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Correction of the power law of ac conductivity in ion-conducting materials due to the electrode
polarization effect
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Based on the supposition related to fractal nature of transport processes in ion-conducting materials, an
expression for the low-frequency ac conductivity dependence was derived. This expression for the ac conductivity
generalizes the power-law dependence and gives a possibility to take into account the influence of the electrode
polarization effect. The ac conductivity expression obtained is in excellent agreement with experimental data for
a wide frequency range.
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I. INTRODUCTION

Ionic conduction in glasses and other disordered solids
is a subject of growing interest due to applications in con-
nection with solid-oxide fuel cells, electrochemical sensors,
thin-film solid electrolytes in batteries, and supercapaci-
tors, electrochromic windows, oxygen-separation membranes,
functional polymers, etc. At the same time, ion conduction in
disordered solids remains an area of basic research because a
number of fundamental questions are still not settled [1–4].

Usual conductivity spectra consist essentially of two re-
gions, apparently related to two different phenomena. At high
frequencies (and low temperatures), the conductive properties
are governed by the transport of the charge carriers in the bulk.
The underlying mechanism of this contribution represents the
(translational) diffusion of ions and is theoretically well un-
derstood [4–10]. This part of the spectra can be used to extract
important molecular parameters characterizing the hopping
mechanism of the charge carriers. At lower frequencies (and
higher temperatures), pronounced changes in the complex
conductivity function are detected due to presence of solid
electrodes, acting on the charge carriers as (nearly) blocking
interfaces [11–14]. This part, exhibiting a peculiar dependence
on the geometry of the measurement cell (e.g., the cell length)
and on the material used for the electrodes, was considered for
a long time to be a parasitic effect (“electrode polarization”)
and usually cut off from the bulk contribution of the spectra.
An alternative approach to describing electrode polarization
has been presented by Macdonald [15].

Here, we remark on some important peculiarities of ac
conductivity and dielectric permittivity experimental spectra
of ion-conducting materials. What one typically observes
for ion-conducting materials is a frequency-dependent con-
ductivity and dielectric constant like that shown in Fig. 1.
Here, we see a considerable dependence of both quantities
on the frequency of the applied electric field. Starting at low
frequencies, we find a large increase, which is replaced by the
slowdown (accompanied by the decreasing of a slope), with
decreasing frequency of the dielectric constant which, in the
limit of a dc field, can attain a plateau value. This phenomenon
results from the presence of metallic or so-called blocking
electrodes, that do not permit transfer of mobile ions into the
external measuring circuit. Since the ions are blocked by the
metal electrode, there is accumulation or depletion of ions near
the electrodes, leading to the formation of space-charge layers.

The voltage drops rapidly in these layers, which implies a huge
electrical polarization of the material and a near absence of
electric field in the bulk sample at low frequencies. The buildup
of electrical polarization and the drop of the electric field in
the bulk are reflected in an increase in the ac permittivity and
a decrease in the ac conductivity with decreasing frequency.
For completely blocking electrodes σ (0) = 0, that is obvious.
Although this “electrode polarization” [16] is a direct result
of the ion motion, it is a nonequilibrium, extrinsic feature that
depends both upon the nature of the electrode interface and the
thickness of the specimen [17]. The most prominent features
of electrode polarization are emphasized by arrows in Fig. 1.
These effects are coming into play at a certain frequency ωon

(“onset of the electrode polarization”), where a steep increase
in ε′ (corresponding to a minimum in σ ′′) is detected first.
At lower frequencies (ω � ωmax, “full development of the
electrode polarization”) a slope in ε′ starts to change (with
decreasing from high to low frequencies), corresponding to a
peak in σ ′′. At the same frequency ω � ωmax the real part of
the conductivity σ ′ begins to decrease.

As we move to higher frequencies, we observe a short
plateau σdc in the conductivity. In terms of the mean-squared
displacement, this so-called dc conductivity represents the
long-range diffusion of ions as they hop from site to site
through the matrix. In the dielectric constant, we observe a
shoulder that suggests an incipient polarization occurring in
this same frequency range.

As we move still further up in frequency, we see in Fig. 1
a dramatic increase in σ (ω) and a leveling off in ε(ω). The
leveling off of the dielectric constant occurs because, in
addition to the mean-squared displacement of mobile ions, our
matrix contains atoms that have become elastically polarized
under the influence of the applied field. These atomic and
electronic polarizations occur at frequencies well above 1
GHz [18] leaving behind a plateau ε∞, atop which the
contribution due to nonelastic ion motion rests.

The conductivity increases with increasing frequency in a
roughly power-law manner, and in the high-frequency limit the
data appear to approach a linear (or superlinear [19]) depen-
dence on frequency. The linear frequency dependence would
imply a regime where the dielectric loss is frequency indepen-
dent, a regime often referred to as the “nearly constant loss”
(NCL) regime. The NCL is a feature that is currently much de-
bated ([20–23]) and has created much recent research interest.
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FIG. 1. Schematic representation of how the ac conductivity and
dielectric constant typically depend upon frequency for an ionic
material. Several of the limiting features are labeled.

Putting all this together, we can approximate the frequency
dependence of the ac conductivity, aside from the portion
affected by electrode polarization [24], with the following
empirical function:

σ ′(ω) ≈ σ0[1 + (ω/ω0)n] + Aω. (1)

This sort of power-law description of the ac conductivity has
been advocated by several authors [25–30]. Values for the
exponent n range from 0.5 to 0.7 with a concentration of
results near n = 2/3 [31,32]. The second term (linear term)
in the expression represents the NCL. It should be noted
that the separation in Eq. (1) of a fractal power law and a
linear term is entirely empirical as experimental data generally
exhibit a continuous increase in the logarithmic slope of the ac
conductivity with increasing frequency. Nevertheless, some
studies [33,20] suggest the NCL regime involves distinctly
different kinds of ion movement.

The main purpose of this paper is to suggest an expression
for the low-frequency part of the ac conductivity. It generalizes
the power-law behavior, when the electrode polarization
phenomenon takes place, and confirms the validity of an
expression on available experimental data.

II. SELF-CONSISTENT DYNAMIC-RELAXATION MODEL

Let a homogeneous, isotropic dielectric be exposed to the
external polarizing electric field E(t,r), which we consider as a
function of time t and the space coordinate r. By homogeneous
and isotropic, we refer to spatial scales larger than the typical
scales of the molecular and/or structural disorder. Assuming
a linear and spatially local response of the material, the
polarization field at time t at point r can be written as

P(t,r) = P(0,r) +
∫ t

0
χ (t − t ′)E(t ′,r)dt ′, (2)

where P(0,r) is the initial polarization, χ (t) is a response or
memory function, and E(t,r) is the electric field. We shall
assume that there are no external electric fields acting in the
system after time t = 0, so that E(t,r) is essentially the inherent,

self-consistent electric field in the bulk of the dielectric due to
the electric charges present.

Let ρ(t,r) be the density of the electric charges at time t at
point r. The function ρ(t,r) is defined as the mean density of
the charges in a small volume around r such that the highly
fluctuating molecular densities are averaged out. One assumes
that there is a length-scale separation between the microscopic
molecular scales and the length scales on which the mean
density varies. On length scales comparable to or shorter
than the molecular scales, the dynamics of relaxation must
be described statistically.

Assume for simplicity that there are no external charges,
i.e., the total charge of the medium is zero. The polarization
charges are then the only source for the polarization and
electric fields, i.e.,

∇ · E(t,r) = 4πρ(t,r) (3)

and

∇ · P(t,r) = −ρ(t,r). (4)

Hence,

∇ · D(t,r) = 0, (5)

where D(t,r) = E(t,r) + 4πP(t,r) defines the electric dis-
placement in the medium. The density of the polarization
and/or relaxation currents is defined as the time derivative of
the polarization field, i.e., j(t,r) = ∂P(t,r)/∂t . From Eq. (2),
we have

j(t,r) =
∫ t

0
σ (t − t ′)E(t ′,r)dt ′, (6)

where σ (t) = ∂χ (t)/∂t is a new memory function. A Fourier
transformed σ (t) defines the frequency-dependent complex
conductivity of the medium, which is related to the suscepti-
bility function via σ (ω) = iωχ (ω).

The conservation of the electric charge is expressed by the
continuity equation ∂ρ(t,r)/∂t + ∇ · j(t,r) = 0. Substituting
j(t,r) from Eq. (6), then taking ∇ under the time integration
and using Eq. (3), we have

∂

∂t
ρ(t,r) + 4π

∫ t

0
σ (t − t ′)ρ(t ′,r)dt ′ = 0. (7)

By Laplace transforming Eq. (7) we find

sρ(s,r) − ρ(0,r) + 4πσ (s)ρ(s,r) = 0, (8)

where ρ(0,r) is the density of the charges at time t = 0, and
σ (s) is the Laplace transform of σ (t). Separating the variables
in Eq. (8) we write ρ(s,r) = φ(s)ρ(0,r) where φ(s) defines
the Laplace transform of the relaxation function φ(t). From
Eq. (8), it follows that

φ(s) = 1

s + 4πσ (s)
, (9)

where the initial condition φ(0) = 1 has been applied.

III. CONCEPT OF MEMORY FUNCTION AND ac
CONDUCTIVITY

In the frame of the linear-response approximation, the
fluctuations of polarization caused by thermal motion are the
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same as for the macroscopic dipole relaxation function induced
by the electric field [34]. Thus, one can equate approximately
the relaxation function and the macroscopic dipole correlation
function (DCF) ψ(t) to each other as

φ(t) ∼= ψ(t) = 〈M(t) · M(0)〉
〈M(0) · M(0)〉 , (10)

where M(t) is the macroscopic fluctuating dipole moment of
the sample volume unit, which is equal to the vector sum of
all elementary molecular dipoles. The equation that governs
by the time evolution of the DCF [or relaxation function φ(t)]
is given by the master equation [35]

∂

∂t
φ(t) = −

∫ t

0
K1(t − t ′)φ(t ′)dt ′, (11)

where K1(t) is the memory kernel of the relaxation process and
it contains the full dynamics of the N bodies as it is prescribed
by the Liouville equation without any additional assumption.
K1(t) represents the non-Markovian effect (presence of mem-
ory) of the correlation function.

Integrating Eq. (11), we present it in the form

φ(t) − 1 = −
∫ t

0
M1(t − t ′)φ(t ′)dt ′, (12)

where M1(t) = ∫ t

0 K1(t − t ′)dt ′ is the integral memory func-
tion (IMF). The usage of the IMF is more preferable because, as
a rule, in the construction of the theory of anomalous dielectric
relaxation the initial memory function K1(t) can belong to the
space of the generalized functions. The Laplace transform of
Eq. (12) leads to the result

φ(s) = 1

s(1 + M1(s))
. (13)

Comparing the last Eq. (13) with Eq. (9), one can obtain
the relationship between conductivity and the Laplace image
of the integral memory function

σ (s) = sM1(s)

4π
. (14)

It is known [36] that relaxation and transport phenomena
in disordered media, being strongly nonequilibrium in their
nature, have a hierarchy-subordinated structure. The establish-
ing of the hierarchy subordination leads to the fractal structure
of the potential-energy landscape [37]. The fractal character
of relaxation and charge carrier transport in the hierarchy-
subordinated systems leads to the following property of the
memory function M1(t) [38,39] scale invariance:

M1(ξ t) = ξα−1M1(t), (15)

where α is a constant, which, as it has been shown in [38,39],
determines the fractal dimension of the time-space ensemble
characterizing the relaxation process. The power-law function

M1(t) = A1
tα−1


(α)
(16)

(A1 is a constant) is the partial solution of the functional (15).
The substitution of the Laplace image of the memory function
M1(t) (16) in Eq. (14) leads to the power-law behavior of

conductivity

σ (s) = A1

4π
s1−α, (17)

which coincides (at s = iω) with the power-law behavior term
that enters into Eq. (1) for ac conductivity. In the frame of the
memory function formalism, there is a real possibility to justify
another term figuring in Eq. (1). As it has been mentioned in
the Introduction to this paper, there are the contributions of the
NCL and dc regimes, which are governed by different types
of ionic motion.

Some types (for certainty considered as independent) of
ionic motions in the frame of the memory function formalism
one can associate with additive contributions to the total
memory function [40,41]: M1(t) = ∑n

k=1 M1k(t). We choose
these additional terms to the memory function in the form
of power-law functions with different exponents: M1k(t) =
Akt

αk−1. Because the contribution of the term to the NCL
regime in the frequency domain is approximately linear, then
this type of ionic motion corresponds to the memory function
with α = 0:

M1NCL(t) = ANCLt−1. (18)

But, for this function the corresponding Laplace transform
is absent. For overcoming of this difficulty we realize the
integration for the expression M1NCL(t) and obtain the function

N1NCL(t) = ANCLln (t/tN ) , (19)

where tN defines a relatively short temporal scale of the NCL
regime of ion motion. The relationship between the formal
Laplace transform of the function M1NCL(t) and Laplace image
of the function N1NCL(t) has the form

M1NCL(s) = sN1NCL(s). (20)

Taking into account the known expression for the Laplace
image of the function lnt and Eq. (14), one can find the follow-
ing expression for the NCL contribution to ac conductivity:

σNCL(s) = sM1NCL(s)

4π
= s2N1NCL(s)

4π
= −ANCLs

4π
ln (s/ωN ) ,

(21)

where ωN = 1.781 07/tN . Putting here s = iω and extracting
the real and imaginary parts, one can obtain the expressions
σ ′

NCL(ω), σ ′′
NCL(ω) for the NCL contribution:

σ ′
NCL(ω) = π

2
σN

ω

ωN

, (22)

σ ′′
NCL(ω) = σN

ω

ωN

ln
(ωN

ω

)
, (23)

where the following notation is used: σN = ANCLωN/4π .
By analogy, one can evaluate the contribution of the dc

conductivity, connecting it with an additive contribution to the
memory function M1(t) with the power-law exponent α = 1:
M1dc(t) = Adc = 4πσ0. Finally, we obtain

σdc(s) = sM1dc(s)

4π
= σ0. (24)

As it follows from Eq. (14), the Laplace images of
conductivity and the function N1(t) are connected with each
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other by means of the relationship σ (s) = s2N1(s)/4π . If we
take into account the result of [42], where the frequency
dependence of conductivity is determined by the Fourier
transform of the mean-squared displacement

σ (ω) = −ω2 Nq2

6T
lim
δ→0

∫ ∞

0
〈r2(t)〉exp(−iωt − δt)dt, (25)

then we find N1(t) ∝ 〈r2(t)〉. So, based on these two relation-
ships, one can reproduce easily the well-known expressions
for the mean-squared displacement [43]

〈r2(t)〉dc ∝ t, 〈r2(t)〉ac ∝ tα, 〈r2(t)〉NCL ∝ lnt. (26)

IV. CORRECTION OF THE POWER LAW OF ac
CONDUCTIVITY IN PRESENCE OF “ELECTRODE

POLARIZATION” EFFECT

However, the contribution to the ac conductivity of a type
(17) does not enable us to describe completely the whole
low-frequency range of the total conductivity spectrum, when
the electrode polarization effect takes place. So, there is
a necessity for obtaining a general expression for the ac
conductivity, which gives a possibility to describe the behavior
of this function for the whole low-frequency range. For the
solution of this problem, it is necessary to develop a theoretical
approach for a small-time domain that will correspond to the
high-frequency range extension. In the frame of the Mori
formalism [35], there is a possibility of such kind; it is
associated with the necessity of evolution consideration of
the memory function K1(t). In turn, for consideration of its
evolution, it is necessary to bond this memory function with
the memory function of the second order K2(t) by means of
the following equation [35]:

∂

∂t
K1(t) = −

∫ t

0
K2(t − t ′)K1(t ′)dt ′. (27)

In Eq. (27), the kernel K2(t) accounts for the time lag
effects produced by the internal mechanism, which ultimately
represents the ensemble average of the fluctuation torques
dynamics acting on a representative dipole of the system.

Introducing the integral second-order memory function
M2(t) = ∫ t

0 K2(t − t ′)dt ′ and performing the double integra-
tion of Eq. (27) initially in the limits from t up to � [taking into
account the conditions K1(t → ∞) = 0 and M2(t → ∞) =
0] and then integrating in the limits (0,t), one can transform
finally Eq. (27) to the following integral equation:

M1(t) +
∫ t

0
M2(t − t ′)M1(t ′)dt ′ = b, (28)

where b determines the constant of integration. It is found from
the condition

b =
∫ t

0
M2(t − t ′)M1(t ′)dt ′|t→∞. (29)

The Laplace transform of Eq. (28) leads to the result

M1(s) = b

s(1 + M2(s))
. (30)

Let us suppose that the function M2(t) satisfies to the
scaling invariance condition (15) that will correspond to the

fractal character of the current-current correlation function
evolution. As a result, we obtain the power-law behavior
for the function M2(t): M2(t) = A2t

α−1/
(α), where A2 is
a constant. Using the expression for the Laplace image of the
obtained function M2(t): M2(s) = A2s

−α one can find easily
the following expression for the Laplace image of the function
M1(t) :

M1(s) = b

s (1 + A2s−α)
. (31)

Choosing the constant A2 in the form A2 = τ−α
J and coming

back to the time domain in Eq. (31), one obtains

M1(t) = bEα[−(t/τJ )α], (32)

where Eα [z] is the Mittag-Leffler function. At small times (t <

τJ ), expression (32) for M1(t) is approximated by the stretched
exponent as M1(t) ≈ bexp[−(t/τJ )α/
(1 + α)], where the
temporal parameter τJ determines the characteristic relaxation
time of the current-current correlation function.

The derived expression for the function M1(t) [Eq. (32)]
with Eqs. (14) and (31) determines the following frequency
behavior for ac conductivity:

σ (s = iω) ≡ σfrac(ω) = b

4π (1 + (iωτJ )−α)
. (33)

This equation generalizes the conventional ac conductivity
expression and it was determined as the “universal” Jonsher’s
correction [45]. It takes into account the influence of the
electrode polarization effect on the whole spectrum of the
complex conductivity.

V. VERIFICATION OF THE GENERALIZED
FREQUENCY-DEPENDENT CONDUCTIVITY

ON EXPERIMENTAL DATA

Taking into account the contribution of the conductivity at
constant electrical field σ0 = σ (0) and high-frequency con-
tribution of dielectric relaxation, one can write the following
expression for the total conductivity:

σtot(ω) = σ0 + σdc − σ0

1 + (iω/ωJ )−α
+ iωε0[εrelax(ω) − ε∞],

(34)

where we introduce the notations b = 4π (σdc − σ0), ωJ =
1/τJ , and exclude the current of the bounded charges ε0(ε∞ −
1)iω [6]; here, ε0 = 8.85 × 10−12F/m is the dielectric permit-
tivity of a vacuum. We should stress here that in the presence of
the electrode polarizations effect σ0 = σ (0) does not coincide
with the value σdc which is shown in Fig. 1. Expression εrelax(ω)
determines the contribution of the dielectric relaxation part.
From Eq. (34), one can obtain the following form for the
frequency behavior of dielectric permittivity [ε(ω) − ε∞ =
σtot(ω)/(iω ε0)]:

ε(ω) = σ0

iωε0
+ σdc − σ0

iωε0(1 + (iω/ωJ )−α)
+ εrelax(ω). (35)

In absence of the dipole relaxation or in supposition that
the relaxation loss peak is situated in the high-frequency
range, we can define that εrelax(ω) ≈ εs . In the result of this
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FIG. 2. Complex dielectric permittivity and conductivity of 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM-PF6) versus
frequency at 264 K [44]. Open circles are experimental points, the solid black line represents the fitting curve that corresponds to functions
(35) and (36).

approximation, Eq. (34) is simplified and accepts the form

σ (ω) = σdc − σdc − σ0

1 + (iω/ωJ )α
+ iωε0�ε, (36)

where �ε = εs − ε∞.
The imaginary part of the found expression (36) for the ac

conductivity is determined by the following formulas:

σ ′′(ω) = Im[σ (ω)]

= ε0ωJ �εex + (σdc − σ0)sin (πα/2)

2(cosh (αx) + cos (πα/2))
,

x = ln (ωτJ ) (37)

and it is changed nonmonotonically with changing of the
current frequency (or the value x). This behavior is typical
for the electrode polarization effect (see Fig. 1). One can find
from the given expression (37) the values of frequencies that
correspond to the positions of extreme points:

dσ ′′(x)

dx
= ε0ωJ �εex

− α(σdc − σ0)sin (πα/2) sinh (αx)

2(cosh (αx) + cos (πα/2))2 = 0 ⇒

xmax = ln (ωmax/ωJ ) ≈ 2(1 + cos (πα/2))2

α2sin (πα/2)

ωJ ε0�ε

σdc − σ0
,

xon = ln (ωon/ωJ ) ≈ 1

1 + α
ln

[
σ0 − σdc

ωJ ε0�ε
αsin

(
πα

2

)]
.

(38)

The found values of frequencies ωon, ωmax determine the
characteristic frequencies that correspond to the “onset of the
electrode polarization” and “full development of the electrode
polarization” accordingly (see Fig. 1).

Now, we are ready to verify the main peculiarities of
frequency behavior of Eqs. (35) and (36) on available
data. As an example, we use experimental data of 1-hexyl-
3-methylimidazolium hexafluorophosphate (HMIM-PF6) at
264 K that were taken from [44]:

(1) As one can see from Eq. (37), the imaginary part of
conductivity (without relaxation term) has Cole-Cole form
with a “tail” shifted to the high-frequency range. In log-log
scale, this “tail” is transformed to a straight line with tangent
of slope equal to 45°. It is shown on Fig. 2(c).

(2) The real part of conductivity has also Cole-Cole form
but it is inverted in the frequency range, i.e., the step-function
increases with the growth of a frequency. It is shown on
Fig. 2(d).

(3) For the real part of dielectric permittivity at relatively
frequencies ωJ � ω, we have from Eq. (35)

ln{Re[ε(ω)]} ≈ −(α + 1)ln(ω) + const. (39)

Because of 0 < α < 1, the curve (39) has a slope exceeding
or even 45°. At low frequencies (ω � ωJ ) the curve has the
form

ln{Re[ε(ω)]} ≈ (α − 1)ln(ω) + const, (40)

with the slope that should be less than 45°. The behavior of the
imaginary part of (35) strongly depends on the value of σ0. If σ0
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FIG. 3. Complex dielectric function and complex conductivity of dimethylimidazolium dimethylphosphate (MMIM-Me2PO4) as a function
of frequency at different temperatures, as indicated [47].

accepts the large value in comparison with the remaining terms
in (35), then in log-log scale we obtain a line with the slope
equal to 45°. If the value σ0 is becoming less in comparison
with the remaining terms, then the function (35) in this case at
ω 
 ωJ has the expression

ln{Im[ε(ω)]} ≈ −ln(ω) + const, (41)

with the slope equal to 45°. For the case when ω � ωJ we
obtain another approximate expression

ln{Im[ε(ω)]} ≈−(1 − α)ln(ω) + const, (42)

from which it follows that the curve has the slope that is less
than or equal to 45°. Thus, in log-log scale, the imaginary and
real parts of the ac conductivity at low frequencies have an
inflection point at certain frequency. It is shown on Figs. 2(a)
and 2(b).

From analysis of these plots it follows that there is a
possibility of evaluation of the characteristic relaxation-time
value of the current-current correlation function τJ ; (a) based
on the positions of the frequencies fon, fmax or (b) using the
specific points that correspond to the slope changing in the
frequency dependence of the logarithm of the real part of
dielectric permittivity.

The appearance of the ac conductivity correction (33)
in the frequency domain is caused by the electrode po-
larization phenomenon and is related to existence of the,
so-called, “fractal” current [45], which, in turn, is caused by
the self-similar (fractal) structure of the electrode surfaces.
This idea was proposed in [46]. Therefore, we want to
represent another experimental data set, where the electrode
polarization phenomena take place in order to add some
additional proofs for validity of Eq. (33). On Figs. 3 and 4,
experimental data of dimethylimidazolium dimethylphosphate
and polyethylene oxide methacrylate are presented (they are

taken from papers [47,48], correspondingly). From these
figures it follows that these dielectric permittivity curves have
the bend in the region 100 − 101 Hz. The imaginary part of
conductivity has the Cole-Cole type form with a “tail” at
high frequencies also. As for the curve tangent loss (tanδ)
presented in the small frame of Fig. 4 [as one can verify easily
from (35)], it should have bell-like behavior (see [45,49] for
detail).

Then, we consider experimental data where the so-called
NCL regime is expressed clearly. On Fig. 5, we demonstrate
the frequency dependencies of the functions ε′′ and σ ′′
at different temperatures of polymer electrolyte consisting
of polyethylene oxide (PEO) and LiCF3SO3 with molar
ratio of ether oxygens (EO) to lithium ions EO/Li = 30,

FIG. 4. Dielectric spectrum for polyethylene oxide methacrylate
(PPEOMA) at 46 °C. In the small frame, tanδ loss is shown [48].
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FIG. 5. Frequency dependence of ε′′ and σ ′′ at different tempera-
tures of polymer electrolyte consisting of polyethylene oxide (PEO)
and LiCF3SO3 with EO/Li = 30 [50].

taken from paper [50]. As one can notice from Fig. 5, two
phenomena (electrode polarization and NCL regime) take
place. Taking into account the mathematical expression for the
NCL (21), the total expressions for the frequency dependencies
of dielectric permittivity and ac conductivity accept the
form

ε(ω) = σ0

iωε0
+ σdc − σ0

iωε0(1 + (iω/ωJ )−α)

− σN

ε0ωN

ln

(
iω

ωN

)
+ εs, (43)

σ (ω) = σdc − σdc − σ0

1 + (iω/ωJ )α
− σN

iω

ωN

ln

(
iω

ωN

)
+ iωε0�ε.

(44)

Expressions for extreme frequencies ωon, ωmax with ad-
ditional contribution from the NCL regime can be written
as

xmax = ln (ωmax/ωJ ) ≈ 2(1 + cos (πα/2))2

α2sin (πα/2)

×
(

ωJ ε0�ε

σdc − σ0
+ σN

(σdc − σ0)

ωJ

ωN

ln

[
ωN

eωJ

])
,

xon = ln (ωon/ωJ ) ≈ ε0�ε

σN

ωN. (45)

On Fig. 5, we demonstrate the results of the fitting (solid lines)
of the experimental data points realized with the help of the
curves (43) and (44). Notice the excellent agreement between
the suggested theoretical curves and independently measured
experimental data.

VI. CONCLUSION

In conclusion of this paper, we want to stress the following
fact. The excellent agreement of the modified ac conductivity
expression tested on the available measured data demonstrates
the consistency of the theoretical approach associated with
consideration of the transport phenomena in ion-conducting
materials, where the electrode polarization phenomenon takes
place. The basic idea of this theoretical approach is related
to the self-similar evolution of current-current correlation
function, which determines and mainly explains the anomalies
of the transport properties observed.

The modified correction to the ac conductivity (33), as it was
demonstrated in this paper, describes perfectly the frequency
behavior of the ac conductivity and permittivity for a relatively
low range of frequencies. For this range, the electrode polar-
ization effect takes place. In order to increase the frequency
range and understand the behavior of the ac conductivity in
ion-conducting materials, it is necessary to take into account
other types of ionic motions, in particular the NCL regime.
Different types of ion motion in the frame of the proposed
formalism can be associated with an additive contribution to
the memory function. Allowances for the contribution of the
NCL regime lead us to expression (44) for the ac conductivity.
It allows us to describe the experimental data for more wide
frequency range and confirms the experimentally established
fact that at frequencies above the “dc regime,” the derivative
dln(σ ′)/dln(f ) has a tendency to increase with increasing of
the current frequency continuously. The further increasing of
a frequency window for description of experimental data for
σ ′(ω) is possible and can be associated with more detailed
evaluation of the dipole relaxation term. Really, if one chooses
(for certainty) the Cole-Cole expression for relaxation part of
the dielectric permittivity

εrelax(ω) = ε∞ + �ε

1 + (iω/ωR)ν
≈

ω�ωR

εs − �ε

(
iω

ωR

)ν

,

(46)

where the stretching power-law exponent lies in the interval
0 < ν < 1, and ωR determines the characteristic frequency of
dipole relaxation then [as it follows from (34)] and taking
into account the NCL contribution term expression for σ ′(ω)
accepts the form

σ ′(ω)=σdc − (σdc − σ0)
1 + (ω/ωJ )α cos (πα/2)

1 + 2(ω/ωJ )αcos(πα/2) + (ω/ωJ )2α

+ π

2
σN

ω

ωN

+ ωRε0�εsin
(πν

2

)(
ω

ωR

)1+ν

. (47)

Equation (47) allows us to describe experimental data for
wide range of frequencies including the region above the
dc conductivity. In log-log scale, the slope of the frequency
dependence of the function σ ′(ω) with the growth of frequency
increases continuously from the value of α to the unit value
and then gradually to the value 1 + ν.
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