated potential, and the commensurability factor of the system. Interestingly, we found
first- and second-order phase transitions between different crystal structures, which can be manipulated by
the orientation of the external magnetic field. A reentrant behavior is found between two- and four-chain
configurations, with continuous second-order transitions. Novel configurations are found consisting of frozen
solitons of defects. By changing the orientation and/or strength of the magnetic field and/or the strength and
periodicity of the substrate potential, the system transits through different phases.
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I. INTRODUCTION

Competitive interactions between particles are responsible
for the formation of a large variety of complex structures
in nature [1–3]. However, to take advantage of this aspect,
the major challenge is to find a way to manipulate this
formation process, in order to obtain the desired configuration
through a correct choice of a set of parameters. Although this
idea seems to be promising, there are many other obstacles
to overcome.

Formation of Wigner crystals has been widely studied for
a purely repulsive interaction between particles in quasi-one-
dimensional (Q1D) [4–6], two-dimensional (2D) [7,8], and
three-dimensional (3D) [9,10] systems. These studies showed
a very rich set of ground-state configurations depending on the
system properties, and a diverse kind of transition was found
between them. However, the formation of complex structures
increases dramatically when particles interact via competing
interaction [11–14]. One of the most simple models is based on
the dipole-dipole interaction [15,16], which can be realized by
an external field acting on a system of magnetic particles. The
multiple crystalline structures that can be found [17,18], and
the effects of external fields applied on these particles, which
have been summarized in a recent minireview [19], indicate
the promising future of these kind of systems.

Recent works showed the effect of a fixed and oscillating
external magnetic field on the crystal structures [20,21],
evidencing that the configuration of the system can be
controlled by the orientation of the magnetic field. Numerical
studies of these systems demonstrated the possibility of
cluster formation [22,23] as well as few-body bound states
[24,25] and local deformations in elongated dipolar gases
[26]. Additionally, different transitions between Fermi liquid,
solitons, and Wigner crystals have been predicted [27,28]
as well as some tunable assemblies [29]. Also ground-state
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configurations of 2D dipolar mixtures were investigated for
different orientations of an external magnetic field by using
a genetic algorithm [30–32], showing that the complexity of
the particles arrangement increases with the anisotropy of the
interparticle interaction.

The effect of complex potential landscapes on the structure
of interacting colloidal particles was investigated in one
dimension [33–35] and recently also in two dimensions
[36]. A periodic potential has been proposed to control the
arrangement of the particles [13,36,37], which is triggered
by the commensurability [38,39] between the periodicity of
the potential and the average distance, i.e., the density, of
the particles. Experimentally, it was found that a colloidal
suspension, where the interaction between particles is negli-
gible, exhibits a nontrivial dependence on the strength of the
modulated potential [40]. This finding allows the possibility to
use the modulated potential as an effective tunable parameter
for a system of interacting particles.

In the present work the ground-state configuration of a
system of magnetic particles confined by a parabolic Q1D
channel on a periodic substrate potential is studied. Magnetic
particles are aligned with an external tilted magnetic field
and interacting through an anisotropic dipole-dipole potential
[15], which depends on the orientation of the external field.
We investigate how the orientation of the field allows us to
tune the ground-state configuration of the system, modulating
the competitive interaction between each pair of particles.
The effect of the modulated potential is analyzed through its
strength and the degree of commensurability of the system
imposed by the periodicity of the substrate potential and the
average interparticle distance, i.e., the density.

The present paper is organized as follows. In Sec. II the
model system and the numerical methods are described. In
Sec. III we present the results for the different ground-state
transitions of the commensurate system, and the tuning
between the different phases is realized by changing the
orientation of the magnetic field and the external modulated
potential. In Sec. IV the same analysis is presented for
a noncommensurate system, and the effects due to the
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FIG. 1. (Color online) Schematic representation of two dipolar
particles (red spheres). All particles are confined to the x-y plane
and the magnetic moment μ of each one is aligned to the external
magnetic field B.

commensurability factor are explained. Our conclusions are
given in Sec. V.

II. MODEL SYSTEM

In this work, we consider a system of N identical interacting
magnetic particles, which are allowed to move in the x-y plane.
The magnetic particles are confined by an external parabolic
potential in the y direction and a periodic substrate potential
along the x direction with period length L and potential height
V .

The system is subjected to an external and spatially
homogeneous magnetic field B, which induces a magnetic
moment μ to all particles, aligning them to B. The magnetic
field is tilted by an angle θ with respect to the z axis, which is
perpendicular to the plane of motion, and it forms an angle ϕ

with respect to the x axis of the plane. This is schematically
represented in Fig. 1.

At short distances the interaction between the colloidal par-
ticles is a hard-core repulsion, which defines the characteristic
length (the diameter of each particle, σ ) and the energy scale

(ε) of the system. The total energy of the system is given by

H =
N∑

i=1

[
1

2
mω2

0y
2
i − V cos

(
2πxi

L

)]

+
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[
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(
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|rij |
)12

+ Vdip(rij ,μ)

]
, (1)

where rij = xij êx + yij êy represents the relative position
between the ith and the j th particle and Vdip(rij ,μ) is the
dipole-dipole interaction [15,16,24] given by

Vdip(rij ,μ) = 1

r5
ij

[(μrij )2 − 3(μ · rij )2], (2)

where we assume that the magnetic moment of each particle
μ is aligned to B. Equation (2) can be rewritten as follows

Vdip(rij ,θ,ϕ) = μ2[1 − 3 sin2 θ sin2(ϕ)]

|rij |3

− 3μ2 sin2 θ

|rij |5 xij [cos(2ϕ)xij + sin(2ϕ)yij ].

(3)

A contour plot of the pairwise interaction of Eq. (3),
is shown in Fig. 2 as a function of the relative x and y

distances between two particles for different values of θ ,
as specified in the figures, with fixed ϕ. The anisotropy of
the dipole-dipole interaction (see Fig. 2) plays an important
role in the determination of the many-particle ground-state
configuration, as it will be discussed later, breaking the widely
studied chainlike structure found for systems with isotropic
pairwise interaction [4–6]. The anisotropy of the interaction
is governed by the angles θ and ϕ, nevertheless, as shown in
this work, the strength of the periodic potential can overcome

10

100

Y

-0.4

-0.2

0

0.2

0.4 θ=0˚

10

100

θ=20˚ θ=30˚ θ=35˚
ϕ

X
-0.4 -0.2 0 0.2 0.4

Y

-0.4

-0.2

0

0.2

0.4 θ=40˚
ϕ

X
-0.4 -0.2 0 0.2 0.4

θ=50˚

X
-0.4 -0.2 0 0.2 0.4

θ=70˚

-200

-100

0

 100

 200

10

100

-100

-10

X
-0.4 -0.2 0 0.2 0.4

θ=90˚

10

100

-100

-10

FIG. 2. (Color online) The dipole-dipole interaction as a function of the relative (x,y) position between two particles, is plotted for different
values of the angle θ between the magnetic field and the z axis. The value of θ is specified in the figures, while the strength of the interaction
is indicated by the color bar. The contour lines are plotted for different values of the interaction energy, as labeled in the first and last figures.
The direction of B in the x-y plane is indicated by the angle ϕ in the top right figure, which was taken ϕ = 50◦.
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the effect of the anisotropy, determining the many-particle
configuration.

In dimensionless units, the total energy of Eq. (1) becomes

H =
N∑

i=1

[
υ2y2

i − V0 cos

(
2πxi

L

)

+
N∑

j>i

{
4

|rij |12
+ μ2[1 − 3 sin2 θ sin2(ϕ)]

|rij |3

− 3μ2 sin2 θ

|rij |5 xij [cos(2ϕ)xij + sin(2ϕ)yij ]

}]
, (4)

where the energy and the distances are given in units of ε and
σ , respectively. The dimensionless confinement frequency is
defined by υ2 = mω2

0/2εσ 2 and the dimensionless strength of
the substrate potential by V0 = V/ε, while the dimensionless
magnetic moment of each particle can be redefined by
μ/εσ 3 ⇒ μ.

We introduce the dimensionless linear density η and the
periodicity number n, defined respectively as the number of
particles and the number of periods of the periodic potential per
unit length along the x direction. The presence of the periodic
potential leads to the commensurability factor [38]

p = N

n
= ηL, (5)

expressing the commensurability between the period L and
the average distance between the particles.

In order to characterize the system, we define three different
states of commensurability. (i) SI : when p ∈ Z, which is a
commensurate state; (ii) SII : when p = k/m : k ∈ Z, m ∈ N,
k �= m, it means that the system is not completely commensu-
rate, this state could be subdivided into S−

II for p < 1 and S+
II

for p > 1; (iii) SIII : when p ∈ {R − Q} and it implies that
the system is incommensurate. In this work we will limit our
analysis to systems belonging to the first two categories.

Different experimental works [19,37,40] have shown the
feasibility of confining magnetic particles in a periodic
potential by using lasers and optical tweezers, controlling the
periodicity and strength of the potential, and also to manipulate
the orientation of the magnetic field. These experimental
results showed stable configurations even at room temperature.

We investigate the ground-state configuration of the sys-
tem, using Monte Carlo (MC) simulations optimized with
the Newton method, which has been previously used to
analyze the structural transitions in Q1D systems with purely
repulsive interaction [4–6,41]. This method allows us to
calculate the eigenfrequencies and eigenmodes of the lattice vi-
brations for a given phase. Previous works [4,5] demonstrated
that the lowest eigenfrequency is a measure of the stability of a
configuration.

We will study the dependence of the ground-state config-
urations on the orientation of the magnetic field. For that,
we fix the linear density of the system to the value η = 0.8.
Previously [4,5,41] it was shown for B perpendicular to the x-y
plane that the dipoles are no longer arranged in a single-chain
configuration at the center of the parabolic channel for η = 0.8,
but split into a two-chain configuration. The effect of the
magnetic field strength will not be studied, since we are

considering a system with superparamagnetic dipole particles,
(i.e., the magnetic moment of all particles is aligned along
B), therefore, all numerical results of the present work are
calculated using υ = 1 and μ = 1.

III. COMMENSURATE SYSTEM ( p = 1)

For a typical commensurate state (p = 1), the anisotropy
of the system is strongly determined by the direction of B.
In order to understand this effect, Fig. 3 shows the phase
diagram of the system as a function of the planar (ϕ) and
azimuthal (θ ) angles of the direction of B, when the strength
of the periodic potential is V0 = 0.03. In this diagram the
solid and dashed curves represent first- and second-order phase
transitions, respectively.

In Fig. 4 we present the ground-state configurations as they
are numbered in the phase diagram (see Fig. 3). The small hor-
izontal red and vertical blue arrows indicate the displacement
of the particles when increasing ϕ and V0, respectively, while
the thick gray arrows between two configurations indicate that
the transition between them occurs continuously.

From Fig. 4 one can see that, until phase 5, all ground-state
configurations follow the following rule: one particle per one
cell (we call cells the wells formed by the total confinement
potential, which are marked in Fig. 4 by gray ellipses).
However, with the exception of phase 1, when increasing ϕ

most of the particles move away from the center of the cell
due to the anisotropic interparticle interaction, following the
directions shown by the horizontal red arrows.

A. Transition from isotropy to anisotropy interaction

From Eq. (3) we notice that for θ = 0◦ the interaction
between particles is purely repulsive and is given by Vdip(r) =
μ2/r3. As was found in Refs. [4,5,41], the ground state of the
system is given by a zigzag configuration, which is represented
by phase 2. Notice also from Fig. 3, that for θ = 0◦ the ground
state is a zigzag configuration irrespective of the value of ϕ,
evidencing the isotropy of the interparticle interaction.

The anisotropy of the interaction arises slowly by increasing
θ , resulting in a lowering of the lowest eigenfrequency of the
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FIG. 3. (Color online) Phase diagram of the ground-state con-
figuration, for a system of dipole particles in the regime SI with
p = 1 and V0 = 0.03. The solid (dashed) lines represent first-order
(second-order) transitions. Numbered phases are shown in Fig. 4.
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FIG. 4. (Color online) Different ground-state configurations found for the system with p = 1. The small horizontal red (vertical blue)
arrows show the movement of the particles in each phase caused by a small increment of ϕ (V0), while the dashed lines are a guide to the eye
to show more clearly the different chains and the green ellipses represent the cells formed by the confining and periodic potentials (which is
shown as a color contour plot in phase 1).

system for small ϕ and it slowly increases with ϕ as seen in
Fig. 5. Taking into account that the stability of a configuration
is directly related to the value of its lowest eigenfrequency,
we notice, that as an effect of the anisotropy of the pairwise
interaction, the stability of the two-chain configuration (phase
2 in Fig. 4) increases for intermediate values of ϕ (45◦ � ϕ �
70◦) by increasing θ , while the opposite behavior was found
for θ � 30◦.

From Fig. 3 one can see that for θ � 47◦ the anisotropy of
the pairwise interaction introduces new phases as ground state,
now depending on ϕ. The very rich variety of phases produces
in most of the cases first-order transitions between them, as is
evidenced in Fig. 6, through the discontinuous jumps in the
lowest eigenfrequency of the system.

The transition between the single- and the two-chain (phase
2) configuration (zigzag transition) appears in the region where
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FIG. 5. (Color online) Lowest eigenfrequency of the two-chain
configuration (phase 2) as a function of the planar angle (ϕ) for
different values of θ . The other parameters are p = 1 and V0 = 0.03.

the dipole-dipole interaction is dominantly attractive. For θ �
47◦, the single-chain configuration (phase 1) is the ground state
for small values of ϕ and this region increases with increasing
θ . The continuous transition between these two phases in the
y direction, is shown in Fig. 6(a), while Fig. 6(b) shows that
the lowest eigenfrequency goes to zero which is the evidence
of a second-order phase transition [4].
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FIG. 6. (Color online) (a), (c) The y position of the particles in
the ground state for a system with p = 1 and V0 = 0.03 as a function
of ϕ, for two different values of θ indicated in each figure. (b) Lowest
eigenfrequency of the system for θ = 62◦ (dashed red line) and θ =
70◦ (solid black line). Structural transitions occur when ω exhibits a
jump (first order) or when it becomes zero (second order).
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FIG. 7. (Color online) Mechanism of the reentrant process be-
tween 2 − 4 − 2 chains in the system. The horizontal dashed lines
accentuate the chainlike configuration of each phase.

B. Transition between 2 − 4 − 2 chains: Reentrant behavior

A second-order transition in the ground-state configuration
occurs between phases 2 and 4 (Fig. 4). Such a transition
reveals an interesting effect, which is put in evidence in
Fig. 6(a). The transition between 2 − 4 − 2 chains is found
by increasing ϕ within the interval (59◦ � θ � 63◦) in the
θ − ϕ phase diagram (Fig. 3). This is demonstrated in Fig. 6(a)
for θ = 62◦. A similar reentrant process has been found in
dipolar fluids [42] and recently also for Q1D systems of patchy
particles [43,44] and ferrogels [45].

This reentrant process occurs after the zigzag transition
takes place. In Fig. 6(b) we show that, by increasing ϕ, the
two-chain configuration (phase 2) becomes less stable, since
its lowest frequency approaches zero at the point where the
four-chain configuration (phase 3) arises from a continuous
lattice deformation of phase 2. After that, the stability of the
four-chain configuration increases until ϕ � 33◦, where the
lowest eigenfrequency starts to decrease, returning to the two-
chain configuration through a continuous deformation of the
lattice. During this process the lowest eigenfrequency of phase
3 decreases to zero, after that phase 2 appears again through a
second-order transition [Fig. 6(b)].

The mechanism of this reentrant process, which occurs
through a continuous deformation of the lattice, is outlined
in Fig. 7. Notice that this reentrant process is qualitatively
different from the one found earlier in Ref. [4], where these
processes were found to be of first order. This difference is due
to the presence of the periodic potential. Without the periodic
potential the particles not only undergo a zigzag transition, but
they also exhibit a discontinuous shift in the x direction, which
now is prevented by the periodic potential.

C. Solitonlike deformations of the single-chain phase

For larger values of θ (θ � 70◦) the anisotropy of the dipole-
dipole interaction determines most of the transitions found for
the ground-state configurations. It forces the particles along
B to align forming (short) rowlike arrangements, which may
even result in the localization of two particles in the same cell
of the periodic potential, as shown in Fig. 3 for V0 = 0.03
(e.g., see phases 2, 5, and 6). Some of these transitions result

in a sequential deformation of the single-chain configuration
as shown in the highlighted region in Fig. 6(c), where the
y position of the particles is plotted as a function of ϕ for
θ = 70◦. In this case the deformations appear between the
two- and four-chain configurations, and the region between the
phases is identified in the phase diagram (Fig. 3) as phase 4.

In Fig. 6(c) one can observe that by increasing ϕ the
ground-state phase transitions in the highlighted region are
a sequence of single-chain and two-chain configurations
followed by a group of disorderlike phases and after that four-
and three-chain configurations, where all transitions are of
first order with the exception of the zigzag transition, which
has been previously analyzed. The first-order transitions are
evidenced by the discontinuities in the lowest eigenfrequency
of the system [4,6] and the jumps in the y-coordinate position.

The disorderlike phases aforementioned are a consequence
of the high anisotropy of the interaction potential. In order to
understand this effect we consider the limiting case θ = 90◦,
where the dipole-dipole interaction is dominantly attractive for
ϕ < 30◦. In this limit the competition between the interparticle
interaction and the periodic confinement potential (V0 = 0.03)
produces a deformation of the single-chain configuration
immediately after the two-chain configuration appears. The
single-chain configuration is suddenly broken by a local
deformation of the lattice, after that, the period of the position
where such a deformation occurs decreases with ϕ until the
four-chain configuration (phase 3) is reached.

In the upper part of Fig. 8 we show the deformation process
presenting some configurations that are typical for phase 4∗.
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FIG. 8. (Color online) The number of particles between defects
(i.e., solitons) during the single-chain sequential deformation process,
is plotted as a function of ϕ for θ = 90◦ and V0 = 0.03. Configurations
of the disordered phases are shown in the upper figures, where
the positions of the defects are highlighted by red symbols for
the particles, and the gray ellipses indicate the cells formed by the
confinement in combination with the periodic potential.
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GALVÁN-MOYA, LUCENA, FERREIRA, AND PEETERS PHYSICAL REVIEW E 89, 032309 (2014)

In those configurations the location of the defects are marked
with red symbols for the particles. Similar defects have been
experimentally found in Q1D zigzag configurations of ion
crystals and were reported recently in Refs. [46–49], where
they are considered as solitonlike configurations. Defects
appear as frozen solitons whose density increases with ϕ.
From those configurations, the deformation process can be
understood as a perturbation of the one-dimensional lattice,
uniformly distributed along the axial direction, which allows
the system to evolve through first-order transitions into a
Wigner crystalline structure. In order to clarify this process,
we plot the number of particles between defects (or solitons)
as a function of ϕ for the largest anisotropy of the interaction
between particles (i.e., θ = 90◦) when V0 = 0.03, in Fig. 8.
This figure shows how the spatial frequency of the defects (or
the density of solitons) increases by increasing ϕ, reducing
the number of particles between defects until the ground-
state structure reaches the four-chain configuration (phase
3). This process has been found previously for an infinite
system of particles interacting through a purely repulsive
interaction, confined by a power-law potential yα when α < 2,
by increasing the linear density of the system [5].

D. Effect of the periodic substrate potential

In this section we pay attention to the effect of the
substrate potential on the ground-state configuration in the
commensurate case with p = 1 and θ = 90◦. The ground-
state configurations are summarized in the V0 − ϕ diagram,
which is presented in Fig. 9. Notice that for θ = 90◦ the
anisotropy of the dipole-dipole interaction is maximum (see
Fig. 2). For some intervals of ϕ (e.g., ϕ � 30◦, ϕ � 68◦) the
ground-state configuration is unaffected by V0. For ϕ � 30◦
the dipole-dipole interaction along the x axis is dominantly
attractive and the single-chain configuration is found as the
ground state (Fig. 4). On the other hand, for ϕ � 60◦ the
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FIG. 9. (Color online) Phase diagram of the ground-state config-
uration, for a system of dipole particles for the case SI with p = 1 and
θ = 90◦. Different phases are plotted in different colors as a function
of the angle ϕ and the strength of the substrate potential V0. The solid
(dashed) lines represent first-order (second-order) transitions between
the phases. Numbered phases are shown in Fig. 4. The dashed box
area is enlarged in the inset.

dipole-dipole interaction along the x axis becomes dominantly
repulsive and the two-chain configuration is now obtained as
the ground state, which is independent of V0. There is an
intermediate interval 30◦ � ϕ � 68◦ in which it is possible to
control the system configuration through the strength of the
substrate V0.

The process of the single-chain sequential deformation, as
previously discussed, is attenuated by increasing V0 reducing
this process to a very narrow region (see inset in Fig. 9), where
the deformation is reduced to the phases 4A − 4C. For V0 > 1
the ground-state configuration is less sensitive to a variation
of V0, as is visible in Fig. 9. In all cases the effect of V0 is to
rearrange the configuration by moving the particles towards
the center of the cell in the y direction, as was previously
studied in Ref. [35].

It is interesting to note that phases 7 and 8 do not appear
in Fig. 9, showing that these are characteristic configurations
produced by the anisotropy of the interaction, which can be
found in a small window of the angles θ and ϕ, for a weak
strength of the periodic potential V0, as shown in Fig. 3. The
configuration of these phases (see Fig. 4) is evidence that
the position of the particles are mainly determined by the
interaction potential.

IV. NONCOMPLETELY COMMENSURATE
SYSTEM ( p = 1/2)

We further analyze the influence of the commensurability
factor on the system by taking p = 1/2 bearing in mind
that p can be controlled by L or the linear density η [see
Eq. (5)]. The ground-state configurations are summarized in
the V0 − ϕ [θ − ϕ] phase diagram for θ = 90◦ [V0 = 0.03]
which is presented in Fig. 10(a) [10(b)]. The configurations of
the numbered phases in Fig. 10 are shown in Fig. 11, where
the gray ellipses indicate the cells formed by the confinement
and the periodic potential.

From Fig. 10(a), one can see that the effect of the periodic
potential increases with increasing V0, as was studied in
previous section, and it results in a rearrangement of the con-
figuration, moving the particles towards the center of the cell.
The single-chain sequential deformation process described by
phases 4∗ and 4A − 4C, which were analyzed in Sec. III C, is
still present for p = 1/2. However, due to the existence of an
empty cell between two nearest particles in these phases (see
Fig. 11), the movement in the x direction is highly restricted,
as a consequence the single-chain deformation process will
be reduced rapidly to the phases 4B and 4C by increasing
V0, as is shown by the inset in Fig. 10(a). In the same way,
the zigzag transition disappears around V0 = 0.5, allowing the
system to transit from phase 1 directly to phase 4 for higher
values of V0.

On the other hand, Fig. 10(b) shows that due to the
symmetry of the periodic potential wells, the effect of the
interaction anisotropy on the system for small values of
θ , is similar to the previously discussed case of p = 1
allowing to make the two-chain configuration (phase 2 in
Fig. 11) as the ground state. Additionally, by increasing θ

the stability of phase 2 decreases allowing the system to
reach other configurations as ground state. After that, several
phases are found, but only until phase 5 the ground-state
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FIG. 10. (Color online) Phase diagram of the ground-state con-
figuration for a system of dipole particles in the regime SII with
p = 1/2. Different phases are plotted as a function of (a) ϕ and
V0 for θ = 90◦, and (b) ϕ and θ for V0 = 0.03. The solid (dashed)
lines represent first-order (second-order) transitions between phases.
Numbered phases are shown in Fig. 11. The dashed box areas are
elongated in the insets.

configurations correspond to one particle per two cells,
showing the large influence of p on the system inside the
region ϕ < 50◦.

As a consequence of the new symmetry imposed by the
commensurability factor some new configurations, beyond
those found for the case p = 1, are found for the case
p = 1/2. As was discussed at the end of previous section,
these configurations (phases 6, 8, and 9) are generated as a
consequence of the anisotropy of the interaction potential for
intermediate values of θ .

Figures 12(a) and 12(b) show an interesting transition
in the region 60◦ � ϕ � 80◦ for θ = 48◦ and V0 = 0.03.
In this region the ground state changes between phases
2 − 6 − 8 − 9 − 10, where the first two correspond to different
two-chain configurations, and the last one is a typical Q1D
Wigner crystal with a three-chain configuration. Nevertheless,
transition between phase 8 (eight chains) and phase 9 (ten
chains) occurs with a small discontinuity in its lowest
eigenfrequency as shown in Fig. 12(b) around ϕ = 71◦. Such a
transition is even more clear in Fig. 12(a) where the y position
of the particles are plotted as a function of ϕ. In Fig. 11, the
configuration of phases 8 and 9 are shown where the dashed
lines indicate the position of the different chains. Additionally,
the red arrows show the displacement of the particles when
ϕ increases.

The two-chain configuration for p = 1/2 is found in three
different phases (2, 6, and 7 in Fig. 11), which shows that
the zigzag symmetry is broken with increasing ϕ. However,
the transition between these phases is discontinuous, even for
small values of V0, as shown in Fig. 12(b) for θ = 66◦ and V0 =
0.03, where the discontinuities in the lowest eigenfrequency
of the system indicate first order transitions between these
phases. These discontinuities are also evident in the y position
of the particles as a function of ϕ in Fig. 12(c).
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FIG. 11. (Color online) Different ground-state configurations found for the system with p = 1/2. The small horizontal and diagonal red
(vertical blue) arrows show the movement of the particles in each phase caused by a small increment of ϕ (V0), while the dashed lines accentuate
the different chains and the gray ellipses represent the cells formed by the confining and periodic potentials (which is shown as a color contour
plot in phase 1).
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FIG. 12. (Color online) (a), (c) The y position of the particles
in the ground state for a system with p = 1/2 and V0 = 0.03 as a
function of ϕ, for two different values of θ indicated in each figure.
(b) Lowest eigenfrequency of the system for θ = 48◦ (dashed red
line) and θ = 66◦ (solid black line).

V. CONCLUSIONS

We studied a Q1D system of magnetic particles confined
by a parabolic channel modulated by a periodic substrate
potential, where the magnetic moment of all particles is aligned
by an external tilted magnetic field. The linear density in the di-
rection of the modulated potential was fixed to η = 0.8 and the
ground-state configuration at zero temperature was analyzed
as a function of the magnetic field orientation, strength of the
periodic potential and commensurability factor. A plethora of
different particle configurations were found as ground state,
which are arranged in a different number of chains, and we
even found a remarkable solitonlike configuration where the
density of solitons could be varied with the tilt angle.

The anisotropy of the pairwise interaction between parti-
cles, determined by the magnetic tilt angles θ and ϕ is largely

responsible for the crystalline configuration of the system,
but its effect decreases by increasing V0. For small values
of V0, the angle θ controls the degree of anisotropy of the
system and with the in-plane angle ϕ it is possible to tune the
ground-state configuration. On the other hand, for the limiting
case of maximum pairwise anisotropy (θ = 90◦), the control
of the ground-state configuration depends weakly on ϕ for
large values of V0.

The commensurability factor not only changes the stability
region of the phases, as shown in the phase diagrams, but
it also produces the emergence of characteristic ground-state
configurations due to its symmetry. However, in order to get
these characteristic phases for each commensurability factor,
it is necessary to tune θ and ϕ to appropriate values.

From these results we can conclude that varying θ and
ϕ allows us to tune the ground state of the system, while
the effect of V0 is to rearrange the configuration by moving
the particles to the center of the cells in the y direction. The
commensurability factor, controlled by L or the density, acts as
a complementary tunable parameter, which gives the freedom
to build a desired configuration.

The large variety of chainlike phases found in this work
allows us to suggest that the effects of the parameters on the
system will be similar for larger values of the density, where the
number of phases may increase but the transition between them
will be qualitatively similar. This could be very useful as input
parameter for experiments with magnetic particles, where the
sinusoidal confinement can be realized by the application
of external potentials through spatially varying light fields,
which have been used to induce structural changes in colloidal
systems [13,33,50], while the configurations can be obtained
by video microscopy for different external magnetic fields as
was demonstrated in Ref. [16].
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