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Nonequilibrium noise in electrophoresis: The microion wind
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A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as
if it is at equilibrium in a confining potential [T. M. Squires, J. Fluid Mech. 443, 403 (2001)]. We show, however,
that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to
the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show
strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-
dependent “effective temperature” obtained from the fluctuation-dissipation ratio.
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I. INTRODUCTION

The dynamics of a colloidal particle driven through a
viscous fluid by an electric field is governed by the interplay
of long-ranged hydrodynamic and electrostatic interactions.
Randomness in the motion of the colloid arises not only from
thermal noise linked to viscous damping, but also through
the action of the electric field on concentration fluctuations of
suspended ionic species, a fact that seems not to have been
widely recognized. In this paper we explore the effect of this
additional nonequilibrium source of noise on single-particle
behavior. We show here that the statistics of spontaneous
fluctuations of the colloid about its mean position do not mimic
thermal equilibrium in the effective potential of [1]. Indeed,
measurements of the sphere position alone, without looking
at the ambient flow, contain signatures of nonequilibrium
behavior.

We summarize our main results before presenting details
of the work. We have studied two systems: Case I, a neutrally
buoyant colloid of radius a, drifting uniformly under an electric
field in an unbounded fluid; Case II, a colloid with density
higher than the fluid, stably levitated by the balance between
gravity sedimenting it towards a wall and an electric field
driving it away. In Case I the excess noise variance is 1–10
times the thermal noise variance; in Case II it is found to be at
least as large as the thermal noise, and multiplicative in nature
[see Fig. 1(c)]. In both cases the excess noise is anisotropic,
nearly an order of magnitude stronger along E than transverse
to it.

If Sω and χω are the correlation and response functions of
the colloid position at frequency ω, we find that ωSω/2Imχω ≡
Tω, which should reduce to the thermodynamic temperature
at thermal equilibrium, instead changes by a factor of 2
as ω changes from 0 to 5.5Dκ2 (D = typical diffusivity
of the counterions and impurity ions, hereafter collectively
called microions, κ−1 = Debye screening length), as seen
in Fig. 1(d). Thus, departures from equilibrium behavior
should be detectable even in single-particle experiments. We
comment later in the paper on possible practical difficulties in
observing these effects. In Case I, correlations in the excess
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noise lead, for times up to about (Dκ2)−1, to a superdiffusive
enhancement in the variance of the particle position about its
mean drift, as shown in Fig. 2. We also find the steady-state
solution P∞(R) to the Fokker-Planck (FP) equation for the
probability density of the colloid position R. We find that the
effective potential Ueff (R) ≡ −kBT ln P∞(R) is shallower, as a
result of the excess noise, than Squires’s [1] effective potential
for the same problem.

The paper is organized as follows. We start with a discussion
on the pseudopotential written by Squires et al. [1] to
describe the average behavior of a particle levitated under
the action of an electric field and gravity and motivate the
existence of the missing elements, which we include for a
more complete theory. We first consider the classic system
studied in the context of electrophoresis, a colloid moving in
an unbounded fluid medium in the presence of an externally
applied electric field [2], and write the electrohydrodynamic
equations describing its behavior. The equations are then
solved with approximations to obtain the Langevin equation
for the center of mass of the colloid.

II. LEVITATION BY ELECTROHYDRODYNAMIC FLOW

Squires [1] considered a particle stably suspended by the
interplay of external fields, boundaries and hydrodynamic flow
at low Reynolds number. Specifically, he dealt with the case of
a colloid prevented from settling under gravity onto a wall lying
in the x-y plane, by the imposition of a vertical electric field
Eoẑ. As the system is electrostatically neutral on a macroscopic
scale the total force due to the electric field is zero. In the
absence of gravity the colloid nonetheless acquires a nonzero
velocity; this is known as electrophoresis [2]. The net velocity
of the sphere is the combined result of its buoyant weight Mg

and the electric field,

V (z) = b⊥(z)Mg + M⊥(z)Eo, (2.1)

where z is the distance from wall. The Stokesian and elec-
trophoretic mobilities b⊥ and M⊥ are calculated by the method
of reflections, which introduces z-dependent corrections to the
Stokeslet and dipolar flow due to the size of the particle no slip
boundary condition on the wall. If the bulk electrophoretic
velocity is less than the bulk sedimentation velocity, so that
ψ = M0E0/b0Mg < 1, there is a unique height where the two
velocities exactly balance and a non-Brownian sphere would
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FIG. 1. (Color online) (a) Case I, colloid in an electric field in an
unbounded fluid medium. (b) Case II, colloid levitated above a wall
against gravity by an electric field. (c) Ratio of excess to thermal
noise strength versus particle position Z (in units of a, the particle
radius) for various values of κ . (d) Fractional excess “temperature”
(Tω − T )/T versus frequency ω, which is scaled by Dκ2.

come to rest. The probability distribution P (z,t) for the height
can then be obtained by augmenting (2.1) with the noise arising
from the stochastic forcing taking place in the fluid around the
colloid. If we assume, as in [1], that the only noise is that
corresponding to the Stokes mobility b⊥(z), then, from the
Einstein relation, P has a diffusivity D(z) = kBT b⊥(z). The
FP equation with these assumptions is then

∂tP = −∂z[V P − D(z)∂zP ], (2.2)

whose stationary solution is P = P0 exp(−φ/kBT ) with a
“pseudopotential”

φ = Mgz −
∫ z

0

M0E0

b⊥(z′)
dz′, (2.3)

combining the effects of gravity and the electric field. The
sense in which φ acts like a potential for the motion of the
colloid is clear: From (2.1) as Squires showed, a displacement
of the particle about its steady-state position relaxes in the
mean exactly as though it were returning to equilibrium with
inertialess dynamics with a mobility b⊥(z) in the effective
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FIG. 2. (Color online) Different dynamical regimes displayed
using the effective exponent c(t) ≡ d ln �R2/d ln t for the mean
square displacement �R2 for different values of the fractional excess
noise Rzz. Here t is scaled by 1/Dκ2.

potential φ. Squires suggests that if one viewed only the motion
of a single sphere in this configuration, one would not be able
to distinguish between this nonequilibrium pseudopotential
and a true thermodynamic potential. However, the physical
distinction is crucial: The only force on the sphere/double
layer system is Fw, directed toward the wall.

In view of the apparent analogy to a thermal equilibrium
system, some points must be noted here. First, this being a
one-dimensional problem with a stationary state, an effective
potential can always be found provided the integral in (2.3)
exists. Second, the effects of gravity on the particle are actually
balanced by the viscous drag of a sustained fluid flow, which
makes it clear that this is a nonequilibrium system. The third
point is the additional electric-field-dependent noise, whose
effects, absent in (2.2) and (2.3), we discuss below.

Accordingly, we construct a complete stochastic descrip-
tion of the motion of the colloid, which involves two kinds
of random forces. One, which is taken into account in the
treatment [1] leading to (2.3), is equilibrium thermal noise
with variance proportional to temperature T times Stokes
drag. The other enters as follows: The local charge density ρ

fluctuates because of thermal motions of the microions; in the
presence of an imposed electric field E, this means the electric
force density ρE in the Stokes equation fluctuates as well.
This results in a fluctuating contribution to the motion of the
colloid, with variance proportional to kBT E2, and correlations
controlled by microion motion. This nonequilibrium colored
noise, ignored in the construction [1] of the FP equation,
is the main subject of this paper. We note in passing that
the effects discussed have analogs in other nonequilibrium
problems: (i) The thermal diffusion of active pumps leads to
nonequilibrium noise in membranes [3]; (ii) fluctuations in
solute particle concentration lead to superdiffusion in phoretic
self-propulsion [4].

III. FLUCTUATING ELECTROHYDRODYNAMICS OF A
FIELD-DRIVEN COLLOID

We now present a detailed derivation of the results stated at
the end of Sec. I. We consider a single colloidal sphere of radius
a in a fluid medium in the two different geometries. The colloid
has a surface charge density of σ amounting to a total charge Q,
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surrounded by a counterion cloud of total charge −Q. The
counterions plus ionic impurities, for short the microions, are
assumed for simplicity to have identical mobility μ and unit
valency, i.e., charge e. An external electric field is imposed
on the system. We ignore advection of the microions by the
velocity field, an approximation that we justify post facto by
estimating the appropriate Péclet number. We work at low
screening, Debye length κ−1 ∼ a. The physics of counterion
condensation takes place on scales we do not resolve and
is lumped into a phenomenological effective charge Q. The
length scale κ−1 is determined by microion concentration
alone and can be as large as a micron in highly deionized
systems.

In order to describe the system completely we have to
write equations for the microion density, the velocity field,
and the macroion. The position R(t) of the colloid evolves
purely because of contact with the fluid:

∂R(t)

∂t
= v[R(t)], (3.1)

where v is the fluctuating hydrodynamic fluid velocity field.
Both systematic and random motions are encoded in v through
the fluctuating Stokes equation,

η∇2v − ∇p + ρE +
√

2kBT ηF = 0, (3.2)

which contains as a consequence of the fluctuation-dissipation
theorem, a thermal noise F corresponding to viscous dissipa-
tion,

〈Fi(r,t)Fj (0,0)〉 = (∇2δij − ∇i∇j )δ(r)δ(t), (3.3)

a pressure p to impose incompressibility ∇ · v = 0, and a
fluctuating electrostatic force density ρE, where the total
electric field E obeys the Poisson equation

∇ · E = ρ + ρQ

ε
, (3.4)

where

ρQ ≡ Qδ(r − R) (3.5)

and

ρ = e(n+ − n−) (3.6)

correspond to the single macroion and the microions, respec-
tively.

We assume the masses of the added ions to be negligible
so that their fluctuations are completely described by the
continuity equation with a thermal noise whose strength is
related to the ionic diffusivity via the fluctuation-dissipation
theorem at temperature T ,

∂n+

∂t
= D∇2n+ − μ∇ · (n+E) + ∇ · (

√
2n+Df+), (3.7a)

∂n−

∂t
= D∇2n− + μ∇ · (n−E) + ∇ · (

√
2n−Df−), (3.7b)

where f+ and f− are independent Gaussian noise sources with

〈f+(r,t)f+(0,0)〉 = 〈f−(r,t)f−(0,0)〉 = Iδ(r)δ(t), (3.8)

with I being the unit tensor, μ = D/ekBT the Ohmic mobility,
and E the total electric field.

Equations (3.7) and (3.4) can be solved for ρ, assuming the
colloid to be a point charge, subject to the following boundary
conditions as r → ∞:

(i) E → E0, where E0 is the electric field in absence of
the colloid;

(ii) n±
0 → n0, where n0 is the mean concentration of either

species of ions.
This determines the force density ρE arising from Maxwell
stresses in (3.2) from which the velocity field can be obtained
by Green’s functions for the geometry involved, with the effect
due to nonzero size of the particle taken care of by introducing
an ultraviolet cutoff 2π/a in Fourier space.

In order to make qualitative remarks about the excess
nonequilibrium noise, it suffices to work up to first order
in deviations of the microion density from n0. We scale ρ

by the mean charge density 2n0e, |E| by kBT /ea, |v| by
ε(kBT )2/ηae2, |r| by a, substitute n± = n0 + n±

d in to (3.7),
and keep terms up to leading order in fluctuations to obtain the
following set of closed, linearized equations:

1

D

∂n+
d

∂t
= ∇2n+

d − E0 · ∇n+
d

+1

2
κ2[n+

d − n−
d + Qδ(r − R)] + B∇ · f+,

(3.9a)

1

D

∂n−
d

∂t
= ∇2n−

d + E0 · ∇n+
d

−1

2
κ2[n+

d − n−
d + Qδ(r − R)] + B∇ · f−,

(3.9b)

where κ−1 = 2an0e
2/εkBT is the Debye screening length

scaled by the particle size and B = (2kBT ε/ea3ημn0)
1
2 is the

dimensionless noise strength.
We define the Fourier transform

n±
dqω =

∫
n±

d (r,t)e−(iq·r−ωt)d3rdt.

The Maxwell force density ρE in the Stokes equation (3.2)
reduces to ρE0 to lowest order in n±

d , where ρ is the density in
the absence of an externally applied electric field. Solving (3.9)
we obtain an expression for ρ

ρqω = ρ0
qω + δρqω, (3.10)

which has a steady part which is spherically symmetric about
the colloid position with a nonzero time average,

ρ0
qω = − κ2Qeiq.R(t)|ω

q2 − iω/D + κ2
, (3.11)

and a fluctuating part,

δρqω = iBq · (f+
qω − f−

qω)

q2 − iω/D + κ2
, (3.12)

with zero mean. The Debye screening term κ2 in the de-
nominator implies screening of the Coulomb interaction due
to the presence of microions. Note that limq→0 ρq = −Q,
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which means that charge neutrality is maintained. Note that
the Maxwell force density ρE0 now has a piece ρ0E0ẑ that
is an additive excess noise proportional to the external field
strength in the z direction. We now construct the Langevin
equations for the two cases. We start with Case I, which is a
single colloid moving in an unbounded fluid medium.

IV. COLLOID IN UNBOUNDED FLUID

The velocity field produced at position r by a point force
singularity, called Stokeslet of strength f and placed at r0 in
an unbounded fluid is given by the Oseen tensor:

S(r,r0) · f = 1

8πηR

(
I + RR

R2

)
· f; R = r − r0. (4.1)

Using (4.1), the total velocity field is

v(r) =
∫ 2π

a

q=0

∫
�

Sq · [(ρqω + eiq·R)E0 + AFqω]e−iq·r, (4.2)

where A is the nondimensional thermal noise strength in the
Stokes equation and

Sq = 1

q2

(
I − qq

q2

)
. (4.3)

Evaluating the velocity field at the particle position R we get
the effective Langevin equation

dR
dt

= v0ẑ + � + �, (4.4)

where

v0 = QE0κ
−1/3ηa2 (4.5)

is the electrophoretic speed and

�(t) = BE0κ
2

(2π )4

∫
q,ω

Sq · ẑδρqωei(q·r−ωt),

(4.6)

�(t) = A

(2π )4

∫
q,ω

Sq · Fqωei(q·r−ωt).

A. Excess noise strength

We assess the noise strengths by the zero frequency weight
of their respective correlations and the relative magnitudes of
excess and thermal noise by the ratio

Rij ≡
∫ ∞

0 dt〈�i(0)�j (t)〉∫ ∞
0 dt〈�i(0)�j (t)〉 . (4.7)

We find a strong anisotropy in the excess noise and hence
in R; Rzz/Rxx � 8. Further, to estimate Rij , we take κ2 =
2a2e2n0/εkBT , and the ionic mobility μ � e/6πηamic, where
amic is the ionic radius. We then find that

Rzz ∝ εE2
0κ

−1aamic

kBT
, (4.8)

which is the ratio of electrostatic to thermal energies in a
volume constructed from three different lengths. For D =
10−9 m2 s−1, κ = 0.1 to 1 and a favorable electric field
E0 ∼ 105 V m−1, Rzz ranges from 10 to 0.1 for a varying
from 10 to 0.1 μm.

B. Violation of the fluctuation dissipation relation

The excess noise cannot be thought of in terms of an
effective temperature. This is clearly seen through the strong
frequency dependence of the ratio Tω ≡ ωSω/2Imχω, where
Sω and χω are the correlation and response functions of the
vertical component Zt of the colloid position as a function
of frequency ω. We calculate χω by adding a body force
density [−KR(t) + δh(t)]δ[r − R(t)] to the Stokes equation.
The term in K holds the coordinate R at a stationary mean
value and δh(t) is a perturbation which leads to a shift δR(t)
in the particle position. We calculate χω ≡ δ〈Zω〉/δhzω and
Sω ≡ ∫

dteiωt 〈δZ(0)δZt 〉 and find

Tω − T

T
=

√
2Rzzκ

3

�
√

� + κ2
, (4.9)

where � ≡
√

(κ)4 + ω2/(Dκ2)2, leading to the results in
Fig. 1(b). The ω-dependent fluctuation-dissipation ratio can
be reexpressed in terms of a frequency-dependent diffusivity

D(ω) ≡ kBμTω

e
= kBμT

e

(
1 +

√
2Rzzκ

3

�
√

� + κ2

)
, (4.10)

which accounts for the anomalous time-scale dependence of
the mean square displacement shown in Fig. 2.

Dynamical regimes. A signature of the excess noise should
be seen experimentally in the crossovers displayed by the mean
square displacement �R2(t) of the colloid about its mean
drift, best seen through the coefficient c(t) = d ln �R2/d ln t .
For Rzz ranging from 1 to 9, c(t) > 1 at t = 0, increases
to a peak around t = 1/Dκ2 and then gradually decreases
to 1 (see Fig. 2), remaining superdiffusive for ≈5/Dκ2. For
particle radii a = 0.1, 0.5, and 1 μm, the rms displacements
at t = 5/Dκ2 � 5 ms for κ−1 = 1 μm are 3a, 0.4a, and 0.2a,
allowing a reasonable range over which to fit the superdiffusive
law. Ordinary Brownian diffusion would give 2a, 0.1a, and
0.05a.

V. LEVITATION NEAR A WALL

A more experimentally accessible system is a colloid whose
gravitational sedimentation towards a wall is countered by an
electric field pushing it away. We assume that that the wall lies
in the x-y plane and the electrostatic boundary conditions are
the potential φ(z = 0) = φ0 and φ(z → ∞) = 0. This implies
that the mean microion density ρav and electric field E0 now
vary with z. The electric field in absence of the colloid is now
obtained by solving the Poisson-Boltzmann equation:

∇2φ = κ2(n+ − n−), (5.1a)

n±(r) = e∓eφ(r)/kBT . (5.1b)

Linearizing and solving (5.1) with the boundary conditions
yields

E0 = ẑE0e
−κz, (5.2)

where E0 = κφ0; the screened electric field falls off exponen-
tially with the Debye screening length.

Since the fluctuating Maxwell stresses originate from the
force density ρE, the excess noise is now multiplicative, with
a z dependence. For small colloid charge Q and to lowest order
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in charge density fluctuations, the force density in the Stokes
equation is approximately ρEs�(z), where � is the Heaviside
function and ρ is the microion distribution obtained in (3.10).
The screened electric field receives corrections due to ρ and
image charges required to satisfy boundary conditions, but
for large screening and small Q this effect is seen to be very
small. The buoyant weight of the particle adds a force density
ẑWδ[r − R(t)] to (3.2).

We use the Green’s functions for the Stokes equation
with a boundary condition of no slip and no penetration
on the wall in the x-y plane as obtained by Blake [5] to
solve (3.2) for the velocity field v, including contributions
from equilibrium thermal fluctuations and fluctuating Maxwell
stresses proportional to EE. Evaluating v at the colloid position
R(t) gives the Langevin equation for the colloid in the
form (3.1), with an R-dependent velocity v0(R), which has
a zero corresponding to the minimum of Squires’s effective
potential.

The expression for the velocity is thus

v(r) =
∫

r0

�(z0)G(rf − r0) · [ρ(r0)e−κz0 ẑ

+Wδ(r0 − R)ẑ + F], (5.3)

where G(r − r0) · n̂ is the velocity field at r due to a Stokeslet
placed at r0 oriented along n̂. The Green’s function,

G(R) = S(R) − S(RI ) + 2z2
0SD(RI ) − 2z0SSD(RI ), (5.4)

is composed of fundamental singularities of the Stokes equa-
tion, namely the Stokeslet, Stokes dipole, and source dipole
(see Fig. 3 and Appendix); rI = r0 − 2z0k̂. The Langevin
equation for the colloid position is

dR
dt

= V(R,t) + λ(R,t) + γ (R,t), (5.5)

where V is the steady velocity that has contributions from the
weight of the colloid and the electrostatic interactions with the
microions; λ and γ are modified excess and thermal noises.

FIG. 3. (Color online) Schematic showing the Stokeslet and the
image singularities.

With the definition

H(q,ε,z) =
∫

k

ie−ikzẑ ·
[(

1

k − qz + iκ
+ 1

k + qz − iκ

)
Sq′

− 16π

(k − qz + iκ)3

q′q′

q2
+ 2

(k − qz + iκ)2
kSq′

]
,

(5.6)

where q′ = q⊥ + kẑ, the mean velocity and noises are given
by

Vq⊥ω(z) = lim
ε→0

[E0(ρqω + Qeiq·R)

× H(q,κ,z) + Weiq·RH(q,ε,z)] · ẑ, (5.7)

λq⊥ω(z) = δρqωH(q,κ,z) · ẑ,
(5.8)

γ q⊥ω(z) = lim
ε→0

H(q,ε,z) · Fqω.

We obtain the steady-state velocities by contour integration
over qz, k and then numerically integrate over p. Figure 4
shows a contour plot of the magnitude of steady-state velocity
|V| in the x-z plane. The velocity goes to zero at the plane,
near the colloid position at R = (5a,0,2a), and at points far
away from it. The streamlines in Fig. 4 show the formation of
vortices as a combined effect of the wall and incompressibility.
Note that the velocity field away from the colloid suggests that
it is settling under the effect of its weight and comes to rest
only due to a cancellation of velocity at its position.

Noise strengths

The nonequilibrium noise is now multiplicative, colored,
and correlated as

〈λi(t,R)λj (t ′,R)〉

= δij

∫
q

q2

q2 + κ2
e−(κ2+q2)(t−t ′)Hiz(q,Z)Hjz(−q,Z)

≡
∫

q

〈
f

q

i (t)f q

j (t ′)
〉
Hi(q,Z)Hj (−q,Z), (5.9)

where Hi = q(q2 + κ2)−1Hiz and fq is a colored Ornstein-
Uhlenbeck (OU) [6] noise source correlated as〈

f
q

i (t)f q

j (t ′)
〉 = δij (q2 + κ2)e−(q2+κ2)(t−t ′). (5.10)

λ can now be thought of as a continuous, weighted, linear
superposition of independent, multiplicative OU [6] noise
sources. The variance of the thermal noise which now varies
with Z is

〈γi(t,R)γj (t ′,R)〉 = δ(t − t ′)A2
∑
lm

∫
q
Hil(q,0,Z)Hjm

× (−q,0,Z)q2

(
δlm − qlqm

q2

)
. (5.11)

By analogy to (7), we estimate the ratio of excess noise strength
to the thermal noise, now as a function of Z,

Rij = Rλ
ij

Rγ

ij

=
∫ ∞

0 dt〈λi(0,Z)λj (t,Z)〉∫ ∞
0 dt〈γi(0,Z)γj (t,Z)〉 . (5.12)
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FIG. 4. (Color online) (a) Contour plot of the magnitude of the
velocity field for a colloid held stationary at (50,0,20), where
distances have been plotted in units of 0.1a. (b) Streamlines showing
the direction of fluid flow.

The boundary conditions in the velocity field imply Rγ (0) =
0 = Rλ(0). Rγ rises to its saturation value within one to two
particle radii, whereas Rλ peaks at z = κ−1 and falls off due
to exponential fall in the field strength with an increase in z so
that the tail penetrates more into the bulk for smaller κ . The
peaks get sharper and the peak value larger with increase in
κ . Since Rλ and Rγ are anisotropic to varying degrees, Rij

is anisotropic and Rzz/Rxx is z dependent close to the wall,
saturating to a constant value close to 6, a few particle radii
away from Z = 0 (see Fig. 5).

Rij scales as εφ2
0κamic/kBT ; generally in experiments,

V0 ∼ a few volts, a = 0.1 to 1 μm and κ ∼ 1 so that the ratio
is at least O(1) within a few particle radii of Z. The thermal
noise strength,

Rγ
zz = e−4πZ

Z
[−3 + e4πZ(3 − 4πZ) − 8πZ(1 + πZ)],

(5.13)

0 1 2 3 4 5 6
0

2

4
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8

10

12

Z

R
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�R

xx

FIG. 5. (Color online) Ratio of the magnitude of excess noise in
the z direction and parallel to it for κa = 3 (dashed line) and κa = 1
(solid line).

is such that it satisfies the fluctuation-dissipation theorem with
the Stokeslet that is the velocity field due to a body force.

VI. FOKKER PLANCK EQUATION

As a result of the excess noise proportional to E, the
steady-state probability distribution P∞(R) is not given by a
Boltzmann weight determined by Squires’s effective potential.
To obtain P∞ we must solve the equation for R, treating care-
fully the multiplicative and colored noises in (6). The thermal
noise is δ correlated so that it has to be correctly interpreted
in the Ito or Stratanovich sense while doing integrals involved
in deriving the corresponding FP equation. We construct the
FP equation corresponding to (6) by generalizing the results
of [7] for a single multiplicative OU noise. Since the weights
and relaxation times of the constituent noises in our problem
are finite as a result of Debye screening, all integrals arising in
this procedure are convergent. The resulting FP equation takes
the form

∂P

∂t
= −∂(V P )

∂z
+ ∂

∂z

√
Rγ

zz

∂

∂z

(√
Rγ

zzP
)

+
∫

dτ
∂

∂z

[
Hτ

∂

∂z
(Hτ + τHτ ∂zV − τV ∂zHτ )P

]
,

(6.1)

where we have schematically replaced integrals over wave
number by integrals over relaxation time τ ; τ goes as [D(k2 +
κ2)]−1. P∞(R) is obtained by solving (6.1) for the zero
flux condition and Ueff = −kBT ln P∞(R). The probability
distribution P 0

∞ analogous to that of [1], containing only the
bare thermal noise, is obtained by setting H = 0 in (6.1); the
corresponding effective potential U 0

eff ≡ −kBT ln P 0
∞. Note

that the excess noise modifies the effective potential in two
ways: (1) the drift is modified, thus shifting its zero and hence
the position of rest of the colloid; (2) the overall magnitude
of the temperature increases making the potential shallower
making excursions about the mean position more probable.

The two potentials show large differences near the
wall where the excess noise is significant. � ≡ (U 0

eff)
′′ |Rav

/(Ueff)′′ |Rav
gives the relative confining strengths of the

two potentials: � = 3.5 and 2 for colloids with radius a =
0.1 μm, κ = 4, with core densities 8 × 103 kg m−3 (iron)
and 3 × 103 kg m−3 (silica). The excess noise causes the

032307-6



NONEQUILIBRIUM NOISE IN ELECTROPHORESIS: THE . . . PHYSICAL REVIEW E 89, 032307 (2014)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

Z

U
ef

f,U
ef

f0
Ueff

Ueff
0

FIG. 6. (Color online) The effective potential as computed from
the FP equation including the excess noise (solid line), compared to
that in [1] (dotted line), for κ = 4, a = 1 μm, φ0 = 4 V for an iron
core.

colloid to explore a wider range of z. This nonequilibrium
effect is strongest if the colloid is heavy enough, so that its
mean position is a few particle radii from the wall. Figure 6
shows the comparison between Ueff and U 0

eff for a colloid with
mass density corresponding to iron.

Last, let us check that the neglect of the advection of
microions by the hydrodynamic velocity field v was justified.
The appropriate Péclet number Pe = v/Dκ2a, the ratio of the
rate at which the colloid shears the medium to the rate at
which microion densities relax. For v, we use the rms speed
implied by the Langevin equation with excess noise, for a
surface charge density �10−4–10−3 C m−2 appropriate for
silica particles [8]. We find Pe = 0.35, 0.12 for κ = 3, 5,
respectively. Thus, the neglect of advection is an acceptable
approximation.

VII. SUMMARY

In summary, we have formulated the statistical dynamics of
a single colloidal particle in a static electric field. We show that
departures from equilibrium behavior happens at the level of a
single particle. Thermal agitation of counterion and impurity
charge densities, in the presence of the imposed field, leads to
noisy Maxwell stresses and hence to an additional noise term,
proportional to the field, in the effective Langevin equation
for the colloidal particle. This noise is nonequilibrium in
nature and highly anisotropic and leads to strong, frequency-
dependent departures from the fluctuation-dissipation theorem
and strongly superdiffusive motion at intermediate times.
The effective potential as inferred [1] by combining Stokes
drag with the mean velocity when the particle is displaced
from its average position differs substantially from that

obtained by taking the logarithm of the steady-state probability
distribution. Our results are quantitatively testable, e.g., in
experiments such as those of [9]. Last, the nonequilibrium
noise highlighted in this paper needs to be taken into account
in any theory of the collective nonequilibrium behavior of
colloids in electric fields, including the complex aggregation
phenomena discussed in [10]. Even though an electric field
of strength 105 V m−1 has been imposed in water without
causing breakdown [11] and fields of order 104 V m−1

are applied frequently in experiments that study colloidal
aggregations under electric fields, an actual measurement of
this effect is difficult because electrolysis of water and bubble
formation could wash away effects due to the proposed extra
noise [12].

APPENDIX

Assuming the wall to lie on the x-y plane, we require the
Green’s function to satisfy the condition

G(z = 0,x,y; r0) = 0, (A1)

where r0 is the position of the Stokeslet. Blake showed [5,13]
that G can be constructed out of a Stokeslet and a few image
singularities including a Stokeslet, a source dipole, and a
Stokes doublet placed at rI = r0 − 2z0k̂.

He suggested the decomposition

G(r,r0) = S(R) − S(RI ) + 2z2
0SD(RI ) − 2z0SSD(RI ),

(A2)

where R = r − r0 and RI = r − r0I and

Stokeslet Sij (r) = 1

| r |
(

δij + rirj

| r |2
)

,

Stokes dipole SD
ij (r) = ± ∂

∂rj

(
ri

| r |3
)

, (A3)

source dipole SSD
ij (r) = ±∂Si1

∂rj

.

Define

P (q,ω) = [f (r,t)�(z)e−κz]q,

=
∫ ∞

k=0
ρq⊥kω

1

qz − k + iκ
, (A4)

where � is the Heaviside step function, q⊥ lies in the x-y
plane and f is an arbitrary distribution of Stokeslets. Thus, the
velocity field for a distribution of Stokeslets all oriented along
z is

v(r,t) =
∫

r0

f (r0,t)�(z0)e−κz0 ẑ · [
S(r − r0) − S(r − rI ) + 2z2

0SD(r − rI ) − 2z0SSD(r − rI )
]

=
∫

q,ω

fq⊥kωẑ ·
[
P (q,ω)Sq − P (q−,ω)Sq − 2

∂2

∂q2
z

P (q−,ω)SD
q + 2i

∂P (q−,ω)

∂qz

SSD
q

]
e−iq·reiωt ,

=
∫

q
fq⊥kωẑ ·

[
Sq

(
1

qz − k + iκ
+ 1

qz + k − iκ

)
− 16π

(qz + k − iκ)3

qq
q2

+ 2

(qz + k − iκ)2
qzSq

]
e−i(q·r−ωt). (A5)
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FIG. 7. (Color online) A contour plot for the magnitude and
streamlines of a Stokeslet at position (5a,0,2a).
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FIG. 8. (Color online) A contour plot for the magnitude and
streamlines of a the charge distribution due to colloid at
position (5a,0,2a).

Exchanging the variables qz and k and defining H as in (5.6) we get

v(r,t) =
∫

q
e−i(q⊥·r⊥−ωt)fqωH(q,κ,Z) · ẑ. (A6)

We can now evaluate the correlation function

〈
β2

i (r,t)β2
j (r,t ′)

〉 =
∫

q,q′,ω,ω′
〈ρqωρq′ω′ 〉Hiz(q,κ,Z)Hjz(q′,κ,Z)e−i(q⊥·r⊥−ωt)e−i(q′

⊥·r⊥−ω′t ′)

=
∫

q,q′,ω,ω′

q2δ(q + q′)δ(ω + ω′)
[q2 + κ2 − iω][q ′2 + κ2 − iω′]

Hiz(q,κ,Z)Hjz(q′,κ,Z)e−i(q⊥·r⊥−ωt)e−i(q′
⊥·r⊥−ω′t ′)

=
∫

q,ω

eiω(t−t ′)q2

[q2 + κ2]2 + ω2
Hiz(q,κ,Z)Hjz(−q,κ,Z)

=
∫

q

e−(q2+κ2)(t−t ′)q2

q2 + κ2
Hiz(q,κ,Z)Hjz(−q,κ,Z). (A7)
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The velocity field in Fig. 4 is obtained by superposition of fields of a Stokeslet constituted by colloid weight and an
approximately dipolar due to the charge neutral system composed of the macroion and the microions modified as a result of no
slip on the wall. Figures 7 and 8 represent the velocities Vs and Vd :

Vs(r,t) = lim
ε→0

∫
qω

e−i(q⊥·r⊥−ωt)Weiq·RH(q,ε,z) · ẑ,

(A8)

Vd (r,t) =
∫

qω

e−i(q⊥·r⊥−ωt)E0(ρqω + Qeiq·R)H(q,κ,z) · ẑ.
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